ACIDS, BASES, AND SALTS

Practice Problems

In your notebook, solve the following problems.

#s 3,4,6,7

SECTION 19.1 ACID-BASE THEORIES

- Donates HT (1.) Identify the hydrogen ion donor(s) and hydrogen ion acceptor(s) for ionization of H₂SO₄ in water. Label the conjugate acid–base pairs. X Identify all of the ions that may be formed when H_3PO_4 ionizes in water.
- (3.) Classify the following acids as monoprotic, diprotic, or triprotic.
 - a. HCOOH
- b. HBr
- d. H₃ClO₄
- (4.) What would you expect to happen when lithium metal is added to water? Show the chemical reaction. 2Li +2H2O -> 2LiOH + H2
- 💢 In the following chemical reaction, identify the Lewis acid and base.

$$BF_3 + F^- \rightleftharpoons BF_4^-$$

- 6 Describe some distinctive properties of acids. Sour, burns, electrolyte
- 1 Describe some distinctive properties of bases. b. Her, Shppery, electrolyte

#s 1-7,9

SECTION 19.2 HYDROGEN IONS AND ACIDITY

- (1) A solution has a hydrogen ion concentration of $1 \times 10^{-6} M$. What is its pH? pH = 6.0
- 2 What is the pH of a solution if the $[H^+] = 7.2 \times 10^{-9} M$? PH = 8.14
- 3 What is the pOH of a solution if the $[OH^-] = 3.5 \times 10^{-2} M$? pOH = +1.46
- What is the pOH of a solution that has a pH of 3.4? pOH = 10.6
- Classify each solution as acidic, basic, or neutral.
 - a. [H+] = 2.5 × 10-9M pH = 8.60, BASEd. [H+] = 1 × 10-7M pH = 7.0, NEUTRAL
 - b. pOH = 12.0 pH = 2.0, ACID e. pH = 0.8 ACIO
 - c. $[OH^{-}] = 9.8 \times 10^{-11} M \text{ poH} = 10.0, PH = 4.0, AcID}$
- Calculate the pH of each solution.
 - a. $[H^+] = 1 \times 10^{-5}M$ pH = 5.0, ACID c. $[OH^-] = 2.2 \times 10^{-7}M$ pOH = 6.66, PH = 7.34
 - b. $[H^+] = 4.4 \times 10^{-11} M$ pH = 10.36, BASE d. pOH = 1.4 pH = 12.6, BASE

- (7.) Classify the solutions in problem 6 as acidic or basic. SEE A BOVE
- 🞉 Why is there a minus sign in the definition of pH?
- (9.) A solution has a pOH of 12.4. What is the pH of this solution? pH = 1.6
- **M**. What is the pH of a solution with $[H^-] = 1 \times 10^{-3} M$?