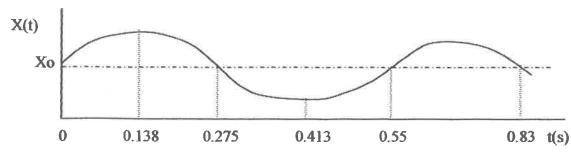

Linear Oscillator


A motion detector is placed next to a linear oscillator with a mass of 500 grams and then set into motion. The position time graph is show below the oscillator.

- 1. Find the period of the linear oscillator \$25 cm
- 2. Find the frequency of the linear oscillator 1.212 WZ
- 3. Find the angular frequency of the linear oscillator 7.62 m/s
- 4. Find the amplitude of the linear oscillator $\cdot \cdot \cdot \sim$
- 5. Find the spring constant of the spring in the linear oscillator 29 %
- 6. Write the position function of the linear oscillator $\times (\pm) = 1 \cos (7.12 \pm -\pi/2)$
- 7. Write the velocity function of the linear oscillator VL) .762 sin (7.12 \(\pi / \(\))
- 8. Write the acceleration function of the linear oscillator alt) = -5.8 as (7.624-17/2)
- What is its maximum velocity? ¬1 2-15
- 10. What is its maximum acceleration? 5.5-

The 500 gram mass is now replaced by an unknown mass and the motion detector shows the following position vs. time graph.

11. Find the value of this unknown mass.