A cannon is fired at 90 m/s and an angle of 40 degrees above the horizontal.

Find:
(a) The total time in the air
(b) Total horizontal distance (range)
(c) Maximum height of the projectile
(d) Height at 4 seconds
(e) Speed it hits the ground
(f) Velocity at the top
(g) Velocity at 7 seconds
(h) The time it has a height of 75 m

\[V_x = 68.9 \text{ m/s} \]
\[V_{oy} = 57.9 \text{ m/s} \]
\[g = -9.8 \text{ m/s}^2 \]
a) \[\frac{y}{V_{f,y} = 0 \ (T = 0)} \]
\[V_f = at + V_0 \]
\[0 = -9.8t + 57.9 \]
\[5.85 = t \]
\[\times 2 \]
\[t = 11.7 \text{ sec} \]

b) \[\sqrt{\frac{x}{t}} \]
\[68.9 \text{ m/s} = \frac{x}{11.8} \]
\[x = 813 \text{ m} \]
c) \[y = \frac{1}{2} \cdot (-9.8) \cdot (5.9)^2 + (57.5)(5.9) \]
 \[dy = 171 \text{ m} \]

d) \[dy = \frac{1}{2} \cdot (-9.8) \cdot (4)^2 + 57.5(4) \]
 \[dy = 153.2 \text{ m} \]

\[90 \text{ m/s} \]
\[V @ \text{top} = V_x \]

\[V = 68.9 \text{m/s} \]

\[v_f = v_i + at \]

\[v_f = v_i + 6.75 \times (7 - 9.8) \]

\[v_f = -10.7 \text{m/s} \]
h) $t = ?$

$by = 7.5\, m$

$7.5 = \frac{1}{2}(-9.8)t^2 + 57.9\, t$

$-4.96 + 57.9\, t - 7.5 = 0$

$t = 1.48\, s, 10.3\, s$