Arc Length Formulas:

\[
L = \int_{x_1}^{x_2} \sqrt{1 + (f'(x))^2} \, dx
\]

\[
L = \int_{y_1}^{y_2} \sqrt{1 + [f'(y)]^2} \, dy
\]

* \(f(x) \) and \(f(y) \) must be differentiable
Derivation of Arc Length Formula:

\[
\begin{align*}
\frac{dl}{dx} &= \sqrt{(dx)^2 + (dy)^2} \\
L &= \int_{x_1}^{x_2} \sqrt{(dx)^2 + (dy)^2} \\
&= \int \sqrt{\left(\frac{dx}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2} \, dx \\
&= \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx
\end{align*}
\]
\[y = x^{\frac{3}{2}} \text{ from } (1,1) \text{ to } (2, 2\sqrt{2}) \]

\[y' = \frac{3}{2} x^{\frac{1}{2}} \]

\[L = \int_{1}^{2} \sqrt{1 + \left(\frac{3}{2} x^{\frac{1}{2}}\right)^2} \, dx \]

\[= \int_{1}^{2} \sqrt{1 + \frac{9}{4} x} \, dx \]

\[u = 1 + \frac{9}{4} x \]

\[du = \frac{9}{4} \, dx \]

\[= \frac{4}{9} \int_{\frac{\sqrt{13}}{4}}^{\frac{\sqrt{22}}{4}} u^{\frac{1}{2}} \, du \]

\[\frac{4}{9} \cdot \frac{2}{3} u^{\frac{3}{2}} \bigg|_{\frac{\sqrt{13}}{4}}^{\frac{\sqrt{22}}{4}} \]

\[= \frac{8}{27} \left(\left(\frac{\sqrt{22}}{4}\right)^{\frac{3}{2}} - \left(\frac{\sqrt{13}}{4}\right)^{\frac{3}{2}} \right) \]

\[= \frac{1}{27} \left(\frac{\sqrt{22}}{2} \right) \sqrt{13} - 13 \sqrt{13} \]
b) \[y = x^{\frac{3}{2}} \Rightarrow x = y^{\frac{2}{3}} \Rightarrow x' = \frac{2}{3} y^{-\frac{1}{3}} \]

\[\frac{2}{3} y^{\frac{2}{3}} \sqrt{y^{\frac{2}{3}} + \frac{4}{9}} \, dy \]

\[\frac{3}{2} \int_{0}^{\frac{2}{3}a} u^{\frac{11}{2}} \, du \]

\[\int_{0}^{\frac{2}{3}a} \left(\frac{22}{9} \right) \left(\frac{3}{2} \right) \, du \]

\[= \frac{1}{27} \left(22 \cdot 22 - 13 \cdot 19 \right) \]
Question 5

Let R be the shaded region bounded by the graph of $y = xe^{x^2}$, the line $y = -2x$, and the vertical line $x = 1$, as shown in the figure above.

(a) Find the area of R.

(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y = -2$.

(c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

\[u = x^2, \quad \frac{du}{dx} = 2x, \quad x^2 = \frac{u}{2} \]

\[\int_0^1 xe^{x^2} + 2x \, dx \]

\[\int_0^1 e^{x^2} \, dx + \int_0^1 2x \, dx \]

\[\frac{1}{2} \left[\int_0^1 e^{x^2} \, dx + x^2 \right]_0^1 \]

\[\frac{1}{a} (e-1) + 1 \]

\[\frac{1}{a} e - \frac{1}{2}a + 1 \]

\[\frac{1}{a} e + \frac{1}{2}a \]

\[\frac{1}{a} (e^a) = \frac{e+1}{a} \]
Question 5

Let \(R \) be the shaded region bounded by the graph of \(y = xe^{x^2} \), the line \(y = -2x \), and the vertical line \(x = 1 \), as shown in the figure above.

(a) Find the area of \(R \).
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when \(R \) is rotated about the horizontal line \(y = -2 \).
(c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of \(R \).

\[V = \pi \int_0^1 (r_1^2 - r_2^2) \, dx \]
Question 5

Let R be the shaded region bounded by the graph of $y = xe^{x^2}$, the line $y = -2x$, and the vertical line $x = 1$, as shown in the figure above.

(a) Find the area of R.

(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y = -2$.

(c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

\[y_1 = xe^{x^2} \]
\[\frac{dy_1}{dx} = xe^{x^2} + x^2 e^{x^2} \]
\[= 2x^2 e^{x^2} + x e^{x^2} \]

\[L = e + 2 + \sqrt{5} + \int_{0}^{1} \sqrt{1 + (\frac{dy_1}{dx})^2} \, dx \]
HW: CHAPTER 7 AP PACKET

15, 30, 61-69 odd, 70, 71