7.1 Integral as Net Change
A honey bee makes several trips from the hive to a flower garden. The velocity graph is shown below.

What is the total distance traveled by the bee?

200 ft + 200 ft + 200 ft + 100 ft = 700 ft
What is the displacement of the bee?

\[200 - 200 + 200 - 100 = 100\]

100 feet towards the hive
To find the displacement (position shift) from the velocity function, we just integrate the function. The negative areas below the x-axis subtract from the total displacement.

\[\text{Displacement} = \int_{t_1}^{t_2} v(t) \, dt \]

To find distance traveled we have to use absolute value.

\[\text{Distance Traveled} = \int_{t_1}^{t_2} |v(t)| \, dt \]

Find the roots of the velocity equation and integrate in pieces, just like when we found the area between a curve and the x-axis. (Take the absolute value of each integral.)

Or you can use your calculator to integrate the absolute value of the velocity function.
Recall for Rectilinear Motion (motion along a line):

- **Position function** = \(x(t) \)
- **Velocity function** = \(v(t) = x'(t) \)

\[\begin{align*}
v(t) > 0 & \implies \text{moving in positive direction} \\
v(t) < 0 & \implies \text{moving in negative direction} \\
v(t) = 0 & \implies \text{object stopped/changing direction}
\end{align*}\]

\[|v(t)| = \text{Speed}\]

- **Acceleration function** = \(a(t) = v'(t) = x''(t) \)

- If \(a(t) \) and \(v(t) \) have the same sign \(\implies \text{speeding up} \)
- If \(a(t) \) and \(v(t) \) have opp. signs \(\implies \text{slowing down} \)
Displacement: \(\Delta x = x(t_2) - x(t_1) \)

From integration:
\[
\int_{t_1}^{t_2} v(t) \, dt = x(t)|_{t_1}^{t_2} = x(t_2) - x(t_1) = \Delta x
\]

A variation of the displacement formula:
\[
x(t_2) = x(t_1) + \int_{t_1}^{t_2} v(t) \, dt
\]

Final pos. = initial position + displacement
Total Distance Traveled: must account for positive and negative velocities

\[\text{Total Distance} = \int_{t_1}^{t_2} |v(t)| \, dt \]
Example: Suppose that \[v(t) = t^2 - \frac{8}{(t + 1)^2} \text{ cm/s} \]

a. Describe the motion of the object for the first five seconds. Support your answer graphically.

\[v(t) = 0 \text{ at } t = 1.2545 \]

\[v(t) > 0 \text{ on } (1.2545, \infty) \Rightarrow \text{object moving right} \]

\[v(t) < 0 \text{ on } (0, 1.2545) \Rightarrow \text{object moves left} \]

\[v(t) \text{ increases on } (0, 5) \Rightarrow a(t) > 0 \text{ on } (0, 5), \text{ object speeding up} \]

\[v(t) \text{ decreases on } (1.2545, 5) \text{ since } v(t) > 0 \text{ and } a(t) > 0. \]

\[\text{Object slowing down on } (0, 1.2545) \text{ since } v(t) \text{ and } a(t) \text{ are opposite signs.} \]
Example: Suppose that \(v(t) = t^2 - \frac{8}{(t + 1)^2} \) cm/s

b. If the initial position of the object is 9, what is the position of the object at 5 seconds?
c. How far did the object travel over the first five seconds?

\[
b) \quad x(s) = x(0) + \int_0^5 v(t) \, dt = 9 + \int_0^5 v(t) \, dt = 44 \text{ cm}
\]

\[
c) \quad \int_0^5 |v(t)| \, dt = 42.587 \text{ cm}
\]
Example: Suppose that a car with initial velocity 5 mph has \(a(t) = 2.4t \) mph/s.

How fast is the car going at the end of 8 seconds?

\[
v(8) = v(0) + \int_0^8 a(t) \, dt
\]

\[
= 5 + \left[1.2t^2 \right]_0^8
\]

\[
= 5 + 1.2(64)
\]

\[
= 5 + 76.8 = 81.8 \text{ mph}
\]
2. A particle moves along the x-axis with velocity given by \(v(t) = \frac{10 \sin(0.4t^2)}{t^2 - t + 3} \) for time \(0 \leq t \leq 3.5 \).

The particle is at position \(x = -5 \) at time \(t = 0 \).

(a) Find the acceleration of the particle at time \(t = 3 \).

\[a(3) = v'(3) = -2.118 \]
2. A particle moves along the x-axis with velocity given by $v(t) = \frac{10 \sin(0.4t^2)}{t^2 - t + 3}$ for time $0 \leq t \leq 3.5$.

The particle is at position $x = -5$ at time $t = 0$.

(b) Find the position of the particle at time $t = 3$.

$$x(3) = -5 + \int_{0}^{3} v(t) \, dt = -5 + \int_{0}^{3} \frac{10 \sin(0.4t^2)}{t^2 - t + 3} \, dt = -1.76025478113501 \text{ m}$$
2. A particle moves along the \(x \)-axis with velocity given by \(v(t) = \frac{10 \sin (0.4t^2)}{t^2 - t + 3} \) for time \(0 \leq t \leq 3.5 \).

The particle is at position \(x = -5 \) at time \(t = 0 \).

(c) Evaluate \(\int_{0}^{3.5} v(t) \, dt \), and evaluate \(\int_{0}^{3.5} |v(t)| \, dt \). Interpret the meaning of each integral in the context of the problem.

\[\int_{0}^{3.5} v(t) \, dt = 2.844 \quad \text{THE DISPLACEMENT OF PARTICLE FROM } t=0 \text{ TO } t=3.5 \]

\[\int_{0}^{3.5} |v(t)| \, dt = 3.737 \quad \text{TOTAL DIST. TRAVELED BY PARTICLE FROM } t=0 \text{ TO } t=3.5 \]
2. A particle moves along the x-axis with velocity given by $v(t) = \frac{10 \sin(0.4t^2)}{t^2 - t + 3}$ for time $0 \leq t \leq 3.5$.

The particle is at position $x = -5$ at time $t = 0$.

(d) A second particle moves along the x-axis with position given by $x_2(t) = t^2 - t$ for $0 \leq t \leq 3.5$. At what time t are the two particles moving with the same velocity?

$x_2'(t) = 2t - 1 = v(t) \Rightarrow t = 1.570$
Classwork:
Chapter 7 AP Packet #2, 4, 6, 10, 18

Homework:
Chapter 7 AP Packet #1, 3, 5, 13, 17, 21
Example: National Potato Consumption

The rate of potato consumption for a particular country was:

\[C(t) = 2.2 + 1.1t \]

where \(t \) is the number of years since 1970 and \(C \) is in millions of bushels per year.

Find the amount of potatoes consumed from the beginning of 1972 to the end of 1973.
Example 5: National Potato Consumption

\[C(t) = 2.2 + 1.1^t \]

To find the cumulative effect over time – Integrate it!

From the beginning of 1972 to the end of 1973:

\[
\int_{2}^{4} (2.2 + 1.1^t) \, dt = 2.2t + \frac{1}{\ln 1.1} 1.1^t \bigg|_{2}^{4} \approx 7.066 \text{ million bushels}
\]
Net Change from Data: what if we don’t have the a function to work with?

Example (p. 369): A pump connected to a generator operates at a varying rate, depending on how much power is being drawn from the generator. The rate (gallons per minute) at which the pump operates is recorded at 5-minute intervals for an hour as shown in the table. How many gallons were pumped during the hour?

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Rate (gal/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>35</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>59</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>60</td>
<td>63</td>
</tr>
<tr>
<td>Time (min)</td>
<td>Rate (gal/min)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>35</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>59</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>60</td>
<td>63</td>
</tr>
</tbody>
</table>

Gallons pumped = \[\int_{0}^{60} R(t) dt \]

We don’t have a formula for \(R(t) \), so we have to approximate the integral – the trapezoidal rule works well:

\[
\frac{1}{2} \cdot 5 \cdot [58 + 2(60) + \cdots + 2(63) + 63] \\
= 3582.5 \text{ gallons}
\]
2010 BC1

There is no snow on Janet’s driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t) = 7te^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. ($t = 6$). The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$g(t) = \begin{cases}
0 & \text{for } 0 \leq t < 6 \\
125 & \text{for } 6 \leq t < 7 \\
108 & \text{for } 7 \leq t \leq 9.
\end{cases}$$

(a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.?
2010 BC1

There is no snow on Janet’s driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by \(f(t) = 7te^{\cos t} \) cubic feet per hour, where \(t \) is measured in hours since midnight. Janet starts removing snow at 6 A.M. \((t = 6) \). The rate \(g(t) \), in cubic feet per hour, at which Janet removes snow from the driveway at time \(t \) hours after midnight is modeled by

\[
g(t) = \begin{cases}
0 & \text{for } 0 \leq t < 6 \\
125 & \text{for } 6 \leq t < 7 \\
108 & \text{for } 7 \leq t \leq 9.
\end{cases}
\]

(b) Find the rate of change of the volume of snow on the driveway at 8 A.M.
There is no snow on Janet’s driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by \(f(t) = 7te^{\cos t} \) cubic feet per hour, where \(t \) is measured in hours since midnight. Janet starts removing snow at 6 A.M. \((t = 6)\). The rate \(g(t) \), in cubic feet per hour, at which Janet removes snow from the driveway at time \(t \) hours after midnight is modeled by

\[
g(t) = \begin{cases}
0 & \text{for } 0 \leq t < 6 \\
125 & \text{for } 6 \leq t < 7 \\
108 & \text{for } 7 \leq t \leq 9.
\end{cases}
\]

Let \(h(t) \) represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time \(t \) hours after midnight. Express \(h \) as a piecewise-defined function with domain \(0 \leq t \leq 9 \).
2010 BC1

There is no snow on Janet’s driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t) = 7te^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. ($t = 6$). The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$g(t) = \begin{cases} 0 & \text{for } 0 \leq t < 6 \\ 125 & \text{for } 6 \leq t < 7 \\ 108 & \text{for } 7 \leq t \leq 9. \end{cases}$$

(d) How many cubic feet of snow are on the driveway at 9 A.M.?
Classwork:

Chapter 7 AP Packet #23 – 25

Homework:

Chapter 7 AP Packet #27 – 29