AP Calculus BC
Chapter 10 Part 2 – AP Exam Problems

All problems are NON CALCULATOR unless otherwise indicated.

1. The area of the region enclosed by the polar curve \(r = 2\sin(2\theta) \) for \(0 \leq \theta \leq \frac{\pi}{2} \) is

 A) 0 B) \(\frac{1}{2} \) C) 1 D) \(\frac{\pi}{2} \) E) \(\frac{\pi}{4} \)

2. Which of the following gives the area of the region enclosed by the loop of the graph of the polar curve \(r = 4\cos(3\theta) \) shown in the figure above?

 A) \(16 \int_{-\pi/3}^{\pi/3} \cos(3\theta) \, d\theta \) D) \(16 \int_{-\pi/6}^{\pi/6} \cos^2(3\theta) \, d\theta \)

 B) \(8 \int_{-\pi/6}^{\pi/6} \cos(3\theta) \, d\theta \) E) \(8 \int_{-\pi/6}^{\pi/6} \cos^2(3\theta) \, d\theta \)

 C) \(8 \int_{-\pi/3}^{\pi/3} \cos^2(3\theta) \, d\theta \)

3. Which of the following is equal to the area of the region inside the polar curve \(r = 2\cos\theta \) and outside the polar curve \(r = \cos\theta \)?

 A) \(3 \int_{0}^{\pi/2} \cos^2 \theta \, d\theta \) B) \(3 \int_{0}^{\pi} \cos^2 \theta \, d\theta \) C) \(\frac{3}{2} \int_{0}^{\pi} \cos^2 \theta \, d\theta \)

 D) \(3 \int_{0}^{\pi/2} \cos \theta \, d\theta \) E) \(3 \int_{0}^{\pi} \cos \theta \, d\theta \)

4. The area of the region inside the polar curve \(r = 4\sin \theta \) and outside the polar curve \(r = 2 \) is given by

 A) \(\frac{1}{2} \int_{0}^{\pi} (4\sin \theta - 2)^2 \, d\theta \) D) \(\frac{1}{2} \int_{-\pi/6}^{\pi/6} (16\sin^2 \theta - 4) \, d\theta \)

 B) \(\frac{1}{2} \int_{-\pi/6}^{\pi/6} (4\sin \theta - 2)^2 \, d\theta \) E) \(\frac{1}{2} \int_{0}^{\pi} (16\sin^2 \theta - 4) \, d\theta \)

 C) \(\frac{1}{2} \int_{-\pi/6}^{\pi/6} (4\sin \theta - 2)^2 \, d\theta \)
5. Which of the following expressions gives the total area enclosed by the polar curve \(r = \sin^2 \theta \) shown in the figure to the right?

(A) \(\frac{1}{2} \int_{0}^{\pi} \sin^2 \theta d\theta \)
(B) \(\int_{0}^{\pi} \sin^2 \theta d\theta \)
(C) \(\frac{1}{2} \int_{0}^{\pi} \sin^4 \theta d\theta \)
(D) \(\int_{0}^{\pi} \sin^4 \theta d\theta \)
(E) \(2 \int_{0}^{\pi} \sin^4 \theta d\theta \)

6. (1984 BC5) Consider the curves \(r = 3\cos \theta \) and \(r = 1 + \cos \theta \).

(a) Sketch the curves on a set of \(x \) and \(y \)-axes.
(b) Find the area of the region inside the curve \(r = 3\cos \theta \) and outside the curve \(r = 1 + \cos \theta \) by setting up and evaluating a definite integral. Your work must include an antiderivative.

7. (1990 BC4) Let \(R \) be the region inside the graph of the polar curve \(r = 2 \) and outside the graph of the polar curve \(r = 2(1 - \sin \theta) \).

(a) Sketch the two polar curves on a set of \(x \) and \(y \) axes and shade the region \(R \).
(b) Find the area of \(R \).

8. (1993 BC4) Consider the polar curve \(r = 2\sin(3\theta) \) for \(0 \leq \theta \leq \pi \).

(a) Sketch the curve on a set of \(x \) and \(y \)-axes.
(b) Find the area of the region inside the curve.
(c) Find the slope of the curve at the point where \(\theta = \frac{\pi}{4} \).
9. (2003B BC2) The figure shows the graphs of the circles \(x^2 + y^2 = 2 \) and \((x - 1)^2 + y^2 = 1 \). The graphs intersect at the points (1, 1) and (1, -1). Let \(R \) be the shaded region in the first quadrant bounded by the two circles and the \(x \)-axis.

(a) Set up an expression involving one or more integrals with respect to \(x \) that represents the area of \(R \).

(b) Set up an expression involving one or more integrals with respect to \(y \) that represents the area of \(R \).

(c) The polar equations of the circles are \(r = \sqrt{2} \) and \(r = 2 \cos \theta \), respectively. Set up an expression involving one or more integrals with respect to the polar angle \(\theta \) that represents the area of \(R \).
10. (2005 BC2) The curve above is drawn in the xy – plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \leq \theta \leq \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.

(a) Find the area bounded by the curve and the x – axis.

(b) Find the angle θ that corresponds to the point on the curve with x – coordinate -2.

(c) For $\frac{\pi}{3} \leq \theta \leq \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?

(d) Find the value of θ in the interval $0 \leq \theta \leq \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.
11. (2007 BC3) The graphs of the polar curves $r = 2$ and $r = 3 + 2\cos \theta$ are shown in the figure below. The curves intersect when $\theta = \frac{2\pi}{3}$ and $\theta = \frac{4\pi}{3}$.

(a) Let R be the region that is inside both graphs. Find the area of R.

(b) A particle moving with nonzero velocity along the polar curve given by $r = 3 + 2\cos \theta$ has position $(x(t), y(t))$ at time t, with $\theta = 0$ when $t = 0$. The particle moves along the curve so that $\frac{dr}{dt} = \frac{dr}{d\theta}$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

(c) For the particle described in part (b), $\frac{dy}{dt} = \frac{dy}{d\theta}$. Find the value of $\frac{dy}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
12. (2009B BC4) The graph of the polar curve \(r = 1 - 2\cos \theta \) for \(0 \leq \theta \leq \pi \) is shown below. Let \(S \) be the shaded region in the third quadrant bounded by the curve and the \(x \)-axis.

(a) Write an integral expression for the area of \(S \).

(b) Write expression for \(\frac{dx}{d\theta} \) and \(\frac{dy}{d\theta} \) in terms of \(\theta \).

(c) Write an equation in terms of \(x \) and \(y \) for the line tangent to the graph of the polar curve at the point where \(\theta = \frac{\pi}{2} \). Show the computations that lead to your answer.

13. (2011B BC2) The polar curve \(r \) is given by \(r(\theta) = 3\theta + \sin \theta \), where \(0 \leq \theta \leq 2\pi \).

(a) Find the area in the second quadrant enclosed by the coordinate axes and the graph of \(r \).

(b) For \(\frac{\pi}{2} \leq \theta \leq \pi \), there is one point \(P \) on the polar curve \(r \) with \(x \)-coordinate \(-3\). Find the angle \(\theta \) that corresponds to point \(P \). Find the \(y \)-coordinate of point \(P \). Show the work that leads to your answers.

(c) A particle is traveling along the polar curve \(r \) so that its position at time \(t \) is \((x(t), y(t)) \) and such that \(\frac{d\theta}{dt} = 2 \). Find \(\frac{dy}{dt} \) at the instant that \(\theta = \frac{2\pi}{3} \), and interpret the meaning of your answer in the context of the problem.
14. (2013 BC2) The graphs of the polar curves \(r = 3 \) and \(r = 4 - 2\sin \theta \) are shown in the figure below. The curves intersect when \(\theta = \frac{\pi}{6} \) and \(\theta = \frac{5\pi}{6} \).

(a) Let \(S \) be the shaded region that is inside the graph of \(r = 3 \) and also inside the graph of \(r = 4 - 2\sin \theta \). Find the area of \(S \).

(b) A particle moves along the polar curve \(r = 4 - 2\sin \theta \) so that at time \(t \) seconds, \(\theta = t^2 \). Find the time \(t \) in the interval \(1 \leq t \leq 2 \) for which the \(x \)-coordinate of the particle’s position is \(-1\).

(c) For the particle described in part (b), find the position vector in terms of \(t \). Find the velocity at time \(t = 1.5 \).
15. (2014 BC2) The graphs of the polar curves $r = 3$ and $r = 3 - 2\sin(2\theta)$ are shown in the figure below for $0 \leq \theta \leq \pi$.

(a) Let R be the shaded region that is inside the graph of $r = 3$ and inside the graph of $r = 3 - 2\sin(2\theta)$. Find the area of R.

(b) For the curve $r = 3 - 2\sin(2\theta)$, find the value of $\frac{dx}{d\theta}$ at $\theta = \frac{\pi}{6}$.

(c) The distance between the two curves changes for $0 < \theta < \frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta = \frac{\pi}{3}$.

(d) A particle is moving along the curve $r = 3 - 2\sin(2\theta)$ so that $\frac{d\theta}{dt} = 3$ for all times $t \geq 0$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{6}$.
16. (2017 BC2) The figure shows the polar curves \(r = f(\theta) = 1 + \sin \theta \cos (2\theta) \) and \(r = g(\theta) = 2\cos \theta \) for \(0 \leq \theta \leq \frac{\pi}{2} \). Let \(R \) be the region in the first quadrant bounded by the curve \(r = f(\theta) \) and the \(x \)-axis. Let \(S \) be the region in the first quadrant bounded by the curve \(r = f(\theta) \), the curve \(r = g(\theta) \), and the \(x \)-axis.

(a) Find the area of \(R \).

(b) The ray \(\theta = k \), where \(0 < k < \frac{\pi}{2} \), divides \(S \) into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of \(k \).

(c) For each \(\theta \), \(0 \leq \theta \leq \frac{\pi}{2} \), let \(w(\theta) \) be the distance between the points with polar coordinates \((f(\theta), \theta)\) and \((g(\theta), \theta)\). Write an expression for \(w(\theta) \). Find \(w_A \), the average value of \(w(\theta) \) over the interval \(0 \leq \theta \leq \frac{\pi}{2} \).

(d) Using the information from part (c), find the value of \(\theta \) for which \(w(\theta) = w_A \). Is the function \(w(\theta) \) increasing or decreasing at that value of \(\theta \)? Give a reason for your answer.

Answers

1. D 1985 BC #24 41%
2. E 1988 BC #23 55%
3. A 1997 BC #21 22%
4. D 1998 BC #19 37%
5. D 2008 BC #26 38%