ANSWER KEY

Section 1: Given each function, provide an example of a graph that will match each description (NC). Then, graph only the exponential equations (all f(x) equations).

Name:

Date: ___

1.) DESCRIPTION	$f(x)=3^x$	$g(x) = \log(x)$
a) Horizontal shift LEFT 3 units	$f(x) = 3^{x+3}$	$g(x) = \log(x+3)$
b) Horizontal shift RIGHT 2 units	$f(x)=3^{x-2}$	$g(x) = \log(x-2)$
c) Vertical shift UP 4 units	$f(x) = 3^x + 4$	$g(x) = \log(x) + 4$
d) Vertical shift DOWN 5 units	$f(x)=3^x-5$	$g(x) = \log(x) - 5$
e) Reflection over the <i>x</i> -axis	$f(x)=-3^x$	$g(x) = -\log(x)$
f) Reflection over the <i>y</i> -axis	$f(x)=3^{-x}$	$g(x) = \log(-x)$

See last page for graphs of f(x)

<u>SECTION 2</u>: Rewrite each exponential equation in logarithmic form

2.) $5^x = 625$	$\log_5 625 = x$	3.) $10^x = 1000$	$\log_{10} 1000 = x$
4.) $e^3 = 20.085$	$\ln 20.085 = 3$	5.) $u^{\nu} = w$	$\log_u w = v$

SECTION 3: Rewrite each logarithmic equation in exponential form

6.) $\log_2 \frac{1}{8} = -3$ $2^{-3} = \frac{1}{8}$ 7.) $\ln 143 = x$ $e^x = 143$ 8.) $\log_4 64 = 3$ $4^3 = 64$ 9.) $\log \frac{1}{100} = -2$ $10^{-2} = \frac{1}{100}$

SECTION 4: Evaluate

- 10.) $\log_4 4^2 = 2$ 11.) $\ln e^3 = 3$ 12.) $\log 10^2 = 2$
- 13.) $2^{\log_2 5} = 5$ 14.) $e^{\ln 12} = 12$ 15.) $10^{\log 4} = 4$

16.)
$$\log_3 8 = \frac{\log 8}{\log 3} = 1.893$$
 17.) $\log_5 12 = \frac{\log 12}{\log 5} = 1.544$ 18.) $\log_2 7 = \frac{\log 7}{\log 2} = 2.807$

Name: Date: ___ **ANSWER KEY**

SECTION 5: Expand each logarithmic expression. Your answer may not contain any expressions or radicals.

19.)
$$\log\left(\frac{x^3\sqrt{y+1}}{z^2}\right)$$
$$3\log x + \frac{1}{2}\log(y+1) - 2\log z$$

20.)
$$\ln\left(\frac{yz\sqrt{x}}{w}\right)$$

 $\ln y + \ln z + \frac{1}{2}\ln x - \ln w$

<u>SECTION 6</u>: Condense each logarithmic expression

21.) $3\log x + 2\log y + \frac{1}{2}\log z$

 $\log(x^3y^2\sqrt{z})$

SECTION 7: Solving Exponential Equations

23.)
$$3^{x-2} = 27$$

 $3^{x-2} = 3^3$
 $x - 2 = 3$
 $x = 5$
24.) $e^{x+5} = e^7$
 $x + 5 = 7$
 $x = 2$

25.) $4^x = 42$ 26.) $4(5^{x+2}) = 32$

$$log_{4} 4^{x} = log_{4} 42$$

$$x = log_{4} 42$$

$$x = \frac{log_{4} 42}{log_{4} 42}$$

$$x = \frac{log_{4} 2}{log_{4} 42} = 2.696$$

$$x + 2 = log_{5} 8$$

$$x = log_{5} 8 - 2$$

$$x = \frac{log_{8}}{log_{5}} - 2 = -0.708$$

27.) $e^x = 18$ 28.) $3e^x = 24$ $\ln e^x = \ln 18$ $e^x = 8$ $x = \ln 18 = 2.89$ $\ln e^x = \ln 8$ $x = \ln 8 = 2.079$

22.) $3\ln x + 2\ln 5 - \ln(x+2)$

 $\ln\left(\frac{25x^3}{x+2}\right)$

Algebra 2/Trigonometry UNIT 6: Exponential & Logarithmic Functions - REVIEW	Name: ANSWER KEY Date:
SECTION 8: Solving Logarithmic Equations	
29.) $\log_4(x-1) = 2$	30.) $\ln x = 2$
$4^{\log_4(x-1)} = 4^2$ x - 1 = 16 x = 17	$e^{\ln x} = e^2$ $x = e^2 = 7.389$
31.) $\log x = 6$	32.) $\log_3(x+5) = 5$
$10^{\log x} = 10^{6}$ $x = 10^{6}$ x = 1,000,000	$3^{\log_3(x+5)} = 3^5$ $x + 5 = 3^5$ $x = 3^5 - 5 = 238$
33.) $\log_3 x + \log_3(x - 8) = 2$	34.) $\log_4 x - \log_4 (x - 1) = \frac{1}{2}$
$\log_3 x(x-8) = 2$	$\log_4\left(\frac{x}{x-1}\right) = \frac{1}{2}$
$3^{\log_3 x(x-8)} = 3^2$	$4^{\log_4\left(\frac{x}{x-1}\right)} = 4^{\frac{1}{2}}$
x(x-8)=9	$\left(\frac{x}{x-1}\right) = 2$
$x^2 - 8x - 9 = 0$	x = 2(x - 1)
(x-9)(x+1)=0	x = 2x - 2
x = 9 (x = -1 is an extraneous solution)	x = 2
35.) $\log_3(5x - 1) = \log_3(x + 7)$	36.) $\log_6(3x + 14) - \log_6 5 = \log_6 2x$
5x - 1 = x + 7	$\log_6\left(\frac{3x+14}{5}\right) = \log_6 2x$
4x = 8	$\left(\frac{3x+14}{5}\right) = 2x$
x = 2	3x + 14 = 10x

7*x* = 14

x = 2

Name: Date: __ **ANSWER KEY**

SECTION 9: Application Problems

Simple Compound Interest: $A = P\left(1 + \frac{r}{n}\right)^{nt}$

UNIT 6: Exponential & Logarithmic Functions - REVIEW

Continuous Compound Interest: $A = Pe^{rt}$

37.) Emily plans to put her graduation money into an account and leave it there for 4 years while she goes to college. She receives \$1,050 in graduation money to college that she puts into an account that earns 4.25%. How much money will be in Emily's account at the end of four years if it is compounded?

a.)	Quarterly?	$A = 1050 \left(1 + \frac{0.0425}{4}\right)^{4*4} = \$1,243.45$
b.)	Monthly?	$A = 1050 \left(1 + \frac{0.0425}{12}\right)^{12*4} = \$1,244.20$
c.)	Continuously?	$A = 1050e^{0.0425*4} = \$1,244.57$

38.) The number of people infected by the flu in a particular region after t hours is given by: $P(t) = 5e^{0.03t}$ where $t \ge 0$.

	a.)	Is this a growth or decay problem?	Growth problem
	b.)	What is the initial population of people infected by the flu?	5 people
	c.)	What is the population of people infected by the flu after 12 hours?	7.17 people
	d.)	What is the population of people infected by the flu after 1 day?	10.27 people
39.)	The	population of mosquitoes after t days is given by: $P(t) = 500e^{-0.055t}$	where $t \ge 0$.
	a.)	Is this a growth or decay problem?	Decay problem
	b.)	What is the initial population of mosquitoes?	500 mosquitoes
	c.)	What is the population of mosquitoes after 1 day?	473.24 mosquitoes
	d.)	What is the population of mosquitoes after 72 hours?	423.95 mosquitoes