Name

3-3 Properties of Logarithms

Objective:

- a. Use change-of-base formula to rewrite and evaluate logarithmic expressions;
- b. Use properties of logarithms to evaluate or rewrite logarithmic expressions;
- c. Use properties of logarithms to expand or condense logarithmic expressions.

Change-of-Base Formula

Previously, we discussed using the calculator to evaluate both ______ logarithms (base 10) and ______ logarithms (base *e*).

In order to evaluate logarithms with other bases, you need to use the **change-of-base formula.**

Change-of-Base Formula

Let a, b, and x be positive real numbers such that $a \neq 1$ and $b \neq 1$. Then $\log_a x$ can be converted to a different base as follows.

Base b	Base 10	Base e
$\log_a x = \frac{\log_b x}{\log_b a}$	$\log_a x = \frac{\log x}{\log a}$	$\log_a x = \frac{\ln x}{\ln a}$

Examples: Evaluate the following logarithms.

PRACTICE

Rewrite the logarithm as a ratio of (a) common logarithms and (b) natural logarithms

1) $\log_3 x$ 2) $\log_{1/3} x$ 3) $\log_x \frac{3}{4}$

Evaluate the logarithm.

4) log₇ 4

Properties of Logarithms

Logarithmic expressions can be simplified when they have the same base (b) by applying one or a combination of logarithmic properties associated with the properties of multiplication, division and exponents.

What is log 10?	If u = 10 and v = 100, then uv = 1000.
What is log 100?	therefore
What is log 1000?	

Properties of Logarithms

Let *a* be a positive number such that $a \neq 1$, and let *n* be a real number. If *u* and *v* are positive real numbers, the following properties are true.

		Logarithm with Base a	Natural Logarithm
1.	Product Property:	$\log_a(uv) = \log_a u + \log_a v$	$\ln(uv) = \ln u + \ln v$
2.	Quotient Property:	$\log_a \frac{u}{v} = \log_a u - \log_a v$	$\ln\frac{u}{v} = \ln u - \ln v$
3.	Power Property:	$\log_a u^n = n \log_a u$	$\ln u^n = n \ln u$

Using Properties of Logarithms.

Examples: Write each logarithm in terms of In 2 and In 3

a) ln 6 b) ln $\frac{2}{3}$ c) ln $\frac{9}{16}$

PRACTICE

Find the exact value of each expression without using a calculator.

1) $\log_5 \sqrt[3]{5} =$ _____

2) $ln e^6 - ln e^2 =$ _____

Name

Expanding/Condensing a Logarithmic Expression

Use the quotient property, product property and power property of logarithms to expand or condense the following.

1) Expand $\log_4 5x^3y$

- Product property
- Power property

2) Expand $\ln \frac{\sqrt{3x-5}}{7}$

- Rewrite using rational exponent
- Quotient property
- Power property

3) Expand $\ln \frac{xz^2}{y}$ (you try)

- 4) Condense $\frac{1}{2} \log x + 3 \log(x+1)$
 - Power property
 - Product property
- 5) Condense $2\ln(x+2) \ln x$
 - Power property
 - Quotient property
- 6) Condense $\frac{1}{3}[\log_2 x + \log_2(x+1)]$ (you try)