X vs. T	V vs. T	Accel	TBD	TBD
10	10	10	10	10
20	20	20	20	
30	30	30	30	
40	40	40	40	03
50	50	50	50	50
60	60	60	60	50

What is $\Delta \vec{x}$ from 0s to 3s?

20

20

 $\Delta \vec{X} = |m-Om=+|m|$ (1m,3s) $\Delta \vec{X} = (5)$ (0m,0s)

When does the object move the fastest?

Draw an X Us. t graph for an object moving away from the origin and slowing down.

Find the average Velocity of the motion:

50

You run towards the motion sensor and ⇒ slide to a stop. Draw the x vs. t graph

What is the difference between Speed and Velocity >

Speed (scalar) is how Fast. + Velocity (vector) is how + Velocity (which direction Fast and which direction

20

What is the difference between a flat
line on a velocity
graph & a flat line on a position graph?

Question: Sketch the velocity graph that corresponds to:

Estimate the objects displacement:

$$\Delta \vec{X} = \frac{1}{2} (|\frac{m}{5})(2s) - (|\frac{m}{5})(2s) = -|m|$$

60

Draw a v vs. t graph for an object moving South, Slowing down, stopping/ turning, and moving North

Acceleration can be found by taking the slope of a ___ graph.

Acceleration can be found by taking the slope of a VELOCITY graph.

What do the symbols mean and what are their units?

$$\overrightarrow{a} = \frac{\overrightarrow{V_F} - \overrightarrow{V_i}}{\Delta t}$$

à: acceleration 52

Vi: initial velocity ms Vx: final velocity ms At: elapsed times

Moving to the right (+ direction) and Slowing down

What are 3 ways to accelerate? 40

1. go faster/speed up

2. go slower/ slow down

3. Change direction

Kelly's car can accelate from 0 % to 25 % in 15s. What is the car's acceleration?

50

$$\vec{\alpha} = \frac{\vec{V}_s - \vec{V}_i}{\Delta t}$$

$$= \frac{25 \frac{\%}{5} - 0 \frac{\%}{5}}{155} = 1.7 \frac{M}{52}$$

Draw the acceleration graphs and choose getting faster/getting slower.

60

