Section 1: Given each function, provide an example of a graph that will match each description (NC). Then, graph only the exponential equations (all f(x) equations).

1.) DESCRIPTION	$f(x)=3^x$	$g(x) = \log(x)$
a) Horizontal shift LEFT 3 units		
b) Horizontal shift RIGHT 2 units		
c) Vertical shift UP 4 units		
d) Vertical shift DOWN 5 units		
e) Reflection over the <i>x</i> -axis		
f) Reflection over the y-axis		

Section 2: Rewrite each exponential equation in logarithmic form (NC).

2.)
$$5^x = 625$$

3.)
$$10^x = 1000$$

2.)
$$5^x = 625$$
 3.) $10^x = 1000$ 4.) $e^3 = 20.085$ 5.) $u^v = w$

5.)
$$u^{v} = w$$

Section 3: Rewrite each logarithmic equation in exponential form (NC).

6.)
$$\log_2 \frac{1}{8} = -3$$

7.)
$$\ln 143 = x$$

8.)
$$\log_4 64 = 3$$

6.)
$$\log_2 \frac{1}{8} = -3$$
 7.) $\ln 143 = x$ 8.) $\log_4 64 = 3$ 9.) $\log \frac{1}{100} = -2$

Section 4: Evaluate (NC - #10 - 15. C - #16 - 18 Round to the nearest thousandths).

10.)
$$\log_4 4^2 =$$
 _____ 11.) $\ln e^3 =$ _____

11.)
$$\ln e^3 =$$

12.)
$$\log 10^2 =$$

13.)
$$2^{\log_2 5} =$$

13.)
$$2^{\log_2 5} =$$
 _____ 14.) $e^{\ln 12} =$ _____

15.)
$$10^{\log 4} =$$

16.)
$$\log_3 8 =$$

16.)
$$\log_3 8 =$$
 _____ 17.) $\log_5 12 =$ _____

18.)
$$\log_2 7 =$$

Section 5: Expand each logarithmic expression. Your answer may not contain any expressions or radicals (NC).

19.)
$$\log\left(\frac{x^3\sqrt{y+1}}{z^2}\right)$$

20.)
$$\ln\left(\frac{yz\sqrt{x}}{w}\right)$$

Section 6: Condense each logarithmic expression (NC).

21.)
$$3 \log x + 2 \log y + \frac{1}{2} \log z$$

22.)
$$3 \ln x + 2 \ln 5 - \ln(x+2)$$

Section 7: Solving Exponential Equations (C). Round any irrational answers to the nearest hundredths.

23.)
$$3^{x-2} = 27$$

24.)
$$e^{x+5} = e^7$$

25.)
$$4^x = 42$$

26.)
$$4(5^{x+2}) = 32$$

27.)
$$e^x = 18$$

28.)
$$3e^x = 24$$

Section 8: Solving Logarithmic Equations (C). Round any irrational answers to the nearest hundredths.

29.)
$$\log_4(x-1) = 2$$

30.)
$$\ln x = 2$$

31.)
$$\log x = 6$$

32.)
$$\log_3(x+5) = 5$$

33.)
$$\log_3 x + \log_3 (x - 8) = 2$$

34.)
$$\log_4 x - \log_4 (x - 1) = \frac{1}{2}$$

35.)
$$\log_3(5x - 1) = \log_3(x + 7)$$

36.)
$$\log_6(3x + 14) - \log_6 5 = \log_6 2x$$

Section 9: Application Problems (C).

Simple Compound Interest:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Continuous Compound Interest:

$$A = Pe^{rt}$$

- 37.) Emily plans to put her graduation money into an account and leave it there for 4 years while she goes to college. She receives \$1,050 in graduation money to college that she puts into an account that earns 4.25%. How much money will be in Emily's account at the end of four years if it is compounded?
 - a.) Quarterly?
- b) Monthly?
- c) Continuously?
- 38.) The number of people infected by the flu in a particular region after t hours is given by: $P(t) = 5e^{0.03t}$ where $t \ge 0$.
 - a.) Is this a growth or decay problem?
 - b.) What is the initial population of people infected by the flu?
 - c.) What is the population of people infected by the flu after 12 hours?
 - d.) What is the population of people infected by the flu after 1 day?
- 39.) The population of mosquitoes after t days is given by: $P(t) = 500e^{-0.055t}$ where $t \ge 0$.
 - a.) Is this a growth or decay problem?
 - b.) What is the initial population of mosquitoes?
 - c.) What is the population of mosquitoes after 1 day?
 - d.) What is the population of mosquitoes after 72 hours?