Do Now

Please take a review checklist

- Check the homework on either side of the room.
- Get a whiteboard and write down the problems that you would like to see.

Requested Problems

Velocity-time graph

Today

- First kinematic equation.
- Apply first kinematic equation to velocity-time graphs.
- Developing position-time graphs and velocity-graphs from one another.
- Finish Ted Talk: Science Denial.

Tonight:

Finish graphing table worksheet.

Look over review checklist.

Come in with questions about quiz material.

A drag racer starts from rest and accelerates uniformly at $15m/s^2$. The race takes 9 seconds. How fast is she going when she crosses the finish $C = 15m/s^2$ line? 6-9s, 7=0m/s $C = 15m/s^2$ line? 6-9s, 7=0m/s C = 135m/s C = 135m/s

Velocity-time Graph

How far does the drag racer travel?

 How do you attain the displacement from a velocity time graph?

Evil Kinevil rides is doing a wheelie. The front wheel starts to come down and so he accelerates at 3.2m/s^2 to hold the wheelie. After 5 seconds he finishes the stunt at 40m/s. How fast was he going when he started the wheelie?

K:
$$a = 3.2 \% s^2$$
 $t = 5s$ $V = 40\%$
U: $V :$
 $Egn: V = V :$ $at = V = 40\%$
 $-at - at = 40\%$
 $V : -40\% s - 3.2\% s = 45$

Velocity-time Graph

How far does Evil Kinevil travel?

A truck is going 30m/s. It slams on the breaks and comes to a stop over 2.5 seconds. What is the acceleration of the truck?

$$K$$
; $V_{i=30}$ M/S
 $b=2.5s$
 $V_{f=0}$ M/S
 $a=-12$ M/S

Worksheet

- You are given either a p-t graph, a v-t graph, or a description of motion.
- Use one to solve for the others.
- Mark the appropriate units on graphs when applicable.

Science Denial 7:00