Do Now

•Draw the Lewis dot structure for the element with the electron notation that ends with 4p5.

Today

- Wavelength and Frequency of Light.
- Atomic Emission Spectra.
- Frequency of light and energy.
- •Homework: Ch 5 problems 14-16, 21, 22, 30, 32, 35, 37, 41, 42, 54, 55, 56

Properties of Light

- Light travels in waves.
- Waves have an amplitude, wavelength, and a frequency.
- •C-Speed of Light = 2.998x10^8m/s.

3.00%5 X(08 M/s

- C-Speed of light. 2.998x10^8 m/s. The speed of light is constant.
- •λ-Wavelength. The distance in meters between the beginning and end of one full oscillation of a wave.
- •V-Frequency [Hz]. How often (per second) a full wave passes a given point.

Inverse Proportion

- Speed of light is constant.
- •The longer the wavelength, the less times that a full wave passes a stationary point.
- •The shorter the wavelength, the more times that a full wave passes a stationary point.

Relate to frequency: wavelength=1/frequency

The Electromagnetic Spectrum

The Electromagnetic Spectrum

- •Radio waves-λ=100m. Low energy.
- •Light- λ =700 to 380 nm (10^(-9))_m
- •Gamma rays- $\lambda=10^{(-14)}$ m.
- Light is the only portion of the electromagnetic spectrum that we can perceive. What % of the spectrum is that?

WHAT???!!!

- •The human eye can only see 3.1x10^(-21) % of the electromagnetic spectrum.
- With all those other waves flying around, it's no wonder I can never get a wifi signal.

Determining λ and V

- •If I have λ I can find V.
- •If I have V I can find λ.
- •This is because C is the same for all waves of the electromagnetic spectrum.
- •C=λV.

 The frequency of x-rays is $3x10^18$ Hz. What is the wavelength λ of x-rays?

Do Now: Take out the homework, a calculator, a pencil and your notbook.

On the whiteboard, solve the following. The frequency of a beam of light is $7.42x10^4$ Hz. What is its wavelength? $C=3.00x10^8$ m/s.

Green light has a wavelength of 550nm. What is it's frequency? Hz=1/s.

$$V = \frac{SS0nm}{1} \times \frac{10^{9} \text{ m}}{10^{m}} = S.5 \times 10^{7} \text{ m}$$

$$C = \frac{3.00 \times 10^{8} \text{ m}}{5}$$

$$V = \frac{3 \times 10^{8} \text{ m}}{5.5 \times 10^{7}} = 5.45 \times 10^{14} \text{ Hz}$$

Atomic Spectra

- When atoms absorb energy, their emove to higher energy levels.
- The e- loses that energy quickly and they release light as they return to their original energy level.

Emission Spectra

- •Depending on the e- configuration, light is released in different frequencies.
- This is because they have e- changing on different energy levels.
- This makes different materials different colors.

Prisms

Light Dispersion

Do Now: Take out the homework, a calculator, a pencil and your notebook. CHeck the homework on the left side of the room. On the whiteboard, solve the following. The frequency of a beam of light is 7.42x10⁴Hz. What is its wavelength?

 $C=3.00x10^8m/s$.

C=3.00x108m/5 V=7.92x104Hz

 $\lambda = \frac{3.00 \times 10^{87} \text{s}}{742 \times 10^{4} \text{Hz}} = 4.04 \times 10^{3} \text{m}$

e- and Atomic Spectra

- Light given off by atoms is directly proportional to the energy change of the electron (quanta).
- •E=hv
- •E-Energy is measured in joules [j].
- •V-still means frequency [1/s].

~

h-The Plank Constant

- •A **constant** value that relates the frequency of light given off by an atom to the energy (quanta) released.
- \implies = 6.626 x 10^(-34) [j/s]

Light with a wavelength of 470nm is emitted by an atom. What is the energy given off by the atom? Answer in joules.

An atom absorbs 2.6x10^{^*} (-40)j. What is the frequency of light emitted by the atom?

$$h = 6.626 \times 10^{-34} \text{ Js}$$
 $E = \frac{1}{2} \text{ K}$

$$E = 2.6 \times 10^{-40} \text{ J}$$

$$V=7=\frac{2}{h}=\frac{2.6\times10^{-90}}{6.626\times10^{-34}J_{5}}=3.92\times10^{-7}H_{Z}$$

Using Frequency (V) to connect λ to E

- •The V in C= λ V has the same value of V in the equation E=hv.
- If you can solve for V in one equation, you can find out a value in the other equation.
- •We are mathemagicians!

The wavelength of AM radio waves is around 30m. What is the energy contained in an AM radio wave? Answer in joules.

An electron releases $3x10^-16$ joules of energy. What is the wavelength of the wave emitted by the atom? Frequency

