Review Day

- Please take out your calculator, a pencil and your notebook.
- On your whiteboard: write a problem from the homework that you would like to see solved or any kind of I-D problem (horizontal or vertical) that you would like to have reviewed.
- 3 groups to catch the falling man, have your calculations out.

3-9

Requested Homework

The length of the barrel of a blowgun is 1.2 meters. Upon leaving the barrel, a dart has a speed of 14 m/s. Assuming that the dart is uniformly accelerated, how long does it take for the dart to leave the length of the barrel?

Sponge Bob rides a starfish. He accelerates at m/s^2 to hold the wheelie. After seconds
he finishes accelerating atm/s. How fast was
he going when he started accelerating?
Wednesday February 25, 15

An old VW Beetle goes for 0 to $\frac{1}{2}$ m/s with an acceleration of $\frac{1}{2}$ m/s². How long does it take for Beetle to reach this speed? How far did the Beetle travel while accelerating?

$$K: V_{i} = 0 \frac{m}{s}, V_{f} = 42 \frac{m}{s}, \alpha = 8 \frac{m}{s}$$
 $V: t = 5.25$
 $\Delta x = 1.4 + \frac{1}{2}at^{3}$
 $\Delta x = 1.0.25m$

A blue car travels at a constant velocity of 27m/s. As it passes an onramp, a red car accelerates from rest at a constant acceleration. If the red car catches the blue car 1800m away, what is the red car's acceleration?

V = 27% $\Delta x = 1800m$ $\omega = 0\%$ $\Delta x = Vit + 245$ t = 66.65 Vi = 0%, t = 66.65 $\Delta x = 1800m$ $\alpha = 0.81\%$ Vf = 54m/r

Falling Man

Cooties have been spotted jumping into the air with initial velocities of 60 m/s. What is the maximum height of the cootie?

 $V_1 = 60\%$ Q = 92 - 9.8% $V_2 = 0\%$ t = 6.12 $V_3 = 7$ $V_4 = 7$ $V_5 = 1.2$ $V_5 = 1.2$

Cooties have been spotted jumping into the air with initial velocities of 60 m/s.

What is the position of the cootie at 9 seconds?

Vi=60% G=9 t=95BY=Vi+695 =143m

What is the cootie's velocity at the maximum height?

O M/S

What is the acceleration of the cootie at maximum height?

-9.8m/s?

Cooties have been spotted jumping into the air with initial velocities of 60 m/s.

What is the distance traveled after 10 seconds?

 $V_{1}=0m_{1}s$, a=g, t=3.88s $\Delta Y=V_{1}E+2aE=-73.8m$ $d=|\Delta Y_{8}6|+|\Delta Y_{6}c|=257m$

A new freshman at University looks out his dorm window to perform his own physics test. He heaves water balloons onto unsuspecting passers-by with an initial velocity of m/s down. His window is 14 meters above the ground. What is the velocity of the balloon as it hits the pavement if he misses?
Wednesday, February 25, 15
Troutiously, Founday Ed. 10

A new freshman at University looks out his dorm window to perform his own physics test. He heaves water balloons onto unsuspecting passers-by with an initial velocity of ______ m/s down. If he hits a student that is 1.8m tall, how fast is the balloon going? How long does it take to get there?

 $\gamma_{i=14m} \Delta \gamma_{=-12.2m}, \alpha = 9$ $N_{i=-10m/s}$ V:t VK=-11.m/s

6=018g