
Assumptions for Inference And the Conditions That Support or Override Them

Proportions (z)
• One sample

1. Individuals are independent. 1. SRS and of the population.
2. Sample is sufficiently large. 2. Successes and failures each .

• Two groups
1. Groups are independent. 1. (Think about how the data were collected.)
2. Data in each group are independent. 2. Both are SRSs and of populations 

OR random allocation.
3. Both groups are sufficiently large. 3. Successes and failures each for both groups.

Means (t)
• One Sample ( )

1. Individuals are independent. 1. SRS and of the population.
2. Population has a Normal model. 2. Histogram is unimodal and symmetric.*

• Matched pairs ( )
1. Data are matched. 1. (Think about the design.)
2. Individuals are independent. 2. SRS and OR random allocation.
3. Population of differences is Normal. 3. Histogram of differences is unimodal and symmetric.*

• Two independent groups (df from technology)
1. Groups are independent. 1. (Think about the design.)
2. Data in each group are independent. 2. SRSs and OR random allocation.
3. Both populations are Normal. 3. Both histograms are unimodal and symmetric.*

Distributions/Association (�2)
• Goodness of fit (df # of cells ; one variable, one sample compared with population model)

1. Data are counts. 1. (Are they?)
2. Data in sample are independent. 2. SRS and of the population.
3. Sample is sufficiently large. 3. All expected counts .

• Homogeneity [ ; many groups compared on one variable]
1. Data are counts. 1. (Are they?)
2. Data in groups are independent. 2. SRSs and OR random allocation.
3. Groups are sufficiently large. 3. All expected counts .

• Independence [ ; sample from one population classified on two variables]
1. Data are counts. 1. (Are they?)
2. Data are independent. 2. SRSs and of the population.
3. Sample is sufficiently large. 3. All expected counts .

Regression (t, df 5 n 2 2)
• Association between two quantitative variables ( )

1. Form of relationship is linear. 1. Scatterplot looks approximately linear.
2. Errors are independent. 2. No apparent pattern in residuals plot.
3. Variability of errors is constant. 3. Residuals plot has consistent spread.
4. Errors have a Normal model. 4. Histogram of residuals is approximately unimodal and 

symmetric, or normal probability plot reasonably 
straight.*

(*less critical as n increases)
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Preface

ix

About the Book

W
e’ve been thrilled with the feedback we’ve received from teachers
and students using Stats: Modeling the World, Second Edition. If
there is a single hallmark of this book it is that students actually
read it. We have reports from every level—from high school to

graduate school—that students find our books easy and even enjoyable to read.
We strive for a conversational, approachable style, and introduce anecdotes to
maintain students’ interest. And it works. Teachers report their amazement that
students are voluntarily reading ahead of their assignments. Students write to tell
us (to their amazement) that they actually enjoyed the book.

Stats: Modeling the World, Third Edition is written from the ground up with the
understanding that Statistics is practiced with technology. This insight informs
everything from our choice of forms for equations (favoring intuitive forms over
calculation forms) to our extensive use of real data. Most important, it allows us
to focus on teaching Statistical Thinking rather than calculation. The questions
that motivate each of our hundreds of examples are not “how do you find the
answer?” but “how do you think about the answer?”

Our Goal: Read This Book!
The best text in the world is of little value if students don’t read it. Here are some
of the ways we have made Stats: Modeling the World, Third Edition even more
approachable:

• Readability. You’ll see immediately that this book doesn’t read like other Sta-
tistics texts. The style, both colloquial (with occasional humor) and informative,
engages students to actually read the book to see what it says.

• Informality. Our informal diction doesn’t mean that the subject matter is
covered lightly or informally. We have tried to be precise and, wherever pos-
sible, to offer deeper explanations and justifications than those found in most
introductory texts.

• Focused lessons. The chapters are shorter than in most other texts, to make it
easier to focus on one topic at a time.

• Consistency.  We’ve worked hard to avoid the “do what we say, not what we
do” trap. From the very start we teach the importance of plotting data and
checking assumptions and conditions, and we have been careful to model
that behavior right through the rest of the book.

• The need to read. Students who plan just to skim the book may find our pre-
sentation a bit frustrating. The important concepts, definitions, and sample
solutions don’t sit in little boxes. This is a book that needs to be read, so we’ve
tried to make the reading experience enjoyable.
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New to the Third Edition
The third edition of Stats: Modeling the World continues and extends the successful
innovations pioneered in our books, teaching Statistics and statistical thinking as it
is practiced today. We’ve rewritten sections throughout the book to make them
clearer and more interesting. We’ve introduced new up-to-the-minute motivating
examples throughout. And, we’ve added a number of new features, each with the
goal of making it even easier for students to put the concepts of Statistics together
into a coherent whole.

u For Example. In every chapter, you’ll find approximately 4 new worked examples
that illustrate how to apply new concepts and methods—more than 100 new
illustrative examples. But these aren’t isolated examples. We carry a discussion
through the chapter with each For Example, picking up the story and moving it
forward as students learn to apply each new concept.

u Step-by-Step Worked Examples. We’ve brought our innovative Think/Show/Tell
Step-by-Step examples up-to-date with new examples and data.

u ActivStats Pointers. In the third edition, the ActivStats pointers have been revised
for clarity and now indicate exactly what they are pointing to—activity, video,
simulation, or animation—paralleling the book’s discussions to enhance learning.

u TI-Nspire Activities. We’ve created many demonstrations and investigations for
TI-Nspire handhelds to enhance each chapter. They’re on the DVD and at the
book’s Web site.

u Exercises. We’ve added hundreds of new exercises, including more single-
concept exercises at the beginning of each set so students can be sure they have
a clear understanding of each important topic before they’re asked to tie them
all together in more comprehensive exercises. Continuing exercises have been
updated with the most recent data. Whenever possible, the data are on the
DVD and the book’s Web site so students can explore them further.

u Data Sources. Most of the data used in examples and exercises are from recent
news stories, research articles, and other real-world sources. We’ve listed more
of those sources in this edition.

u Chapters 4 and 5 have been entirely rewritten and reorganized. We think you’ll
agree with our reviewers that the new organization—discussing displays and
summaries for quantitative data in Chapter 4 and then expanding on those
ideas to discuss comparisons across groups, outliers, and other more sophisti-
cated topics in Chapter 5—provides a more exciting and interesting way to
approach these fundamental topics.

u Simulation. We’ve improved the discussion of simulation in Chapter 11 so it
could relate more easily to discussions of experimental design and probability.
The simulations included in the ActivStats multimedia software on the book’s
DVD carry those ideas forward in a student-friendly fashion.

u Teacher’s Podcasts (10 points in 10 minutes). Created and presented by the authors,
these podcasts focus on key points in each chapter to help you with class prepa-
ration. These podcasts are available on the Instructor’s Resource CD.

u Video Lectures on DVD featuring the textbook authors will help students review
the high points of each chapter. Video presenters also work through examples
from the text. The presentations feature the same student-friendly style and
emphasis on critical thinking as the text.

x PREFACE

FOR EXAMPLE

STEP–BY–STEP EXAMPLE
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Continuing Features
u Think, Show, Tell. The worked examples repeat the mantra of Think, Show, and Tell

in every chapter. They emphasize the importance of thinking about a Statistics
question (What do we know? What do we hope to learn? Are the assumptions
and conditions satisfied?) and reporting our findings (the Tell step). The Show
step contains the mechanics of calculating results and conveys our belief that it is
only one part of the process. This rubric is highlighted in the Step-by-Step exam-
ples that guide the students through the process of analyzing the problem with
the general explanation on the left and the worked-out problem on the right. The
result is a better understanding of the concept, not just number crunching.

u Just Checking. Within each chapter, we ask students to pause and think about
what they’ve just read. These questions are designed to be a quick check that
they understand the material. Answers are at the end of the exercise sets in each
chapter so students can easily check themselves.

u TI Tips. We emphasize sound understanding of formulas and methods, but want
students to use technology for actual calculations. Easy-to-read “TI Tips” in the
chapters show students how to use TI-83/84 Plus statistics functions. (Help using
a TI-89 or TI-Nspire appears in Appendix B.) We do remind students that calcu-
lators are just for “Show”—they cannot Think about what to do nor Tell what it
all means.

u Math Boxes. In many chapters we present the mathematical underpinnings of the
statistical methods and concepts. By setting these proofs, derivations, and justifi-
cations apart from the narrative, we allow the student to continue to follow the
logical development of the topic at hand, yet also refer to the underlying mathe-
matics for greater depth.

u What Can Go Wrong? Each chapter still contains our innovative What Can Go
Wrong? sections that highlight the most common errors people make and the
misconceptions they have about Statistics. Our goals are to help students avoid
these pitfalls, and to arm them with the tools to detect statistical errors and to
debunk misuses of statistics, whether intentional or not. In this spirit, some of
our exercises probe the understanding of such failures.

u What Have We Learned? These chapter-ending summaries are great study guides
providing complete overviews that highlight the new concepts, define the new
terms, and list the skills that the student should have acquired in the chapter.

u Exercises. Throughout, we’ve maintained the pairing of examples so that each
odd-numbered exercise (with an answer in the back of the book) is followed by
an even-numbered exercise on the same concept. Exercises are still ordered by
level of difficulty.

u Reality Check. We regularly remind students that Statistics is about understand-
ing the world with data. Results that make no sense are probably wrong, no
matter how carefully we think we did the calculations. Mistakes are often easy
to spot with a little thought, so we ask students to stop for a reality check before
interpreting their result.

u Notation Alert. Throughout this book we emphasize the importance of clear
communication, and proper notation is part of the vocabulary of Statistics.
We’ve found that it helps students when we call attention to the letters and
symbols statisticians use to mean very specific things.

PREFACE xi
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u Connections. Each chapter has a Connections section to link key terms and con-
cepts with previous discussions and to point out continuing themes, helping
students fit newly learned concepts into a growing understanding of Statistics.

u On the Computer. In the real world, Statistics is practiced with computers. We pre-
fer not to choose a particular Statistics program. Instead, at the end of each chap-
ter, we summarize what students can find in the most common packages, often
with an annotated example. Computer output appearing in the book and in exer-
cises is often generic, resembling all of the common packages to some degree.

Coverage
Textbooks are often defined more by what they choose not to cover than by what
they do cover. We’ve been guided in the choice and order of topics by several fun-
damental principles. First, we have tried to ensure that each new topic fits into the
growing structure of understanding that we hope students will build. Several
topic orders can support this goal. We explain our reasons for the topic order of
the chapters in the ancillary Printed Test Bank and Resource Guide.

GAISE Guidelines. We have worked to provide materials to help each class, in its
own way, follow the guidelines of the GAISE (Guidelines for Assessment and
Instruction in Statistics Education) project sponsored by the American Statistical
Association. That report urges that Statistics education should

1. emphasize Statistical literacy and develop Statistical thinking,
2. use real data,
3. stress conceptual understanding rather than mere knowledge of procedures,
4. foster active learning,
5. use technology for developing concepts and analyzing data, and
6. make assessment a part of the learning process.

We also have been guided by the syllabus of the AP* Statistics course. We agree
with the wisdom of those who designed that course in their selection of topics 
and their emphasis on Statistics as a practical discipline. Stats: Modeling the World
provides complete discussions of all AP* topics and teaches students communication
skills that lead to success on the AP* examination. A correlation of the text to the
AP* Statistics course standards is available in the Printed Test Bank and Resource
Guide, on the Instructor’s Resource CD, and at www.phschool.com/advanced/
correlations/statistics.html.

Mathematics
Mathematics traditionally appears in Statistics texts in several roles:

1. It can provide a concise, clear statement of important concepts.
2. It can describe calculations to be performed with data.
3. It can embody proofs of fundamental results.

Of these, we emphasize the first. Mathematics can make discussions of Statistics
concepts, probability, and inference clear and concise. We have tried to be sensitive
to those who are discouraged by equations by also providing verbal descriptions
and numerical examples.

This book is not concerned with proving theorems about Statistics. Some of these
theorems are quite interesting, and many are important. Often, though, their proofs
are not enlightening to introductory Statistics students, and can distract the audi-
ence from the concepts we want them to understand. However, we have not shied

xii PREFACE

ON THE COMPUTER
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away from the mathematics where we believed that it helped clarify without intim-
idating. You will find some important proofs, derivations, and justifications in Math
Boxes that accompany the development of many topics.

Nor do we concentrate on calculations. Although statistics calculations are gen-
erally straightforward, they are also usually tedious. And, more to the point, they
are often unnecessary. Today, virtually all statistics are calculated with technology,
so there is little need for students to work by hand. The equations we use have
been selected for their focus on understanding concepts and methods.

Technology and Data
To experience the real world of Statistics, it’s best to explore real data sets using
modern technology.

u Technology. We assume that you are using some form of technology in your
Statistics course. That could be a calculator, a spreadsheet, or a statistics pack-
age. Rather than adopt any particular software, we discuss generic computer
output. “TI-Tips”—included in most chapters—show students how to use sta-
tistics features of the TI-83/84 Plus series. The Companion DVD, included in the
Teacher’s Edition, may be purchased for students and includes ActivStats and
the software package Data Desk. Also, in Appendix B, we offer general guidance
(by chapter) to help students get started on five common software platforms
(Excel, MINITAB, Data Desk, JMP, and SPSS), a TI-89 calculator, and a TI-Nspire.

u Data. Because we use technology for computing, we don’t limit ourselves to
small, artificial data sets. In addition to including some small data sets, we have
built examples and exercises on real data with a moderate number of cases—
usually more than you would want to enter by hand into a program or calcula-
tor. These data are included on the DVD as well as on the book’s Web site,
www.aw.com/bock.

On the DVD
The DVD holds a number of supporting materials, including ActivStats, the Data
Desk statistics package, an Excel add-in (DDXL), all large data sets from the text
formatted for the most popular technologies, and two additional chapters.

ActivStats (for Data Desk). The award-winning ActivStats multimedia program
supports learning chapter by chapter. It complements the book with videos of
real-word stories, worked examples, animated expositions of each of the major
Statistics topics, and tools for performing simulations, visualizing inference, and
learning to use statistics software. The new version of ActivStats includes

• improved navigation and a cleaner design that makes it easier to find and use
tools such as the Index and Glossary

• more than 1000 homework exercises, including many new exercises, plus
answers to the “odd numbered” exercises. Many are from the text, providing
the data already set up for calculations, and some are unique to ActivStats.
Many exercises link to data files for each statistics package.

• 17 short video clips, many new and updated
• 70 animated activities
• 117 teaching applets
• more than 300 data sets

PREFACE xiii
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Supplements

xiv PREFACE

Student Supplements

The following supplements are available for purchase:

Graphing Calculator Manual, by Patricia Humphrey
(Georgia Southern University) and John Diehl (Hins-
dale Central High School), is organized to follow the
sequence of topics in the text, and is an easy to-follow,
step-by-step guide on how to use the TI-83/84 Plus, TI-
89, and TI-NspireTM graphing calculators. It provides
worked-out examples to help students fully understand
and use the graphing calculator. (ISBN-13: 978-0-321-
57094-9; ISBN-10: 0-321-57094-4)

Pearson Education AP* Test Prep Series: Statistics
by Anne Carroll, Ruth Carver, Susan Peters, and Janice
Ricks, is written specifically to complement Stats:
Modeling the World, Third Edition, AP* Edition, and to
help students prepare for the AP* Statistics exam.
Students can review topics that are discussed in Stats:
Modeling the World, Third Edition AP* Edition, and are likely
to appear on the Advanced Placement Exam. The guide
also contains test-taking strategies as well as practice tests.
(ISBN 13: 978-0-13-135964-2; ISBN-10: 0-13-135964-9)

Statistics Study Card is a resource for students contain-
ing important formulas, definitions, and tables that
correspond precisely to the De Veaux/Velleman/Bock
Statistics series. This card can work as a reference for
completing homework assignments or as an aid in
studying. (ISBN-13: 978-0-321-46370-8; ISBN-10: 0-321-
46370-6)

Graphing Calculator Tutorial for Statistics will guide
students through the keystrokes needed to most effi-
ciently use their graphing calculator. Although based on
the TI-84 Plus Silver Edition, operating system 2.30, the
keystrokes for this calculator are identical to those on
the TI-84 Plus, and very similar to the TI-83 and TI-83
Plus. This tutorial should be helpful to students using
any of these calculators, though there may be differ-
ences in some lessons. The tutorial is organized by
topic. (ISBN-13: 978-0-321-41382-6; ISBN-10: 0-321-
41382-2)

Teacher Supplements

Most of the teacher supplements and resources for this
book are available electronically. On adoption or to pre-
view, please go to PearsonSchool.com/Advanced and
click “Online Teacher Supplements.” You will be required
to complete a one-time registration subject to verification
before being emailed access information to download
materials.

The following supplements are available to qualified
adopters:

Teacher’s Edition contains answers to all exercises.
Packaged with the Teacher’s Edition is the Companion
DVD and the Instructor’s Resource CD. The Instructor’s
Resource CD includes the Teachers’ Solutions Manual,
Test Bank and Resource Guide, Audio Podcasts,
PowerPoint slides, and Graphing Calculator Manual.
(ISBN-13: 978-0-13-135959-8; ISBN-10: 0-13-135959-2)

Printed Test Bank and Resource Guide, by William
Craine, contains chapter-by-chapter comments on the
major concepts, tips on presenting topics (and what to
avoid), teaching examples, suggested assignments, Web
links and lists of other resources, as well as chapter
quizzes, unit tests, investigative tasks, TI-Nspire activi-
ties, and suggestions for projects. An indispensable
guide to help teachers prepare for class, the previous
editions were soundly praised by new teachers of
Statistics and seasoned veterans alike. The Printed Test
Bank and Resource Guide is on the Instructor’s
Resource CD and available for download. (ISBN-13:
978-0-13-135960-4; ISBN-10: 0-13-135960-6)

Teacher’s Solutions Manual, by William Craine, con-
tains detailed solutions to all of the exercises. (ISBN-13:
978-0-13-136009-9; ISBN-10: 0-13-136009-4)

TestGen® CD enables teachers to build, edit, print, and
administer tests using a computerized bank of ques-
tions developed to cover all the objectives of the text.
TestGen is algorithmically based, allowing teachers to
create multiple but equivalent versions of the same
question or test with the click of a button. Teachers can
also modify test bank questions or add new questions.
Tests can be printed or administered online. (ISBN-13:
978-0-13-135961-1: ISBN-10: 0-13-135961-4)

PowerPoint Lecture Slides provide an outline to use in
a lecture setting, presenting definitions, key concepts, and
figures from the text. These slide are available on the
Instructor’s Resource CD and available for download.
(ISBN-13: 978-0-321-57101-4; ISBN 10: 0-321-57101-0)
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Instructor’s Resource CD, packaged with every new
Teacher’s Edition, includes the Teacher’s Solutions
Manual, Test Bank and Resource Guide (which includes a
correlation to the AP* Statistics course standards), Audio
Podcasts, PowerPoint slides, and Graphing Calculator
Manual. A replacement CD is available for purchase.
(ISBN-13: 978-0-13-136349-6; ISBN-10: 0-13-136349-2)

Companion DVD A multimedia program on DVD de-
signed to support learning chapter by chapter comes
with the Teacher’s Edition. It may be purchased separate-
ly for individual students or as a lab version (per work
station). A replacement DVD is available for purchase.
(ISBN-13: 978-0-13-136608-4; ISBN-10: 0-13-136608-4) The
DVD holds a number of supporting materials, including:

• ActivStats® for Data Desk. The award-winning
ActivStats multimedia program supports learning
chapter by chapter with the book. It complements the
book with videos of real-word stories, worked exam-
ples, animated expositions of each of the major
Statistics topics, and tools for performing simulations,
visualizing inference, and learning to use statistics soft-
ware. The new version of ActivStats includes 17 short
video clips; 170 animated activities and teaching
applets; 300 data sets; 1,000 homework exercises,
many with links to Data Desk files; interactive graphs,
simulations, activities for the TI-Nspire graphing cal-
culator, visualization tools, and much more.

• Data Desk statistics package.
• TI-Nspire activities. These investigations and demon-

strations for the TI-Nspire handheld illustrate and ex-
plore important concepts from each chapter.

• DDXL, an Excel add-in, adds sound statistics and
statistical graphics capabilities to Excel. DDXL adds,
among other capabilities, boxplots, histograms, sta-
tistical scatterplots, normal probability plots, and sta-
tistical inference procedures not available in Excel’s
Data Analysis pack.

• Data. Data for exercises marked are available on
the DVD and at www.aw.com/bock formatted for
Data Desk, Excel, JMP, MINITAB, SPSS, and the TI
calculators, and as text files suitable for these and vir-
tually any other statistics software.

• Additional Chapters. Two additional chapters cover
Analysis of Variance (Chapter 28) and Multiple
Regression (Chapter 29). These topics point the way
to further study in Statistics.

ActivStats® The award-winning ActivStats multimedia
program supports learning chapter by chapter with the
book. It is available as a standalone DVD, or in a lab ver-
sion (per work station). It complements the book with
videos of real-word stories, worked examples, animated
expositions of each of the major Statistics topics, and tools

for performing simulations, visualizing inference, and
learning to use statistics software. The new version of
ActivStats includes 17 short video clips; 170 animated
activities and teaching applets; 300 data sets; 1,000 home-
work exercises, many with links to Data Desk files;
interactive graphs, simulations, visualization tools, and
much more. ActivStats (Mac and PC) is available in an all-
in-one version for Data Desk, Excel, JMP, MINITAB, and
SPSS. This DVD also includes Data Desk statistical soft-
ware. For more information on options for purchasing
ActivStats, contact Customer Service at 1-800-848-9500.

MathXL® for School is a powerful online homework,
tutorial, and assessment system that accompanies
Pearson textbooks in Statistics. With MathXL for School,
teachers can create, edit, and assign online homework and
tests using algorithmically generated exercises correlated
at the objective level to the textbook. They can also create
and assign their own online exercises and import TestGen
tests for added flexibility. All student work is tracked in
MathXL for School’s online gradebook. Students can take
chapter tests in MathXL for School and receive personal-
ized study plans based on their test results. The study
plan diagnoses weaknesses and links students directly to
tutorial exercises for the objectives they need to study and
retest. Students can also access supplemental animations
directly from selected exercises. MathXL for School is
available to qualified adopters. For more information,
visit our Web site at www.MathXLforSchool.com, or con-
tact your Pearson sales representative.

StatCrunch is a powerful online tool that provides an
interactive environment for doing Statistics. StatCrunch
can be used for both numerical and graphical data analy-
sis, and uses interactive graphics to illustrate the connec-
tion between objects selected in a graph and the underly-
ing data. StatCrunch may be purchased in a Registration
Packet of 10 “redemptions.” One redemption is for one
student for 12 months beginning at the time of registration.
Teacher access for StatCrunch adoptors or for those wish-
ing to preview the product may be obtained by filling out
the form at www.pearsonschool.com/access_request
(ISBN-13: 978-0-13-136416-5; ISBN-10: 0-13-136416-2)

Video Lectures on DVD with Subtitles feature the text-
book authors reviewing the high points of each chapter.
The presentations continue the same student-friendly
style and emphasis on critical thinking as the text. The
DVD format makes it easy and convenient to watch
the videos from a computer at home or on campus.
(ISBN 13: 978-0-321-57103-8; ISBN-10: 0-321-57103-7)

Companion Web Site (www.aw.com/bock) provides ad-
ditional resources for instructors and students.

T

Technology Resources
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2

CHAPTER

1
Stats Starts Here1

Statistics gets no respect. People say things like “You can prove anything
with Statistics.” People will write off a claim based on data as “just a sta-
tistical trick.” And Statistics courses don’t have the reputation of being
students’ first choice for a fun elective.

But Statistics is fun. That’s probably not what you heard on the street, but it’s
true. Statistics is about how to think clearly with data. A little practice thinking
statistically is all it takes to start seeing the world more clearly and accurately.

So, What Is (Are?) Statistics?
It seems every time we turn around, someone is collecting data on us,
from every purchase we make in the grocery store, to every click of
our mouse as we surf the Web. The United Parcel Service (UPS) tracks
every package it ships from one place to another around the world
and stores these records in a giant database. You can access part of it if
you send or receive a UPS package. The database is about 17 terabytes
big—about the same size as a database that contained every book in
the Library of Congress would be. (But, we suspect, not quite as inter-
esting.) What can anyone hope to do with all these data?

Statistics plays a role in making sense of the complex world in
which we live today. Statisticians assess the risk of genet-
ically engineered foods or of a new drug being considered by the
Food and Drug Administration (FDA). They predict the number of
new cases of AIDS by regions of the country or the number of cus-
tomers likely to respond to a sale at the mall. And statisticians help
scientists and social scientists understand how unemployment is re-
lated to environmental controls, whether enriched early education af-

Q: What is Statistics?
A: Statistics is a way of reasoning, along
with a collection of tools and methods,
designed to help us understand the world.
Q: What are statistics?
A: Statistics (plural) are particular
calculations made from data.
Q: So what is data?
A: You mean,“what are data?”Data is the
plural form.The singular is datum.
Q: OK, OK, so what are data?
A: Data are values along with their context.

1 This chapter might have been called “Introduction,” but nobody reads the introduction,
and we wanted you to read this. We feel safe admitting this here, in the footnote, because
nobody reads footnotes either.

“But where shall I begin?” 
asked Alice. “Begin at the
beginning,” the King said
gravely, “and go on till you
come to the end: then stop.”

—Lewis Carroll,
Alice’s Adventures 

in Wonderland
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fects later performance of school children, and whether vitamin C really prevents
illness. Whenever there are data and a need for understanding the world, you
need Statistics.

So our objectives in this book are to help you develop the insights to think
clearly about the questions, use the tools to show what the data are saying, and
acquire the skills to tell clearly what it all means.

So, How Will This Book Help? 3

The ads say,“Don’t drink 
and drive; you don’t want to
be a statistic.”But you can’t
be a statistic.

We say: “Don’t be a 
datum.”

FRAZZ reprinted by permission of United Feature Syndicate, Inc.

Statistics in a Word
It can be fun, and sometimes useful, to summarize a discipline in only a few
words. So,

Economics is about . . . Money (and why it is good).
Psychology: Why we think what we think (we think).
Biology: Life.
Anthropology: Who?

History: What, where, and when?

Philosophy: Why?

Engineering: How?

Accounting: How much?

In such a caricature, Statistics is about . . . Variation.

Data vary. People are different. We can’t see everything, let alone measure it
all. And even what we do measure, we measure imperfectly. So the data we wind
up looking at and basing our decisions on provide, at best, an imperfect picture of
the world. This fact lies at the heart of what Statistics is all about. How to make
sense of it is a central challenge of Statistics.

So, How Will This Book Help?
A fair question. Most likely, this book will not turn out to be quite what you
expected.

What’s different?

Close your eyes and open the book to a page at random. Is there a graph or table on that
page? Do that again, say, 10 times. We’ll bet you saw data displayed in many ways, even
near the back of the book and in the exercises.

Statistics is about variation.
Data vary because we

don’t see everything and
because even what we do see
and measure, we measure
imperfectly.

So, in a very basic way,
Statistics is about the real,
imperfect world in which we
live.
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We can better understand everything we do with data by making pictures. This
book leads you through the entire process of thinking about a problem, finding
and showing results, and telling others about what you have discovered. At each
of these steps, we display data for better understanding and insight.

You looked at only a few randomly selected pages to get an impression of
the entire book. We’ll see soon that doing so was sound Statistics practice and
reasoning.

Next, pick a chapter and read the first two sentences. (Go ahead; we’ll wait.)

We’ll bet you didn’t see anything about Statistics. Why? Because the best way to
understand Statistics is to see it at work. In this book, chapters usually start by
presenting a story and posing questions. That’s when Statistics really gets down
to work.

There are three simple steps to doing Statistics right: think, show, and tell:

Think first. Know where you’re headed and why. It will save you a lot of
work.
Show is what most folks think Statistics is about. The mechanics of calculating
statistics and making displays is important, but not the most important part
of Statistics.
Tell what you’ve learned. Until you’ve explained your results so that some-
one else can understand your conclusions, the job is not done.

The best way to learn new skills is to take them out for a spin. In For Example
boxes you’ll see brief ways to apply new ideas and methods as you learn them.
You’ll also find more comprehensive worked examples called Step-by-Steps.
These show you fully worked solutions side by side with commentary and dis-
cussion, modeling the way statisticians attack and solve problems. They illustrate
how to think about the problem, what to show, and how to tell what it all means.
These step-by-step examples will show you how to produce the kind of solutions
instructors hope to see.

Sometimes, in the middle of the chapter, we’ve put a section called Just
Checking . . . . There you’ll find a few short questions you can answer without
much calculation—a quick way to check to see if you’ve understood the basic
ideas in the chapter. You’ll find the answers at the end of the chapter’s exercises.

4 CHAPTER 1    Stats Starts Here

FOR EXAMPLE

STEP–BY–STEP

MATH BOX

Knowing where the formulas and procedures of Statistics come from and why they work will
help you understand the important concepts. We’ll provide brief, clear explanations of the math-
ematics that supports many of the statistical methods in Math Boxes like this.

TI Tips Do statistics on your calculator!

Although we’ll show you all the formulas you need to understand the calcula-
tions, you will most often use a calculator or computer to perform the mechan-
ics of a statistics problem. Your graphing calculator has a specialized program
called a “statistics package.” Each chapter contains TI Tips that teach you how
to use it (and avoid doing most of the messy calculations).
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From time to time, you’ll see an icon like this in the margin to signal that the
ActivStats multimedia materials on the available DVD in the back of the book
have an activity that you might find helpful at this point. Typically, we’ve
flagged simulations and interactive activities because they’re the most fun and
will probably help you see how things work best. The chapters in ActivStats are
the same as those in the text—just look for the named activity in the correspon-
ding chapter.

If you are using TI-NspireTM technology, these margin icons will alert you to
activities and demonstrations that can help you understand important ideas in the
text. If you have the DVD that’s available with this book, you’ll find these there; if

One of the interesting challenges of Statistics is that, unlike in some math
and science courses, there can be more than one right answer. This is why two
statisticians can testify honestly on opposite sides of a court case. And it’s why
some people think that you can prove anything with statistics. But that’s not
true. People make mistakes using statistics, sometimes on purpose in order to
mislead others. Most of the unintentional mistakes people make, though, are
avoidable. We’re not talking about arithmetic. More often, the mistakes come
from using a method in the wrong situation or misinterpreting the results. Each
chapter has a section called What Can Go Wrong? to help you avoid some of the
most common mistakes.

So, How Will This Book Help? 5

Introduction to (Your
Statistics Package). ActivStats
launches your statistics package
(such as Data Desk) automatically.
If you have the DVD, try it now.

If you have the DVD,
you’ll find ActivStats parallels
the chapters in this book and
includes expanded lessons and
activities to increase your
understanding of the material
covered in the text.

“Get your facts first, and then
you can distort them as much as
you please. (Facts are stubborn,
but statistics are more pliable.)”

—Mark Twain

Time out. From time to time, we’ll take time out to discuss an interesting or
important side issue. We indicate these by setting them apart like this.2

2 Or in a footnote.

There are a number of statistics packages available for computers, and they
differ widely in the details of how to use them and in how they present their re-
sults. But they all work from the same basic information and find the same re-
sults. Rather than adopt one package for this book, we present generic output
and point out common features that you should look for. The 
. . . on the Computer section of most chapters (just before the exercises) holds

this information. We also give a table of instructions to get you
started on any of several commonly used packages, organized
by chapters in Appendix B’s Guide to Statistical Software.

At the end of each chapter, you’ll see a brief summary of the
important concepts you’ve covered in a section called What
Have We Learned? That section includes a list of the Terms and
a summary of the important Skills you’ve acquired in the chap-
ter. You won’t be able to learn the material from these sum-
maries, but you can use them to check your knowledge of the
important ideas in the chapter. If you have the skills, know the
terms, and understand the concepts, you should be well pre-
pared for the exam—and ready to use Statistics!

Beware: No one can learn Statistics just by reading or listen-
ing. The only way to learn it is to do it. So, of course, at the end of each chapter
(except this one) you’ll find Exercises designed to help you learn to use the Statis-
tics you’ve just read about.

Some exercises are marked with an orange . You’ll find the data for these
exercises on the DVD in the back of the book or on the book’s Web site at www.

T

You’ll find all sorts of stuff in margin notes, such
as stories and quotations. For example:

“Computers are useless. They can only give you
answers.”

—Pablo Picasso

While Picasso underestimated the value of good
statistics software, he did know that creating a
solution requires more than just Showing an
answer—it means you have to Think and Tell, too!

ON THE COMPUTER

T
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3 So, turn the page.

We’ve paired up the exercises, putting similar ones together. So, if you’re
having trouble doing an exercise, you will find a similar one either just before or
just after it. You’ll find answers to the odd-numbered exercises at the back of the
book. But these are only “answers” and not complete “solutions.” Huh? What’s
the difference? The answers are sketches of the complete solutions. For most
problems, your solution should follow the model of the Step-By-Step Examples.
If your calculations match the numerical parts of the “answer” and your argu-
ment contains the elements shown in the answer, you’re on the right track. Your
complete solution should explain the context, show your reasoning and calcula-
tions, and state your conclusions. Don’t fret too much if your numbers don’t
match the printed answers to every decimal place. Statistics is more about get-
ting the reasoning correct—pay more attention to how you interpret a result than
what the digit in the third decimal place was.

In the real world, problems don’t come with chapters attached. So, in addition
to the exercises at the ends of chapters, we’ve also collected a variety of problems
at the end of each part of the text to make it more like the real world. This should
help you to see whether you can sort out which methods to use when. If you can
do that successfully, then you’ll know you understand Statistics.

Onward!
It’s only fair to warn you: You can’t get there by just picking out the highlighted
sentences and the summaries. This book is different. It’s not about memorizing
definitions and learning equations. It’s deeper than that. And much more fun. 
But . . .

You have to read the book!3

6 CHAPTER 1    Stats Starts Here

“Far too many scientists have
only a shaky grasp of the
statistical techniques they are
using. They employ them as an
amateur chef employs a
cookbook, believing the recipes
will work without understand-
ing why. A more cordon bleu
attitude . . . might lead to fewer
statistical soufflés failing to
rise.”

—The Economist, June 3,
2004, “Sloppy stats 

shame science”
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Many years ago, most stores in small towns knew their customers per-
sonally. If you walked into the hobby shop, the owner might tell you
about a new bridge that had come in for your Lionel train set. The
tailor knew your dad’s size, and the hairdresser knew how your

mom liked her hair. There are still some stores like that around today, but we’re
increasingly likely to shop at large stores, by phone, or on the Internet. Even so,
when you phone an 800 number to buy new running shoes, customer service rep-
resentatives may call you by your first name or ask about the socks you bought
6 weeks ago. Or the company may send an e-mail in October offering new head
warmers for winter running. This company has millions of customers, and you
called without identifying yourself. How did the sales rep know who you are,
where you live, and what you had bought?

The answer is data. Collecting data on their customers, transactions, and sales
lets companies track their inventory and helps them predict what their customers
prefer. These data can help them predict what their customers may buy in the fu-
ture so they know how much of each item to stock. The store can use the data and
what it learns from the data to improve customer service, mimicking the kind of
personal attention a shopper had 50 years ago.

Amazon.com opened for business in July 1995, billing itself as “Earth’s
Biggest Bookstore.” By 1997, Amazon had a catalog of more than 2.5 million book
titles and had sold books to more than 1.5 million customers in 150 countries. In
2006, the company’s revenue reached $10.7 billion. Amazon has expanded into
selling a wide selection of merchandise, from $400,000 necklaces1 to yak cheese
from Tibet to the largest book in the world.

Amazon is constantly monitoring and evolving its Web site to serve its cus-
tomers better and maximize sales performance. To decide which changes to make
to the site, the company experiments, collecting data and analyzing what works
best. When you visit the Amazon Web site, you may encounter a different look or
different suggestions and offers. Amazon statisticians want to know whether
you’ll follow the links offered, purchase the items suggested, or even spend a

CHAPTER

2
Data

“Data is king at Amazon.
Clickstream and purchase data
are the crown jewels at
Amazon. They help us build
features to personalize the Web
site experience.” 

—Ronny Kohavi,
Director of Data Mining

and Personalization,
Amazon.com

1 Please get credit card approval before purchasing online.

7
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8 CHAPTER 2    Data

Activity: What Is (Are)
Data? Do you really know what’s
data and what’s just numbers?

THE W’S:

WHO

WHAT

and in what units

WHEN

WHERE

WHY

HOW

B000001OAA 10.99 Chris G. 902 15783947 15.98 Kansas Illinois Boston

Canada Samuel P. Orange County N B000068ZVQ Bad Blood Nashville Katherine H. N

Mammals 10783489 Ohio N Chicago 12837593 11.99 Massachusetts 16.99

312 Monique D. 10675489 413 B00000I5Y6 440 B000002BK9 Let Go Y

Purchase 
Order Name

Ship to
State/Country Price

Area
Code

Previous CD
Purchase Gift? ASIN Artist

10675489 Katharine H. Ohio 10.99 440 Nashville N B00000I5Y6 Kansas
10783489 Samuel P. Illinois 16.99 312 Orange County Y B000002BK9 Boston
12837593 Chris G. Massachusetts 15.98 413 Bad Blood N B000068ZVQ Chicago
15783947 Monique D. Canada 11.99 902 Let Go N B000001OAA Mammals

Now we can see that these are four purchase records, relating to CD orders
from Amazon. The column titles tell What has been recorded. The rows tell us
Who. But be careful. Look at all the variables to see Who the variables are about.
Even if people are involved, they may not be the Who of the data. For example, the
Who here are the purchase orders (not the people who made the purchases).

longer time browsing the site. As Ronny Kohavi, director of Data Mining and
Personalization, said, “Data trumps intuition. Instead of using our intuition, we
experiment on the live site and let our customers tell us what works for them.”

But What Are Data?
We bet you thought you knew this instinctively. Think about it for a minute. What
exactly do we mean by “data”?

Do data have to be numbers? The amount of your last purchase in dollars
is numerical data, but some data record names or other labels. The names in
Amazon.com’s database are data, but not numerical.

Sometimes, data can have values that look like numerical values but are just
numerals serving as labels. This can be confusing. For example, the ASIN (Ama-
zon Standard Item Number) of a book, like 0321570448, may have a numerical
value, but it’s really just another name for Stats: Modeling the World.

Data values, no matter what kind, are useless without their context. Newspa-
per journalists know that the lead paragraph of a good story should establish the
“Five W’s”: Who, What, When, Where, and (if possible) Why. Often we add How to
the list as well. Answering these questions can provide the context for data val-
ues. The answers to the first two questions are essential. If you can’t answer Who
and What, you don’t have data, and you don’t have any useful information.

Data Tables
Here are some data Amazon might collect:

Try to guess what they represent. Why is that hard? Because these data have
no context. If we don’t know Who they’re about or What they measure, these val-
ues are meaningless. We can make the meaning clear if we organize the values
into a data table such as this one:
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What and Why 9

Activity: Consider the
Context . . . Can you tell who’s
Who and what’s What? And
Why? This activity offers real-
world examples to help you
practice identifying the context.

A common place to find the Who of the table is the leftmost column. The other W’s
might have to come from the company’s database administrator.2

Who
In general, the rows of a data table correspond to individual cases about Whom
(or about which—if they’re not people) we record some characteristics. These
cases go by different names, depending on the situation. Individuals who answer
a survey are referred to as respondents. People on whom we experiment are
subjects or (in an attempt to acknowledge the importance of their role in the ex-
periment) participants, but animals, plants, Web sites, and other inanimate subjects
are often just called experimental units. In a database, rows are called records—in
this example, purchase records. Perhaps the most generic term is cases. In the
Amazon table, the cases are the individual CD orders.

Sometimes people just refer to data values as observations, without being clear
about the Who. Be sure you know the Who of the data, or you may not know what
the data say.

Often, the cases are a sample of cases selected from some larger population
that we’d like to understand. Amazon certainly cares about its customers, but also
wants to know how to attract all those other Internet users who may never have
made a purchase from Amazon’s site. To be able to generalize from the sample of
cases to the larger population, we’ll want the sample to be representative of that
population—a kind of snapshot image of the larger world.

Identifying the “Who”FOR EXAMPLE

In March 2007, Consumer Reports published an evaluation of large-screen, high-definition television sets (HDTVs). The magazine purchased and tested
98 different models from a variety of manufacturers. 

Question: Describe the population of interest, the sample, and the Who of this study.

The magazine is interested in the performance of all HDTVs currently being offered for sale. It tested a sample of 98
sets, the “Who” for these data. Each HDTV set represents all similar sets offered by that manufacturer.

What and Why
The characteristics recorded about each individual are called variables. These are
usually shown as the columns of a data table, and they should have a name that
identifies What has been measured. Variables may seem simple, but to really un-
derstand your variables, you must Think about what you want to know.

Although area codes are numbers, do we use them that way? Is 610 twice 305?
Of course it is, but is that the question? Why would we want to know whether Al-
lentown, PA (area code 610), is twice Key West, FL (305)? Variables play different
roles, and you can’t tell a variable’s role just by looking at it.

Some variables just tell us what group or category each individual belongs
to. Are you male or female? Pierced or not? . . . What kinds of things can we learn
about variables like these? A natural start is to count how many cases belong in
each category. (Are you listening to music while reading this? We could count

2 In database management, this kind of information is called “metadata.”
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10 CHAPTER 2    Data

Activities: Variables.
Several activities show you how
to begin working with data in
your statistics package.

Activity: Recognize
variables measured in a variety
of ways. This activity shows
examples of the many ways to
measure data.

the number of students in the class who were
and the number who weren’t.) We’ll look for
ways to compare and contrast the sizes of such
categories.

Some variables have measurement units.
Units tell how each value has been measured.
But, more importantly, units such as yen, cubits,
carats, angstroms, nanoseconds, miles per hour,
or degrees Celsius tell us the scale of measure-
ment. The units tell us how much of something
we have or how far apart two values are. With-
out units, the values of a measured variable
have no meaning. It does little good to be prom-
ised a raise of 5000 a year if you don’t know
whether it will be paid in euros, dollars, yen, or
Estonian krooni.

What kinds of things can we learn about
measured variables? We can do a lot more than just counting cat-
egories. We can look for patterns and trends. (How much did you
pay for your last movie ticket? What is the range of ticket prices
available in your town? How has the price of a ticket changed
over the past 20 years?)

When a variable names categories and answers questions
about how cases fall into those categories, we call it a categori-
cal variable.3 When a measured variable with units answers
questions about the quantity of what is measured, we call it a
quantitative variable. These types can help us decide what to
do with a variable, but they are really more about what we hope
to learn from a variable than about the variable itself. It’s the
questions we ask a variable (the Why of our analysis) that shape
how we think about it and how we treat it.

Some variables can answer questions only about categories. If the values of a
variable are words rather than numbers, it’s a good bet that it is categorical. But
some variables can answer both kinds of questions. Amazon could ask for your
Age in years. That seems quantitative, and would be if the company wanted to
know the average age of those customers who visit their site after 3 a.m. But sup-
pose Amazon wants to decide which CD to offer you in a special deal—one by
Raffi, Blink-182, Carly Simon, or Mantovani—and needs to be sure to have ade-
quate supplies on hand to meet the demand. Then thinking of your age in one of
the categories—child, teen, adult, or senior—might be more useful. If it isn’t clear
whether a variable is categorical or quantitative, think about Why you are looking
at it and what you want it to tell you.

A typical course evaluation survey asks, “How valuable do you think this
course will be to you?”: 1 = Worthless; 2 = Slightly; 3 = Middling; 4 = Reasonably; 5 =
Invaluable. Is Educational Value categorical or quantitative? Once again, we’ll look
to the Why. A teacher might just count the number of students who gave each re-
sponse for her course, treating Educational Value as a categorical variable. When she
wants to see whether the course is improving, she might treat the responses as the
amount of perceived value—in effect, treating the variable as quantitative. But what
are the units? There is certainly an order of perceived worth: Higher numbers indi-
cate higher perceived worth. A course that averages 4.5 seems more valuable than
one that averages 2, but we should be careful about treating Educational Value as

3 You may also see it called a qualitative variable.

It is wise to be careful.The What and Why of area codes are not 
as simple as they may first seem. When area codes were first

introduced, AT&T was still the source of all
telephone equipment, and phones had dials.

To reduce wear and tear on the dials, the
area codes with the lowest digits (for which the
dial would have to spin least) were assigned to
the most populous regions—those with the

most phone numbers and thus the area codes most likely to be
dialed. New York City was assigned 212, Chicago 312, and Los
Angeles 213, but rural upstate New York was given 607, Joliet was
815, and San Diego 619. For that reason, at one time the numerical
value of an area code could be used to guess something about the
population of its region. Now that phones have push-buttons, area
codes have finally become just categories.

By international agreement, the International
System of Units links together all systems of
weights and measures.There are seven base units
from which all other physical units are derived:

• Distance Meter
• Mass Kilogram
• Time Second
• Electric current Ampere
• Temperature °Kelvin
• Amount of substance Mole
• Intensity of light Candela
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purely quantitative. To treat it as quantitative, she’ll have
to imagine that it has “educational value units” or some
similar arbitrary construction. Because there are no natu-
ral units, she should be cautious. Variables like this that
report order without natural units are often called “ordi-
nal” variables. But saying “that’s an ordinal variable”
doesn’t get you off the hook. You must still look to the
Why of your study to decide whether to treat it as categor-
ical or quantitative. 

One tradition that hangs on in some quarters is to name
variables with cryptic abbreviations written in uppercase
letters.This can be traced back to the 1960s, when the
very first statistics computer programs were controlled
with instructions punched on cards.The earliest punch
card equipment used only uppercase letters, and the
earliest statistics programs limited variable names to six
or eight characters, so variables were called things like
PRSRF3. Modern programs do not have such restrictive
limits, so there is no reason for variable names that you
wouldn’t use in an ordinary sentence.

Identifying “What” and “Why” of HDTVs.FOR EXAMPLE

Recap: A Consumer Reports article about 98 HDTVs lists each set’s manufacturer, cost, screen size, type (LCD, plasma, or rear projection), and overall
performance score (0–100).

Question: Are these variables categorical or quantitative? Include units where appropriate, and describe the “Why” of this investigation.

The “what” of this article includes the following variables:
• manufacturer (categorical);
• cost (in dollars, quantitative);
• screen size (in inches, quantitative);
• type (categorical);
• performance score (quantitative).

The magazine hopes to help consumers pick a good HDTV set.

Counts Count
In Statistics, we often count things. When Amazon considers a special offer of
free shipping to customers, it might first analyze how purchases are shipped.
They’d probably start by counting the number of purchases shipped by
ground transportation, by second-day air, and by overnight air. Counting is a
natural way to summarize the categorical variable Shipping Method. So every
time we see counts, does that mean the variable is categorical? Actually, no.

We also use counts to measure the amounts of things. How many
songs are on your digital music player? How many classes are you taking
this semester? To measure these quantities, we’d naturally count. The vari-
ables (Songs, Classes) would be quantitative, and we’d consider the units to
be “number of . . .” or, generically, just “counts” for short.

So we use counts in two different ways. When we count the cases in each
category of a categorical variable, the category labels are the What and the in-
dividuals counted are the Who of our data. The counts themselves are not the
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12 CHAPTER 2    Data

data, but are something we summarize about the data. Amazon counts the number
of purchases in each category of the categorical variable Shipping Method. For this
purpose (the Why), the What is shipping method and the Who is purchases. 

Shipping
Method

Number of
Purchases

Ground 20,345
Second-day 7,890
Overnight 5,432

Other times our focus is on the amount of something, which we measure by
counting. Amazon might record the number of teenage customers visiting their
site each month to track customer growth and forecast CD sales (the Why). Now
the What is Teens, the Who is Months, and the units are Number of Teenage Cus-
tomers. Teen was a category when we looked at the categorical variable Age. But
now it is a quantitative variable in its own right whose amount is measured by
counting the number of customers.

Month

Number of
Teenage

Customers

January 123,456
February 234,567
March 345,678
April 456,789
May . . .
. . . . . .

Identifying Identifiers
What’s your student ID number? It is numerical, but is it a quantitative variable?
No, it doesn’t have units. Is it categorical? Yes, but it is a special kind. Look at how
many categories there are and at how many individuals are in each. There are as
many categories as individuals and only one individual in each category. While
it’s easy to count the totals for each category, it’s not very interesting. Amazon
wants to know who you are when you sign in again and doesn’t want to confuse
you with some other customer. So it assigns you a unique identifier.

Identifier variables themselves don’t tell us anything useful about the cate-
gories because we know there is exactly one individual in each. However, they are
crucial in this age of large data sets. They make it possible to combine data from
different sources, to protect confidentiality, and to provide unique labels. The
variables UPS Tracking Number, Social Security Number, and Amazon’s ASIN are all
examples of identifier variables.

You’ll want to recognize when a variable is playing the role of an identifier so
you won’t be tempted to analyze it. There’s probably a list of unique ID numbers
for students in a class (so they’ll each get their own grade confidentially), but you
might worry about the professor who keeps track of the average of these numbers
from class to class. Even though this year’s average ID number happens to be
higher than last’s, it doesn’t mean that the students are better.

Activity: Collect data
in an experiment on yourself.
With the computer, you can
experiment on yourself and then
save the data. Go on to the
subsequent related activities to
check your understanding.
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Self-Test: Review
concepts about data. Like the
Just Checking sections of this
textbook, but interactive.
(Usually, we won’t reference the
ActivStats self-tests here, but
look for one whenever you’d like
to check your understanding or
review material.)

JUST CHECKING
In the 2003 Tour de France, Lance Armstrong averaged 40.94 kilometers

per hour (km/h) for the entire course, making it the fastest Tour de France in
its 100-year history. In 2004, he made history again by winning the race for an
unprecedented sixth time. In 2005, he became the only 7-time winner and once
again set a new record for the fastest average speed. You can find data on all
the Tour de France races on the DVD. Here are the first three and last ten lines
of the data set. Keep in mind that the entire data set has nearly 100 entries.

1. List as many of the W’s as you can for this data set.

2. Classify each variable as categorical or quantitative; if quantitative,
identify the units.

Where, When, and How
We must know Who, What, and Why to analyze data. Without knowing these
three, we don’t have enough to start. Of course, we’d always like to know more.
The more we know about the data, the more we’ll understand about the world.

If possible, we’d like to know the When and Where of data as well. Values
recorded in 1803 may mean something different than similar values recorded last
year. Values measured in Tanzania may differ in meaning from similar measure-
ments made in Mexico.

How the data are collected can make the difference between insight and non-
sense. As we’ll see later, data that come from a voluntary survey on the Internet
are almost always worthless. One primary concern of Statistics, to be discussed in
Part III, is the design of sound methods for collecting data.

Throughout this book, whenever we introduce data, we’ll provide a margin
note listing the W’s (and H) of the data. It’s a habit we recommend. The first step
of any data analysis is to know why you are examining the data (what you want
to know), whom each row of your data table refers to, and what the variables (the
columns of the table) record. These are the Why, the Who, and the What. Identify-
ing them is a key part of the Think step of any analysis. Make sure you know all
three before you proceed to Show or Tell anything about the data. 

Year Winner
Country of
origin

Total time
(h/min/s)

Avg. speed
(km/h) Stages

Total 
distance 
ridden (km)

Starting
riders

Finishing
riders

1903 Maurice Garin France 94.33.00 25.3 6 2428 60 21
1904 Henri Cornet France 96.05.00 24.3 6 2388 88 23
1905 Louis Trousselier France 112.18.09 27.3 11 2975 60 24

. .
 .

1999 Lance Armstrong USA 91.32.16 40.30 20 3687 180 141
2000 Lance Armstrong USA 92.33.08 39.56 21 3662 180 128
2001 Lance Armstrong USA 86.17.28 40.02 20 3453 189 144
2002 Lance Armstrong USA 82.05.12 39.93 20 3278 189 153
2003 Lance Armstrong USA 83.41.12 40.94 20 3427 189 147
2004 Lance Armstrong USA 83.36.02 40.53 20 3391 188 147
2005 Lance Armstrong USA 86.15.02 41.65 21 3608 189 155
2006 Óscar Periero Spain 89.40.27 40.78 20 3657 176 139
2007 Alberto Contador Spain 91.00.26 38.97 20 3547 189 141
2008 Carlos Sastre Spain 87.52.52 40.50 21 3559 199 145
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TI Tips Working with data

You’ll need to be able to enter and edit data in your calculator. Here’s how.

To enter data:
Hit the button, and choose from the menu. You’ll see a set of
columns labeled , , and so on. Here is where you can enter, change, or
delete a set of data.

Let’s enter the heights (in inches) of the five starting players on a basketball
team: 71, 75, 75, 76, and 80. Move the cursor to the space under , type in 71,
and hit (or the down arrow). There’s the first player. Now enter the
data for the rest of the team.

To change a datum:
Suppose the 76" player grew since last season; his height should be listed as
78". Use the arrow keys to move the cursor onto the 76, then change the value
and the correction.

WHAT CAN GO WRONG?
u Don’t label a variable as categorical or quantitative without thinking about the question you

want it to answer. The same variable can sometimes take on different roles.

u Just because your variable’s values are numbers, don’t assume that it’s quantitative. Cate-
gories are often given numerical labels. Don’t let that fool you into thinking they have
quantitative meaning. Look at the context.

u Always be skeptical. One reason to analyze data is to discover the truth. Even when
you are told a context for the data, it may turn out that the truth is a bit (or even a
lot) different. The context colors our interpretation of the data, so those who want to
influence what you think may slant the context. A survey that seems to be about all
students may in fact report just the opinions of those who visited a fan Web site. The
question that respondents answered may have been posed in a way that influenced
their responses.

There’s a world of data on the Internet. These days, one of the richest
sources of data is the Internet. With a bit of practice, you can learn to find data on
almost any subject. Many of the data sets we use in this book were found in this
way. The Internet has both advantages and disadvantages as a source of data.
Among the advantages are the fact that often you’ll be able to find even more current
data than those we present. The disadvantage is that references to Internet addresses
can “break” as sites evolve, move, and die.

Our solution to these challenges is to offer the best advice we can to help you
search for the data, wherever they may be residing. We usually point you to a Web
site. We’ll sometimes suggest search terms and offer other guidance.

Some words of caution, though: Data found on Internet sites may not be format-
ted in the best way for use in statistics software. Although you may see a data table
in standard form, an attempt to copy the data may leave you with a single column
of values. you may have to work in your favorite statistics or spreadsheet program
to reformat the data into variables. You will also probably want to remove commas
from large numbers and such extra symbols as money indicators ($, ¥, £); few sta-
tistics packages can handle these.
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To add more data:
We want to include the sixth man, 73" tall. It would be easy to simply add this
new datum to the end of the list. However, sometimes the order of the data
matters, so let’s place this datum in numerical order. Move the cursor to the 
desired position (atop the first 75). Hit , then the 73 in the
new space.

To delete a datum:
The 78" player just quit the team. Move the cursor there. Hit . Bye.

To clear the datalist:
Finished playing basketball? Move the cursor atop the . Hit , then 

(or down arrow). You should now have a blank datalist, ready for you
to enter your next set of values.

Lost a datalist?
Oops! Is now missing entirely? Did you delete by mistake, instead of
just clearing it? Easy problem to fix: buy a new calculator. No? OK, then simply
go to the menu, and run to recreate all the lists. 

WHAT HAVE WE LEARNED?

We’ve learned that data are information in a context.

u The W’s help nail down the context: Who, What, Why, Where, When, and hoW.
u We must know at least the Who, What, and Why to be able to say anything useful based on the

data. The Who are the cases. The What are the variables. A variable gives information about each
of the cases. The Why helps us decide which way to treat the variables.

We treat variables in two basic ways: as categorical or quantitative.

u Categorical variables identify a category for each case. Usually, we think about the counts 
of cases that fall into each category. (An exception is an identifier variable that just names 
each case.)

u Quantitative variables record measurements or amounts of something; they must have units.
u Sometimes we treat a variable as categorical or quantitative depending on what we want to learn

from it, which means that some variables can’t be pigeonholed as one type or the other. That’s
an early hint that in Statistics we can’t always pin things down precisely. 

Terms
Context 8. The context ideally tells Who was measured, What was measured, How the data were collected,

Where the data were collected, and When and Why the study was performed.

Data 8. Systematically recorded information, whether numbers or labels, together with its context.

Data table 8. An arrangement of data in which each row represents a case and each column represents a
variable.

Case 9. A case is an individual about whom or which we have data.

Population 9. All the cases we wish we knew about.

Sample 9. The cases we actually examine in seeking to understand the much larger population.

Variable 9. A variable holds information about the same characteristic for many cases.

Units 10. A quantity or amount adopted as a standard of measurement, such as dollars, hours, or grams.

Categorical variable 10. A variable that names categories (whether with words or numerals) is called categorical.

Quantitative variable 10. A variable in which the numbers act as numerical values is called quantitative. Quantitative vari-
ables always have units.
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Most often we find statistics on a computer using a program, or package, designed
for that purpose. There are many different statistics packages, but they all do
essentially the same things. If you understand what the computer needs to know
to do what you want and what it needs to show you in return, you can figure out
the specific details of most packages pretty easily.
For example, to get your data into a computer statistics package, you need to tell
the computer:

u Where to find the data. This usually means directing the computer to a file
stored on your computer’s disk or to data on a database. Or it might just mean
that you have copied the data from a spreadsheet program or Internet site and
it is currently on your computer’s clipboard. Usually, the data should be in the
form of a data table. Most computer statistics packages prefer the delimiter
that marks the division between elements of a data table to be a tab character
and the delimiter that marks the end of a case to be a return character.

u Where to put the data. (Usually this is handled automatically.)
u What to call the variables. Some data tables have variable names as the first

row of the data, and often statistics packages can take the variable names
from the first row automatically. 

Skills
u Be able to identify the Who, What, When, Where, Why, and How of data, or recognize when

some of this information has not been provided.

u Be able to identify the cases and variables in any data set.

u Be able to identify the population from which a sample was chosen.

u Be able to classify a variable as categorical or quantitative, depending on its use.

u For any quantitative variable, be able to identify the units in which the variable has been meas-
ured (or note that they have not been provided).

u Be able to describe a variable in terms of its Who, What, When, Where, Why, and How (and be
prepared to remark when that information is not provided).

16 CHAPTER 2    Data

Activity: Examine the
Data. Take a look at your own
data from your experiment 
(p. 12) and get comfortable with
your statistics package as you
find out about the experiment
test results.

DATA ON THE COMPUTER

EXERCISES

1. Voters. A February 2007 Gallup Poll question asked,
“In politics, as of today, do you consider yourself a Re-
publican, a Democrat, or an Independent?” The possible
responses were “Democrat”, “Republican”, “Indepen-
dent”, “Other”, and “No Response”. What kind of vari-
able is the response?

2. Mood. A January 2007 Gallup Poll question asked, “In
general, do you think things have gotten better or gotten
worse in this country in the last five years?” Possible an-
swers were “Better”, “Worse”, “No Change”, “Don’t
Know”, and “No Response”. What kind of variable is the
response?

3. Medicine. A pharmaceutical company conducts an ex-
periment in which a subject takes 100 mg of a substance
orally. The researchers measure how many minutes it
takes for half of the substance to exit the bloodstream.
What kind of variable is the company studying?

4. Stress. A medical researcher measures the increase 
in heart rate of patients under a stress test. What kind 
of variable is the researcher studying?

(Exercises 5–12) For each description of data, identify Who and
What were investigated and the population of interest.
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Data. Take a look at your own
data from your experiment 
(p. 12) and get comfortable with
your statistics package as you
find out about the experiment
test results.

DATA ON THE COMPUTER

EXERCISES

1. Voters. A February 2007 Gallup Poll question asked,
“In politics, as of today, do you consider yourself a Re-
publican, a Democrat, or an Independent?” The possible
responses were “Democrat”, “Republican”, “Indepen-
dent”, “Other”, and “No Response”. What kind of vari-
able is the response?

2. Mood. A January 2007 Gallup Poll question asked, “In
general, do you think things have gotten better or gotten
worse in this country in the last five years?” Possible an-
swers were “Better”, “Worse”, “No Change”, “Don’t
Know”, and “No Response”. What kind of variable is the
response?

3. Medicine. A pharmaceutical company conducts an ex-
periment in which a subject takes 100 mg of a substance
orally. The researchers measure how many minutes it
takes for half of the substance to exit the bloodstream.
What kind of variable is the company studying?

4. Stress. A medical researcher measures the increase 
in heart rate of patients under a stress test. What kind 
of variable is the researcher studying?

(Exercises 5–12) For each description of data, identify Who and
What were investigated and the population of interest.
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Exercises 17

5. The news. Find a newspaper or magazine article in
which some data are reported. For the data discussed in
the article, answer the questions above. Include a copy of
the article with your report.

6. The Internet. Find an Internet source that reports on a
study and describes the data. Print out the description
and answer the questions above.

7. Bicycle safety. Ian Walker, a psychologist at the Uni-
versity of Bath, wondered whether drivers treat bicycle
riders differently when they wear helmets. He rigged
his bicycle with an ultrasonic sensor that could measure
how close each car was that passed him. He then rode
on alternating days with and without a helmet. Out of
2500 cars passing him, he found that when he wore his
helmet, motorists passed 3.35 inches closer to him, 
on average, than when his head was bare. [NY Times,
Dec. 10, 2006]

8. Investments. Some companies offer 401(k) retirement
plans to employees, permitting them to shift part of their
before-tax salaries into investments such as mutual funds.
Employers typically match 50% of the employees’ contri-
bution up to about 6% of salary. One company, concerned
with what it believed was a low employee participation
rate in its 401(k) plan, sampled 30 other companies with
similar plans and asked for their 401(k) participation
rates.

9. Honesty. Coffee stations in offices often just ask users
to leave money in a tray to pay for their coffee, but many
people cheat. Researchers at Newcastle University alter-
nately taped two posters over the coffee station. During
one week, it was a picture of flowers; during the other, 
it was a pair of staring eyes. They found that the average
contribution was significantly higher when the eyes
poster was up than when the flowers were there. Appar-
ently, the mere feeling of being watched—even by eyes
that were not real—was enough to encourage people to
behave more honestly. [NY Times, Dec. 10, 2006]

10. Movies. Some motion pictures are profitable and others
are not. Understandably, the movie industry would like
to know what makes a movie successful. Data from 120
first-run movies released in 2005 suggest that longer
movies actually make less profit.

11. Fitness. Are physically fit people less likely to die of
cancer? An article in the May 2002 issue of Medicine and
Science in Sports and Exercise reported results of a study
that followed 25,892 men aged 30 to 87 for 10 years. The
most physically fit men had a 55% lower risk of death
from cancer than the least fit group.

12. Molten iron. The Cleveland Casting Plant is a large,
highly automated producer of gray and nodular iron 
automotive castings for Ford Motor Company. The com-
pany is interested in keeping the pouring temperature of
the molten iron (in degrees Fahrenheit) close to the speci-
fied value of 2550 degrees. Cleveland Casting measured
the pouring temperature for 10 randomly selected crank-
shafts.

(Exercises 13–26) For each description of data, identify the W’s,
name the variables, specify for each variable whether its use indi-
cates that it should be treated as categorical or quantitative, and, for
any quantitative variable, identify the units in which it was meas-
ured (or note that they were not provided).

13. Weighing bears. Because of the difficulty of weighing
a bear in the woods, researchers caught and measured 54
bears, recording their weight, neck size, length, and sex.
They hoped to find a way to estimate weight from the
other, more easily determined quantities.

14. Schools. The State Education Department requires lo-
cal school districts to keep these records on all students:
age, race or ethnicity, days absent, current grade level,
standardized test scores in reading and mathematics, and
any disabilities or special educational needs.

15. Arby’s menu. A listing posted by the Arby’s restaurant
chain gives, for each of the sandwiches it sells, the type of
meat in the sandwich, the number of calories, and the
serving size in ounces. The data might be used to assess
the nutritional value of the different sandwiches.

16. Age and party. The Gallup Poll conducted a represen-
tative telephone survey of 1180 American voters during
the first quarter of 2007. Among the reported results were
the voter’s region (Northeast, South, etc.), age, party affil-
iation, and whether or not the person had voted in the
2006 midterm congressional election.

17. Babies. Medical researchers at a large city hospital in-
vestigating the impact of prenatal care on newborn health
collected data from 882 births during 1998–2000. They
kept track of the mother’s age, the number of weeks the
pregnancy lasted, the type of birth (cesarean, induced,
natural), the level of prenatal care the mother had (none,
minimal, adequate), the birth weight and sex of the baby,
and whether the baby exhibited health problems (none,
minor, major).

18. Flowers. In a study appearing in the journal Science, a
research team reports that plants in southern England are
flowering earlier in the spring. Records of the first flower-
ing dates for 385 species over a period of 47 years show
that flowering has advanced an average of 15 days per
decade, an indication of climate warming, according to
the authors.

19. Herbal medicine. Scientists at a major pharmaceutical
firm conducted an experiment to study the effectiveness
of an herbal compound to treat the common cold. They
exposed each patient to a cold virus, then gave them ei-
ther the herbal compound or a sugar solution known to
have no effect on colds. Several days later they assessed
each patient’s condition, using a cold severity scale rang-
ing from 0 to 5. They found no evidence of the benefits of
the compound.

20. Vineyards. Business analysts hoping to provide infor-
mation helpful to American grape growers compiled
these data about vineyards: size (acres), number of years
in existence, state, varieties of grapes grown, average case
price, gross sales, and percent profit.
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18 CHAPTER 2    Data

Year Winner Pole Position
Average Speed 

(mph) Pole Winner
Average Pole 
Speed (mph)

1911 Ray Harroun 28 74.602 Lewis Strang .
1912 Joe Dawson 7 78.719 Gil Anderson .
1913 Jules Goux 7 75.933 Caleb Bragg .
1914 René Thomas 15 82.474 Jean Chassagne .
1915
. . .

Ralph DePalma 2 89.840 Howard Wilcox 98.580

2004 Buddy Rice 1 138.518 Buddy Rice 220.024
2005 Dan Wheldon 16 157.603 Tony Kanaan 224.308
2006 Sam Hornish Jr. 1 157.085 Sam Hornish Jr. 228.985
2007 Dario Franchitti 3 151.744 Hélio Castroneves 225.817
2008 Scott Dixon 1 143.567 Scott Dixon 221.514 

21. Streams. In performing research for an ecology class,
students at a college in upstate New York collect data on
streams each year. They record a number of biological,
chemical, and physical variables, including the stream
name, the substrate of the stream (limestone, shale, or
mixed), the acidity of the water (pH), the temperature
(°C), and the BCI (a numerical measure of biological di-
versity).

22. Fuel economy. The Environmental Protection Agency
(EPA) tracks fuel economy of automobiles based on infor-
mation from the manufacturers (Ford, Toyota, etc.).
Among the data the agency collects are the manufacturer,
vehicle type (car, SUV, etc.), weight, horsepower, and 
gas mileage (mpg) for city and highway driving.

23. Refrigerators. In 2006, Consumer Reports published
an article evaluating refrigerators. It listed 41 models,
giving the brand, cost, size (cu ft), type (such as top
freezer), estimated annual energy cost, an overall rat-
ing (good, excellent, etc.), and the repair history for
that brand (percentage requiring repairs over the past 
5 years).

24. Walking in circles. People who get lost in the desert,
mountains, or woods often seem to wander in circles
rather than walk in straight lines. To see whether people
naturally walk in circles in the absence of visual clues, re-
searcher Andrea Axtell tested 32 people on a football
field. One at a time, they stood at the center of one goal
line, were blindfolded, and then tried to walk to the other
goal line. She recorded each individual’s sex, height,
handedness, the number of yards each was able to walk
before going out of bounds, and whether each wandered
off course to the left or the right. No one made it all the
way to the far end of the field without crossing one of the
sidelines. [STATS No. 39, Winter 2004]

25. Horse race 2008. The Kentucky Derby is a horse race
that has been run every year since 1875 at Churchill Downs,
Louisville, Kentucky. The race started as a 1.5-mile race, but
in 1896, it was shortened to 1.25 miles because experts felt
that 3-year-old horses shouldn’t run such a long race that
early in the season. (It has been run in May every year but
one—1901—when it took place on April 29). Here are the
data for the first four and several recent races.

Date Winner
Margin 

(lengths) Jockey
Winner’s 
Payoff ($)

Duration 
(min:sec)

Track 
Condition

May 17, 1875 Aristides 2 O. Lewis 2850 2:37.75 Fast
May 15, 1876 Vagrant 2 B. Swim 2950 2:38.25 Fast
May 22, 1877 Baden-Baden 2 W. Walker 3300 2:38.00 Fast
May 21, 1878
. . . . . .

Day Star 1 J. Carter 4050 2:37.25 Dusty

May 1, 2004 Smarty Jones 2 3/4 S. Elliott 854800 2:04.06 Sloppy
May 7, 2005 Giacomo 1/2 M. Smith 5854800 2:02.75 Fast
May 6, 2006 Barbaro 6 1/2 E. Prado 1453200 2:01.36 Fast
May 5, 2007 Street Sense 2 1/4 C. Borel 1450000 2:02.17 Fast
May 3, 2008 Big Brown 4 3/4 K. Desormeaux 1451800 2:01.82 Fast

26. Indy 2008. The 2.5-mile Indianapolis Motor Speed-
way has been the home to a race on Memorial Day nearly
every year since 1911. Even during the first race, there
were controversies. Ralph Mulford was given the check-
ered flag first but took three extra laps just to make sure
he’d completed 500 miles. When he finished, another
driver, Ray Harroun, was being presented with the 

winner’s trophy, and Mulford’s protests were ignored.
Harroun averaged 74.6 mph for the 500 miles. In 2008, 
the winner, Scott Dixon, averaged 143.567 mph.

Here are the data for the first five races and five recent
Indianapolis 500 races. Included also are the pole winners
(the winners of the trial races, when each driver drives
alone to determine the position on race day).

T

T
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Exercises 19

JUST CHECKING
Answers

1. Who—Tour de France races; What—year, winner, country of origin, total time, av-
erage speed, stages, total distance ridden, starting riders, finishing riders; How—
official statistics at race; Where—France (for the most part); When—1903 to 2008;
Why—not specified (To see progress in speeds of cycling racing?)

2.
Variable Type Units

Year Quantitative or 
Categorical

Years

Winner Categorical
Country of Origin Categorical
Total Time Quantitative Hours/minutes/seconds
Average Speed Quantitative Kilometers per hour
Stages Quantitative Counts (stages)
Total Distance Quantitative Kilometers
Starting Riders Quantitative Counts (riders)
Finishing Riders Quantitative Counts (riders)
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CHAPTER

3
Displaying and
Describing
Categorical Data

What happened on the Titanic at 11:40 on the night of April 14, 1912,
is well known. Frederick Fleet’s cry of “Iceberg, right ahead” and
the three accompanying pulls of the crow’s nest bell signaled the
beginning of a nightmare that has become legend. By 2:15 a.m.,

the Titanic, thought by many to be unsinkable, had sunk, leaving more than 1500
passengers and crew members on board to meet their icy fate.

Here are some data about the passengers and crew aboard the Titanic. Each
case (row) of the data table represents a person on board the ship. The variables
are the person’s Survival status (Dead or Alive), Age (Adult or Child), Sex (Male
or Female), and ticket Class (First, Second, Third, or Crew).

The problem with a data table like this—and in fact with all data tables—is
that you can’t see what’s going on. And seeing is just what we want to do. We
need ways to show the data so that we can see patterns, relationships, trends,
and exceptions.

WHO People on the Titanic

WHAT Survival status, age,
sex, ticket class

WHEN April 14, 1912

WHERE North Atlantic

HOW A variety of sources
and Internet sites

WHY Historical interest 

Video: The Incident tells
the story of the Titanic, and
includes rare film footage.

Survival Age Sex Class

Dead Adult Male Third
Dead Adult Male Crew
Dead Adult Male Third
Dead Adult Male Crew
Dead Adult Male Crew
Dead Adult Male Crew
Alive Adult Female First
Dead Adult Male Third
Dead Adult Male Crew

Table 3.1

Part of a data table showing four variables for
nine people aboard the Titanic.
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Frequency Tables: Making Piles 21

The Three Rules of Data Analysis
So, what should we do with data like these? There are three things you should
always do first with data:

1. Make a picture. A display of your data will reveal things you are not likely to
see in a table of numbers and will help you to Think clearly about the patterns
and relationships that may be hiding in your data.

2. Make a picture. A well-designed display will Show the important features
and patterns in your data. A picture will also show you the things you did not
expect to see: the extraordinary (possibly wrong) data values or unexpected
patterns.

3. Make a picture. The best way to Tell others about your data is with a well-
chosen picture.

These are the three rules of data analysis. There are pictures of data through-
out the book, and new kinds keep showing up. These days, technology makes
drawing pictures of data easy, so there is no reason not to follow the three rules. 

FIGURE 3.1 A Picture to Tell a Story

Florence Nightingale (1820–1910), a
founder of modern nursing, was also a
pioneer in health management, statis-
tics, and epidemiology. She was the first
female member of the British Statistical
Society and was granted honorary
membership in the newly formed
American Statistical Association.

To argue forcefully for better hospital
conditions for soldiers, she and her
colleague, Dr. William Farr, invented
this display, which showed that in the
Crimean War, far more soldiers died of
illness and infection than of battle
wounds. Her campaign succeeded in
improving hospital conditions and
nursing for soldiers.

Florence Nightingale went on to apply
statistical methods to a variety of
important health issues and published
more than 200 books, reports, and
pamphlets during her long and
illustrious career.

Frequency Tables: Making Piles
To make a picture of data, the first thing we have to do is to make piles. Making
piles is the beginning of understanding about data. We pile together things that
seem to go together, so we can see how the cases distribute across different cate-
gories. For categorical data, piling is easy. We just count the number of cases cor-
responding to each category and pile them up. 

One way to put all 2201 people on the Titanic into piles is by ticket Class,
counting up how many had each kind of ticket. We can organize these counts into
a frequency table, which records the totals and the category names.

Even when we have thousands of cases, a variable like ticket Class, with only
a few categories, has a frequency table that’s easy to read. A frequency table with
dozens or hundreds of categories would be much harder to read. We use the
names of the categories to label each row in the frequency table. For ticket Class,
these are “First,” “Second,” “Third,” and “Crew.”

Activity: Make and examine
a table of counts. Even data on
something as simple as hair color
can reveal surprises when you
organize it in a data table.

Class Count

First 325
Second 285
Third 706
Crew 885

Table 3.2

A frequency table of the Titanic
passengers.
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22 CHAPTER 3    Displaying and Describing Categorical Data

Counts are useful, but sometimes we want to know the fraction or proportion
of the data in each category, so we divide the counts by the total number of cases.
Usually we multiply by 100 to express these proportions as percentages. A
relative frequency table displays the percentages, rather than the counts, of the
values in each category. Both types of tables show how the cases are distributed
across the categories. In this way, they describe the distribution of a categorical
variable because they name the possible categories and tell how frequently each
occurs.

The Area Principle
Now that we have the frequency table, we’re ready to follow the three
rules of data analysis and make a picture of the data. But a bad picture can
distort our understanding rather than help it. Here’s a graph of the Titanic
data. What impression do you get about who was aboard the ship?

It sure looks like most of the people on the Titanic were crew members,
with a few passengers along for the ride. That doesn’t seem right. What’s
wrong? The lengths of the ships do match the totals in the table. (You can
check the scale at the bottom.) However, experience and psychological
tests show that our eyes tend to be more impressed by the area than by
other aspects of each ship image. So, even though the length of each ship
matches up with one of the totals, it’s the associated area in the image that
we notice. Since there were about 3 times as many crew as second-class
passengers, the ship depicting the number of crew is about 3 times longer
than the ship depicting second-class passengers, but it occupies about 9
times the area. As you can see from the frequency table (Table 3.2), that just
isn’t a correct impression.

The best data displays observe a fundamental principle of graphing
data called the area principle. The area principle says that the area occu-
pied by a part of the graph should correspond to the magnitude of the
value it represents. Violations of the area principle are a common way to
lie (or, since most mistakes are unintentional, we should say err) with
Statistics.

Bar Charts
Here’s a chart that obeys the area principle. It’s not as visually enter-
taining as the ships, but it does give an accurate visual impression of
the distribution. The height of each bar shows the count for its cate-
gory. The bars are the same width, so their heights determine their ar-
eas, and the areas are proportional to the counts in each class. Now it’s
easy to see that the majority of people on board were not crew, as the
ships picture led us to believe. We can also see that there were about 3
times as many crew as second-class passengers. And there were more
than twice as many third-class passengers as either first- or second-
class passengers, something you may have missed in the frequency
table. Bar charts make these kinds of comparisons easy and natural.

A bar chart displays the distribution of a categorical variable,
showing the counts for each category next to each other for easy com-
parison. Bar charts should have small spaces between the bars to indi-
cate that these are freestanding bars that could be rearranged into any
order. The bars are lined up along a common base. 

FIGURE 3.2
How many people were in each class on the Titanic?
From this display, it looks as though the service must
have been great, since most aboard were crew 
members. Although the length of each ship here 
corresponds to the correct number, the impression is
all wrong. In fact, only about 40% were crew.

First
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Third

Crew

0 300 600 900

Table 3.3

A relative frequency table for the
same data.

Class %

First 14.77
Second 12.95
Third 32.08
Crew 40.21
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FIGURE 3.3 People on the Titanic by Ticket Class
With the area principle satisfied, we can see the true
distribution more clearly.
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Usually they stick up like this but sometimes they run

sideways like this 

If we really want to draw attention to the relative proportion of passengers falling
into each of these classes, we could replace the counts with percentages and use a
relative frequency bar chart. 
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FIGURE 3.4
The relative frequency bar chart looks the same as
the bar chart (Figure 3.3) but shows the proportion
of people in each category rather than the counts.

Pie Charts
Another common display that shows how a whole group breaks into several cate-
gories is a pie chart. Pie charts show the whole group of cases as a circle. They
slice the circle into pieces whose sizes are proportional to the fraction of the whole
in each category.

Pie charts give a quick impression of how a whole group is partitioned
into smaller groups. Because we’re used to cutting up pies into 2, 4, or 8 pieces,
pie charts are good for seeing relative frequencies near 1/2, 1/4, or 1/8. For ex-
ample, you may be able to tell that the pink slice, representing the second-class
passengers, is very close to 1/8 of the total. It’s harder to see that there were
about twice as many third-class as first-class passengers. Which category had
the most passengers? Were there more crew or more third-class passengers?
Comparisons such as these are easier in a bar chart. 

Activity: Bar Charts.
Watch bar charts grow from
data; then use your statistics
package to create some bar
charts for yourself.

For some reason, some computer programs give
the name “bar chart”to any graph that uses bars.
And others use different names according to
whether the bars are horizontal or vertical. Don’t
be misled.“Bar chart”is the term for a display of
counts of a categorical variable with bars.

40%

30%

20%

10%

0
First Second Third Crew

Class

First Class
325 Second Class

285

Third Class
706

Crew
885

Count

FIGURE 3.5 Number of Titanic
passengers in each class

Think before you draw. Our first rule of data analysis is Make a picture. But
what kind of picture? We don’t have a lot of options—yet. There’s more to Statistics
than pie charts and bar charts, and knowing when to use each type of graph is a
critical first step in data analysis. That decision depends in part on what type of
data we have.

It’s important to check that the data are appropriate for whatever method of
analysis you choose. Before you make a bar chart or a pie chart, always check the
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24 CHAPTER 3    Displaying and Describing Categorical Data

Contingency Tables: Children and First-Class
Ticket Holders First?

We know how many tickets of each class were sold on the Titanic, and we know
that only about 32% of all those aboard the Titanic survived. After looking at
the distribution of each variable by itself, it’s natural and more interesting to
ask how they relate. Was there a relationship between the kind of ticket a pas-
senger held and the passenger’s chances of making it into the lifeboat? To an-
swer this question, we need to look at the two categorical variables Class and
Survival together. 

To look at two categorical variables together, we often arrange the counts in
a two-way table. Here is a two-way table of those aboard the Titanic, classified
according to the class of ticket and whether the ticket holder survived or didn’t.
Because the table shows how the individuals are distributed along each vari-
able, contingent on the value of the other variable, such a table is called a
contingency table.

The margins of the table, both on the right and at the bottom, give totals. The
bottom line of the table is just the frequency distribution of ticket Class. The right
column of the table is the frequency distribution of the variable Survival. When
presented like this, in the margins of a contingency table, the frequency distribu-
tion of one of the variables is called its marginal distribution.

Each cell of the table gives the count for a combination of values of the two
variables. If you look down the column for second-class passengers to the first
cell, you can see that 118 second-class passengers survived. Looking at the third-
class passengers, you can see that more third-class passengers (178) survived.
Were second-class passengers more likely to survive? Questions like this are eas-
ier to address by using percentages. The 118 survivors in second class were 41.4%
of the total 285 second-class passengers, while the 178 surviving third-class pas-
sengers were only 25.2% of that class’s total. 

We know that 118 second-class passengers survived. We could display this
number as a percentage—but as a percentage of what? The total number of pas-
sengers? (118 is 5.4% of the total: 2201.) The number of second-class passengers?

Activity: Children at Risk.
This activity looks at the fates of
children aboard the Titanic; the
subsequent activity shows how
to make such tables on a
computer.

Su
rv

iv
al

Class

First Second Third Crew Total

Alive 203 118 178 212 711

Dead 122 167 528 673 1490

Total 325 285 706 885 2201

Contingency table of ticket Class
and Survival. The bottom line of 
“Totals” is the same as the previous
frequency table.
Table 3.4

A bell-shaped artifact from the Titanic.

Categorical Data Condition: The data are counts or percentages of individuals in
categories.

If you want to make a relative frequency bar chart or a pie chart, you’ll need to
also make sure that the categories don’t overlap so that no individual is counted
twice. If the categories do overlap, you can still make a bar chart, but the percent-
ages won’t add up to 100%. For the Titanic data, either kind of display is appropri-
ate because the categories don’t overlap.

Throughout this course, you’ll see that doing Statistics right means selecting the
proper methods. That means you have to Think about the situation at hand. An im-
portant first step, then, is to check that the type of analysis you plan is appropriate.
The Categorical Data Condition is just the first of many such checks.
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(118 is 41.4% of the 285 second-class passengers.) The number of survivors? (118
is 16.6% of the 711 survivors.) All of these are possibilities, and all are potentially
useful or interesting. You’ll probably wind up calculating (or letting your technol-
ogy calculate) lots of percentages. Most statistics programs offer a choice of total
percent, row percent, or column percent for contingency tables. Unfortunately,
they often put them all together with several numbers in each cell of the table. The
resulting table holds lots of information, but it can be hard to understand:

Another contingency table of ticket
Class. This time we see not only the
counts for each combination of Class
and Survival (in bold) but the percent-
ages these counts represent. For each
count, there are three choices for the
percentage: by row, by column, and
by table total. There’s probably too
much information here for this table
to be useful.
Table 3.5

To simplify the table, let’s first pull out the percent of table values:

A contingency table of Class by
Survival with only the table
percentages
Table 3.6

These percentages tell us what percent of all passengers belong to each combi-
nation of column and row category. For example, we see that although 8.1% of the
people aboard the Titanic were surviving third-class ticket holders, only 5.4% were
surviving second-class ticket holders. Is this fact useful? Comparing these percent-
ages, you might think that the chances of surviving were better in third class than
in second. But be careful. There were many more third-class than second-class pas-
sengers on the Titanic, so there were more third-class survivors. That group is a
larger percentage of the passengers, but is that really what we want to know? 

Class

First Second Third Crew Total

Su
rv

iv
al

Alive

Count 203 118 178 212 711
% of Row 28.6% 16.6% 25.0% 29.8% 100%
% of Column 62.5% 41.4% 25.2% 24.0% 32.3%
% of Table 9.2% 5.4% 8.1% 9.6% 32.3%

Dead

Count 122 167 528 673 1490
% of Row 8.2% 11.2% 35.4% 45.2% 100%
% of Column 37.5% 58.6% 74.8% 76.0% 67.7%
% of Table 5.6% 7.6% 24.0% 30.6% 67.7%

Total

Count 325 285 706 885 2201
%of Row 14.8% 12.9% 32.1% 40.2% 100%
% of Column 100% 100% 100% 100% 100%
% of Table 14.8% 12.9% 32.1% 40.2% 100%

Class

First Second Third Crew Total

Su
rv

iv
al

Alive 9.2% 5.4% 8.1% 9.6% 32.3%

Dead 5.6% 7.6% 24.0% 30.6% 67.7%

Total 14.8% 12.9% 32.1% 40.2% 100%

Percent of what? The English language can be tricky when we talk about per-
centages. If you’re asked “What percent of the survivors were in second class?” it’s
pretty clear that we’re interested only in survivors. It’s as if we’re restricting the Who
in the question to the survivors, so we should look at the number of second-class
passengers among all the survivors—in other words, the row percent.

But if you’re asked “What percent were second-class passengers who survived?”
you have a different question. Be careful; here, the Who is everyone on board, so
2201 should be the denominator, and the answer is the table percent.
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26 CHAPTER 3    Displaying and Describing Categorical Data

Finding marginal distributionsFOR EXAMPLE

In January 2007, a Gallup poll asked 1008 Americans age 18 and over
whether they planned to watch the upcoming Super Bowl. The pollster also
asked those who planned to watch whether they were looking forward more to
seeing the football game or the commercials. The results are summarized in
the table:

Question: What’s the marginal distribution of the responses?

To determine the percentages for the three responses, divide
the count for each response by the total number of people
polled:

According to the poll, 47.5% of American adults were looking forward to watching the Super Bowl game, 23.5% were look-
ing forward to watching the commercials, and 29% didn’t plan to watch at all.

479
1008

= 47.5% 237
1008

= 23.5%  292
1008

= 29.0%

Conditional Distributions
The more interesting questions are contingent. We’d like to know, for example,
what percentage of second-class passengers survived and how that compares with
the survival rate for third-class passengers.

It’s more interesting to ask whether the chance of surviving the Titanic sink-
ing depended on ticket class. We can look at this question in two ways. First, we
could ask how the distribution of ticket Class changes between survivors and non-
survivors. To do that, we look at the row percentages:

Sex

Male Female Total

R
es

p
o

n
se Game 279 200 479

Commercials 81 156 237

Won’t watch 132 160 292

Total 492 516 1008

The conditional distribution of ticket
Class conditioned on each value of
Survival: Alive and Dead.
Table 3.7

Class

First Second Third Crew Total

Alive 203 118 178 212 711
28.6% 16.6% 25.0% 29.8% 100%

Dead
122 167 528 673 1490

8.2% 11.2% 35.4% 45.2% 100%Su
rv

iv
al

And if you’re asked “What percent of the second-class passengers survived?” you
have a third question. Now the Who is the second-class passengers, so the denom-
inator is the 285 second-class passengers, and the answer is the column percent.

Always be sure to ask “percent of what?” That will help you to know the Who and
whether we want row, column, or table percentages.

By focusing on each row separately, we see the distribution of class under the
condition of surviving or not. The sum of the percentages in each row is 100%, and
we divide that up by ticket class. In effect, we temporarily restrict the Who first to
survivors and make a pie chart for them. Then we refocus the Who on the nonsur-
vivors and make their pie chart. These pie charts show the distribution of ticket
classes for each row of the table: survivors and nonsurvivors. The distributions we
create this way are called conditional distributions, because they show the distribu-
tion of one variable for just those cases that satisfy a condition on another variable.
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Conditional Distributions 27

Alive Dead

First
Second
Third
Crew

FIGURE 3.6
Pie charts of the conditional distribu-
tions of ticket Class for the survivors
and nonsurvivors, separately. Do the
distributions appear to be the same?
We’re primarily concerned with per-
centages here, so pie charts are a 
reasonable choice.

Finding conditional distributionsFOR EXAMPLE

Recap: The table shows results of a poll asking adults whether they were
looking forward to the Super Bowl game, looking forward to the commercials, or
didn’t plan to watch.

Question: How do the conditional distributions of interest in the commercials
differ for men and women?

Look at the group of people who responded “Commercials” and determine what percent of them were male and female:

Women make up a sizable majority of the adult Americans who look forward to seeing Super Bowl commercials more than
the game itself. Nearly 66% of people who voiced a preference for the commercials were women, and only 34% were men.

81
237

= 34.2%  
156
237

= 65.8%

Sex

Male Female Total

R
es

p
o

n
se Game 279 200 479

Commercials 81 156 237

Won’t watch 132 160 292

Total 492 516 1008

But we can also turn the question around. We can look at the distribution of
Survival for each category of ticket Class. To do this, we look at the column percent-
ages. Those show us whether the chance of surviving was roughly the same for
each of the four classes. Now the percentages in each column add to 100%, because
we’ve restricted the Who, in turn, to each of the four ticket classes:

A contingency table of Class by
Survival with only counts and col-
umn percentages. Each column repre-
sents the conditional distribution of
Survival for a given category of ticket
Class.
Table 3.8

Class

First Second Third Crew Total

Su
rv

iv
al

Alive
Count 
% of Column

203
62.5%

118
41.4%

178
25.2%

212
24.0%

711
32.3%

Dead
Count 
% of Column

122
37.5%

167
58.6%

528
74.8%

673
76.0%

1490
67.7%

Total Count 325
100%

285
100%

706
100%

885
100%

2201
100%
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Looking at how the percentages change across each row, it sure looks like
ticket class mattered in whether a passenger survived. To make it more vivid,
we could show the distribution of Survival for each ticket class in a display. Here’s
a side-by-side bar chart showing percentages of surviving and not for each
category:

28 CHAPTER 3    Displaying and Describing Categorical Data

These bar charts are simple because, for the variable Survival, we have only
two alternatives: Alive and Dead. When we have only two categories, we really
need to know only the percentage of one of them. Knowing the percentage that
survived tells us the percentage that died. We can use this fact to simplify the dis-
play even more by dropping one category. Here are the percentages of dying
across the classes displayed in one chart:

60%

70%

80%

50%

40%

30%

20%

10%

0%
First Second Third Crew

Alive
Dead

Survival

Ticket Class

Pe
rc

en
t

FIGURE 3.7
Side-by-side bar chart showing the
conditional distribution of Survival for
each category of ticket Class. The cor-
responding pie charts would have only
two categories in each of four pies, so
bar charts seem the better alternative.

Now it’s easy to compare the risks. Among first-class passengers, 37.5% perished,
compared to 58.6% for second-class ticket holders, 74.8% for those in third class,
and 76.0% for crew members.

If the risk had been about the same across the ticket classes, we would have
said that survival was independent of class. But it’s not. The differences we see
among these conditional distributions suggest that survival may have depended
on ticket class. You may find it useful to consider conditioning on each variable in
a contingency table in order to explore the dependence between them.

60%

70%

80%

50%

40%

30%

20%

10%

0%
First Second Third Crew

Dead

Survival

Ticket Class

Pe
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en
t N

on
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rv
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rs

FIGURE 3.8
Bar chart showing just nonsurvivor
percentages for each value of ticket
Class. Because we have only two
values, the second bar doesn’t add
any information. Compare this chart 
to the side-by-side bar chart shown
earlier.

Conditional distributions and
association. Explore the Titanic
data to see which passengers were
most likely to survive.
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Conditional Distributions 29

It is interesting to know that Class and Survival are associated. That’s an im-
portant part of the Titanic story. And we know how important this is because the
margins show us the actual numbers of people involved.

Variables can be associated in many ways and to different degrees. The best
way to tell whether two variables are associated is to ask whether they are not.1 

In a contingency table, when the distribution of one variable is the same for all cat-
egories of another, we say that the variables are independent. That tells us there’s
no association between these variables. We’ll see a way to check for independence
formally later in the book. For now, we’ll just compare the distributions.

1 This kind of “backwards” reasoning shows up surprisingly often in science—and in
Statistics. We’ll see it again.

Looking for associations between variablesFOR EXAMPLE

Recap: The table shows results of a poll asking adults whether they were
looking forward to the Super Bowl game, looking forward to the commercials,
or didn’t plan to watch.

Question: Does it seem that there’s an association between interest in 
Super Bowl TV coverage and a person’s sex?

Sex

Male Female Total

R
es

p
o

n
se

Game 279 200 479

Commercials 81 156 237

Won’t watch 132 160 292

Total 492 516 1008

First find the distribution of the three responses for the
men (the column percentages):

Then do the same for the women who were polled, and dis-
play the two distributions with a side-by-side bar chart: 

279
492

= 56.7%    
81

492
= 16.5%    

132
492

= 26.8%

60%

50%

40%

30%

20%

10%

0%
Game Commercials Won’t Watch

56.7% Men

Women

38.8%

Response

Pe
rc

en
t

Super Bowl Poll

16.5%

30.2% 31.0%
26.8%

Based on this poll it appears that women were only slightly less interested than men in watching the Super Bowl tele-
cast: 31% of the women said they didn’t plan to watch, compared to just under 27% of men. Among those who planned
to watch, however, there appears to be an association between the viewer’s sex and what the viewer is most looking 
forward to. While more women are interested in the game (39%) than the commercials (30%), the margin among men is
much wider: 57% of men said they were looking forward to seeing the game, compared to only 16.5% who cited the 
commercials.
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JUST CHECKING
A Statistics class reports the following

data on Sex and Eye Color for students in
the class:

1. What percent of females are brown-eyed?

2. What percent of brown-eyed students are 
female?

3. What percent of students are brown-eyed 
females?

4. What’s the distribution of Eye Color?

5. What’s the conditional distribution of Eye Color
for the males?

6. Compare the percent who are female among the
blue-eyed students to the percent of all students
who are female.

7. Does it seem that Eye Color and Sex are independ-
ent? Explain.

Segmented Bar Charts
We could display the Titanic information by dividing up bars rather than circles.
The resulting segmented bar chart treats each bar as the “whole” and divides it
proportionally into segments corresponding to the percentage in each group. We
can clearly see that the distributions of ticket Class are different, indicating again
that survival was not independent of ticket Class.

Eye Color

Blue Brown Green/Hazel/Other Total

Se
x

Males 6 20 6 32

Females 4 16 12 32

Total 10 36 18 64

First
Second
Third
Crew

Class
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FIGURE 3.9 A segmented bar chart
for Class by Survival
Notice that although the totals for
survivors and nonsurvivors are quite
different, the bars are the same height
because we have converted the 
numbers to percentages. Compare this
display with the side-by-side pie charts
of the same data in Figure 3.6.
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Segmented Bar Charts 31

Medical researchers followed 6272 Swedish men for 30 years to see if there was any association
between the amount of fish in their diet and prostate cancer (“Fatty Fish Consumption and Risk
of Prostate Cancer,”Lancet, June 2001).Their results are summarized in this table:

Examining Contingency TablesSTEP–BY–STEP EXAMPLE

I want to know if there is an association be-
tween fish consumption and prostate cancer.

The individuals are 6272 Swedish men followed
by medical researchers for 30 years. The vari-
ables record their fish consumption and
whether or not they were diagnosed with
prostate cancer.

Plan Be sure to state what the problem is
about.

Variables Identify the variables and 
report the W’s.

Question: Is there an association between fish consumption and prostate cancer?

We asked for a picture of a man eating
fish. This is what we got.

Prostate 
Cancer

No Yes

Fi
sh

 
C

o
n

su
m

p
ti

o
n Never/seldom 110 14

Small part of diet 2420 201

Moderate part 2769 209

Large part 507 42

Table 3.9

Ç Categorical Data Condition: I have counts
for both fish consumption and cancer di-
agnosis. The categories of diet do not
overlap, and the diagnoses do not overlap.
It’s okay to draw pie charts or bar charts.

Be sure to check the appropriate condition.

Two categories of the diet are quite small, with
only 2.0% Never/Seldom eating fish and 8.8% 
in the “Large part” category. Overall, 7.4% of
the men in this study had prostate cancer. 

Mechanics It’s a good idea to check the
marginal distributions first before looking
at the two variables together.

Prostate Cancer

No Yes Total

Fi
sh

 C
o

n
su

m
p

ti
o

n

Never/seldom 110 14 124 (2.0%)

Small part of diet 2420 201 2621 (41.8%)

Moderate part 2769 209 2978 (47.5%)

Large part 507 42 549 (8.8%)

Total 5806
(92.6%)

466
(7.4%)

6272
(100%)
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32 CHAPTER 3    Displaying and Describing Categorical Data

It’s hard to see much difference in the pie charts.
So, I made a display of the row percentages. 
Because there are only two alternatives, I chose to
display the risk of prostate cancer for each group:

Then, make appropriate displays to see
whether there is a difference in the relative
proportions. These pie charts compare
fish consumption for men who have
prostate cancer to fish consumption for
men who don’t.

Never/seldom
Small part of diet 
Moderate part
Large part

No Prostate Cancer

Fish Consumption

Prostate Cancer
110 14

201
209

42

2420
2769

507

Both pie charts and bar charts can be used
to compare conditional distributions. Here
we compare prostate cancer rates based
on differences in fish consumption. 

Overall, there is a 7.4% rate of prostate cancer
among men in this study. Most of the men
(89.3%) ate fish either as a moderate or small
part of their diet. From the pie charts, it’s hard
to see a difference in cancer rates among the
groups. But in the bar chart, it looks like the
cancer rate for those who never/seldom ate
fish may be somewhat higher.

However, only 124 of the 6272 men in the study
fell into this category, and only 14 of them de-
veloped prostate cancer. More study would
probably be needed before we would recommend
that men change their diets.2

Conclusion Interpret the patterns in the
table and displays in context. If you can,
discuss possible real-world consequences.
Be careful not to overstate what you see.
The results may not generalize to other
situations.

12%

10%

8%

6%

4%

2%

0%
Never/

Seldom
Small part

of diet
Moderate

part
Large
part

11.3%

7.7%
7.0%

7.7%

Fish Consumption

%
 o

f M
en

 w
ith

Pr
os

ta
te

 C
an

ce
r

Prostate Cancer Risk

2 The original study actually used pairs of twins, which enabled the researchers to discern
that the risk of cancer for those who never ate fish actually was substantially greater. Using
pairs is a special way of gathering data. We’ll discuss such study design issues and how to
analyze the data in the later chapters.
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What Can Go Wrong? 33

This study is an example of looking at a sample of data to learn something
about a larger population. We care about more than these particular 6272 Swedish
men. We hope that learning about their experiences will tell us something about
the value of eating fish in general. That raises the interesting question of what
population we think this sample might represent. Do we hope to learn about all
Swedish men? About all men? About the value of eating fish for all adult hu-
mans? 3 Often, it can be hard to decide just which population our findings may
tell us about, but that also is how researchers decide what to look into in future
studies. 

3 Probably not, since we’re looking only at prostate cancer risk.

WHAT CAN GO WRONG?
u Don’t violate the area principle. This is probably the most common mistake in a graphi-

cal display. It is often made in the cause of artistic presentation. Here, for example,
are two displays of the pie chart of the Titanic passengers by class: 

Crew Third Class

Second ClassFirst Class

First Class
325

Second Class
285

Third Class
706Crew

885

The one on the left looks pretty, doesn’t it? But showing the pie on a slant violates
the area principle and makes it much more difficult to compare fractions of the
whole made up of each class—the principal feature that a pie chart ought to show.

u Keep it honest. Here’s a pie chart that displays data on the percentage of high school
students who engage in specified dangerous behaviors as reported by the Centers
for Disease Control. What’s wrong with this plot? 

Try adding up the percentages. Or look at the 50% slice. Does it
look right? Then think: What are these percentages of? Is there a
“whole” that has been sliced up? In a pie chart, the proportions
shown by each slice of the pie must add up to 100% and each individ-
ual must fall into only one category. Of course, showing the pie on a
slant makes it even harder to detect the error.

50.0%

31.5%

26.7%

Use
Marijuana

Use
Alcohol

Heavy
Drinking

(continued)
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Looks like things didn’t change much in the final years of the 20th century—until
you read the bar labels and see that the last three bars represent single years while
all the others are for pairs of years. Of course, the false depth makes it harder to see
the problem.

u Don’t confuse similar-sounding percentages. These percentages sound similar but are 
different:

u The percentage of the passengers who were both in first class and sur-
vived: This would be 203/2201, or 9.4%.

u The percentage of the first-class passengers who survived: This is
203/325, or 62.5%.

u The percentage of the survivors who were in first class: This is 203/711, 
or 28.6%.

In each instance, pay attention to the Who implicitly defined by the
phrase. Often there is a restriction to a smaller group (all aboard the Titanic,

those in first class, and those who survived, respectively) before a percentage is
found. Your discussion of results must make these differences clear.

u Don’t forget to look at the variables separately, too. When you make a contingency table
or display a conditional distribution, be sure you also examine the marginal distri-
butions. It’s important to know how many cases are in each category.

u Be sure to use enough individuals. When you consider percentages, take care that they
are based on a large enough number of individuals. Take care not to make a report
such as this one:

We found that 66.67% of the rats improved their performance with training. The other
rat died.

u Don’t overstate your case. Independence is an important concept, but it is rare for two
variables to be entirely independent. We can’t conclude that one variable has no ef-
fect whatsoever on another. Usually, all we know is that little effect was observed in
our study. Other studies of other groups under other circumstances could find dif-
ferent results.

Simpson’s Paradox
u Don’t use unfair or silly averages. Sometimes averages can be misleading. Sometimes

they just don’t make sense at all. Be careful when averaging different variables that
the quantities you’re averaging are comparable. The Centerville sign says it all.

When using averages of proportions across several different groups, it’s impor-
tant to make sure that the groups really are comparable.

34 CHAPTER 3    Displaying and Describing Categorical Data

Here’s another. This bar chart shows the number of airline passengers searched in
security screening, by year: 
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Class

First Second Third Crew Total

Su
rv

iv
al Alive 203 118 178 212 711

Dead 122 167 528 673 1490
Total 325 285 706 885 2201

Established  1793
Population  7943
Elevation  710

Average    3482

Entering Centerville
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It’s easy to make up an example showing that averaging across very different val-
ues or groups can give absurd results. Here’s how that might work: Suppose there
are two pilots, Moe and Jill. Moe argues that he’s the better pilot of the two, since he
managed to land 83% of his last 120 flights on time compared with Jill’s 78%. But
let’s look at the data a little more closely. Here are the results for each of their last 120
flights, broken down by the time of day they flew:

Table 3.10

On-time flights by Time of Day and
Pilot. Look at the percentages
within each Time of Day category.
Who has a better on-time record
during the day? At night? Who is
better overall?

Look at the daytime and nighttime flights separately. For day
flights, Jill had a 95% on-time rate and Moe only a 90% rate. At
night, Jill was on time 75% of the time and Moe only 50%. So Moe
is better “overall,” but Jill is better both during the day and at
night. How can this be?

What’s going on here is a problem known as Simpson’s para-
dox, named for the statistician who discovered it in the 1960s. It
comes up rarely in real life, but there have been several well-
publicized cases. As we can see from the pilot example, the prob-
lem is unfair averaging over different groups. Jill has mostly night
flights, which are more difficult, so her overall average is heavily
influenced by her nighttime average. Moe, on the other hand,
benefits from flying mostly during the day, with its higher on-
time percentage. With their very different patterns of flying con-
ditions, taking an overall average is misleading. It’s not a fair
comparison.

The moral of Simpson’s paradox is to be careful when you aver-
age across different levels of a second variable. It’s always better to
compare percentages or other averages within each level of the
other variable. The overall average may be misleading.

One famous example of Simpson’s paradox arose
during an investigation of admission rates for
men and women at the University of California 
at Berkeley’s graduate schools. As reported in an
article in Science, about 45% of male applicants
were admitted, but only about 30% of female
applicants got in. It looked like a clear case of
discrimination. However, when the data were
broken down by school (Engineering, Law,
Medicine, etc.), it turned out that, within each
school, the women were admitted at nearly the
same or, in some cases, much higher rates than
the men. How could this be? Women applied 
in large numbers to schools with very low
admission rates (Law and Medicine, for example,
admitted fewer than 10%). Men tended to apply
to Engineering and Science.Those schools have
admission rates above 50%. When the average was
taken, the women had a much lower overall rate,
but the average didn’t really make sense.

CONNECTIONS
All of the methods of this chapter work with categorical variables. You must know the Who of the
data to know who is counted in each category and the What of the variable to know where the cate-
gories come from.

Time of Day

Day Night Overall

P
ilo

t

Moe
90 out of 100

90%
10 out of 20

50%
100 out of 120

83%

Jill
19 out of 20

95%
75 out of 100

75%
94 out of 120

78%
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WHAT HAVE WE LEARNED?

We’ve learned that we can summarize categorical data by counting the number of cases in each
category, sometimes expressing the resulting distribution as percents. We can display the distribu-
tion in a bar chart or a pie chart. When we want to see how two categorical variables are related,
we put the counts (and/or percentages) in a two-way table called a contingency table.

u We look at the marginal distribution of each variable (found in the margins of the table).
u We also look at the conditional distribution of a variable within each category of the other 

variable.
u We can display these conditional and marginal distributions by using bar charts or pie charts.
u If the conditional distributions of one variable are (roughly) the same for every category of the

other, the variables are independent.

Terms
Frequency table 21. A frequency table lists the categories in a categorical variable and gives the count (or percentage

(Relative frequency table) of observations for each category.

Distribution 22. The distribution of a variable gives

u the possible values of the variable and

u the relative frequency of each value.

Area principle 22. In a statistical display, each data value should be represented by the same amount of area.

Bar chart 22. Bar charts show a bar whose area represents the count (or percentage) of observations for each 
(Relative frequency bar chart) category of a categorical variable.

Pie chart 23. Pie charts show how a “whole” divides into categories by showing a wedge of a circle whose
area corresponds to the proportion in each category.

Categorical data condition 24. The methods in this chapter are appropriate for displaying and describing categorical data. Be
careful not to use them with quantitative data.

Contingency table 24. A contingency table displays counts and, sometimes, percentages of individuals falling into
named categories on two or more variables. The table categorizes the individuals on all variables at
once to reveal possible patterns in one variable that may be contingent on the category of the other.

Marginal distribution 24. In a contingency table, the distribution of either variable alone is called the marginal distribu-
tion. The counts or percentages are the totals found in the margins (last row or column) of the table.

Conditional distribution 26. The distribution of a variable restricting the Who to consider only a smaller group of individuals
is called a conditional distribution.

Independence 29. Variables are said to be independent if the conditional distribution of one variable is the same
for each category of the other. We’ll show how to check for independence in a later chapter.

Segmented bar chart 30. A segmented bar chart displays the conditional distribution of a categorical variable within each
category of another variable.

Simpson’s paradox 34. When averages are taken across different groups, they can appear to contradict the overall aver-
ages. This is known as “Simpson’s paradox.”

Skills
u Be able to recognize when a variable is categorical and choose an appropriate display for it.

u Understand how to examine the association between categorical variables by comparing condi-
tional and marginal percentages.

u Be able to summarize the distribution of a categorical variable with a frequency table.

u Be able to display the distribution of a categorical variable with a bar chart or pie chart.

u Know how to make and examine a contingency table.
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u Know how to make and examine displays of the conditional distributions of one variable for two
or more groups.

u Be able to describe the distribution of a categorical variable in terms of its possible values and
relative frequencies.

u Know how to describe any anomalies or extraordinary features revealed by the display of a
variable.

u Be able to describe and discuss patterns found in a contingency table and associated displays of
conditional distributions.

Exercises 37

DISPLAYING CATEGORICAL DATA ON THE COMPUTER

Although every package makes a slightly different bar chart, they all have similar features:

Sometimes the count or a percentage is printed above or on top of each bar to give some additional
information. You may find that your statistics package sorts category names in annoying orders by default. 
For example, many packages sort categories alphabetically or by the order the categories are seen in the data
set. Often, neither of these is the best choice.
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First Second Third Crew

Counts or
relative
frequencies
on this axis

Bar order may be 
arbitrary, alphabetical,
or by first occurrence
of the category

Bar charts should have
spaces between the bars

You may be
 able to add 
color later on 
in some
programs  

EXERCISES

1. Graphs in the news. Find a bar graph of categorical
data from a newspaper, a magazine, or the Internet.
a) Is the graph clearly labeled?
b) Does it violate the area principle?
c) Does the accompanying article tell the W’s of the

variable?
d) Do you think the article correctly interprets the data?

Explain.

2. Graphs in the news II. Find a pie chart of categorical
data from a newspaper, a magazine, or the Internet.
a) Is the graph clearly labeled?
b) Does it violate the area principle?
c) Does the accompanying article tell the W’s of the

variable?
d) Do you think the article correctly interprets the data?

Explain.
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u Know how to make and examine displays of the conditional distributions of one variable for two
or more groups.

u Be able to describe the distribution of a categorical variable in terms of its possible values and
relative frequencies.

u Know how to describe any anomalies or extraordinary features revealed by the display of a
variable.

u Be able to describe and discuss patterns found in a contingency table and associated displays of
conditional distributions.

Exercises 37

DISPLAYING CATEGORICAL DATA ON THE COMPUTER

Although every package makes a slightly different bar chart, they all have similar features:

Sometimes the count or a percentage is printed above or on top of each bar to give some additional
information. You may find that your statistics package sorts category names in annoying orders by default. 
For example, many packages sort categories alphabetically or by the order the categories are seen in the data
set. Often, neither of these is the best choice.
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EXERCISES

1. Graphs in the news. Find a bar graph of categorical
data from a newspaper, a magazine, or the Internet.
a) Is the graph clearly labeled?
b) Does it violate the area principle?
c) Does the accompanying article tell the W’s of the

variable?
d) Do you think the article correctly interprets the data?

Explain.

2. Graphs in the news II. Find a pie chart of categorical
data from a newspaper, a magazine, or the Internet.
a) Is the graph clearly labeled?
b) Does it violate the area principle?
c) Does the accompanying article tell the W’s of the

variable?
d) Do you think the article correctly interprets the data?

Explain.
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38 CHAPTER 3    Displaying and Describing Categorical Data

3. Tables in the news. Find a frequency table of categori-
cal data from a newspaper, a magazine, or the Internet.
a) Is it clearly labeled?
b) Does it display percentages or counts?
c) Does the accompanying article tell the W’s of the

variable?
d) Do you think the article correctly interprets the data?

Explain.

4. Tables in the news II. Find a contingency table of cate-
gorical data from a newspaper, a magazine, or the Internet.
a) Is it clearly labeled?
b) Does it display percentages or counts?
c) Does the accompanying article tell the W’s of the

variables?
d) Do you think the article correctly interprets the data?

Explain.

5. Movie genres. The pie chart summarizes the genres of
120 first-run movies released in 2005.
a) Is this an appropriate display for the genres?

Why/why not?
b) Which genre was least common?

8. Ratings again. Here is a bar chart summarizing the
2005 movie ratings, as seen in the pie chart in Exercise 6.
a) Which was the least common rating?
b) An editorial claimed that there’s been a growth in PG-

13 rated films that, according to the writer, “have too
much sex and violence,” at the expense of G-rated

Action /Adventure
Comedy
Drama
Thriller /Horror

Genre2

G
PG
PG–13
R

Rating

40

30

20

10

A/A Comedy Drama T/H

Genre2

6. Movie ratings. The pie chart shows the ratings as-
signed to 120 first-run movies released in 2005.
a) Is this an appropriate display for these data? Explain.
b) Which was the most common rating?

7. Genres again. Here is a bar chart summarizing the
2005 movie genres, as seen in the pie chart in Exercise 5.
a) Which genre was most common?
b) Is it easier to see that in the pie chart or the bar chart?

Explain.

Cause Percent

Pilot error 40
Other human error 5
Weather 6
Mechanical failure 14
Sabotage 6

Cause of Death Percent
Heart disease 27.2
Cancer 23.1
Circulatory diseases and stroke 6.3
Respiratory diseases 5.1
Accidents 4.7

9. Magnet schools. An article in the Winter 2003 issue of
Chance magazine reported on the Houston Independent
School District’s magnet schools programs. Of the 1755
qualified applicants, 931 were accepted, 298 were wait-
listed, and 526 were turned away for lack of space. Find
the relative frequency distribution of the decisions made,
and write a sentence describing it.

10. Magnet schools again. The Chance article about the
Houston magnet schools program described in Exercise 9
also indicated that 517 applicants were black or Hispanic,
292 Asian, and 946 white. Summarize the relative fre-
quency distribution of ethnicity with a sentence or two
(in the proper context, of course).

11. Causes of death 2004. The Centers for Disease
Control and Prevention (www.cdc.gov) lists causes of
death in the United States during 2004:

60

40

20

0
G PG PG–13 R

Rating

a) Is it reasonable to conclude that heart or respiratory
diseases were the cause of approximately 33% of U.S.
deaths in 2003?

b) What percent of deaths were from causes not listed
here?

c) Create an appropriate display for these data.

12. Plane crashes. An investigation compiled information
about recent nonmilitary plane crashes (www.
planecrashinfo.com). The causes, to the extent that they
could be determined, are summarized in the table.

a) Is it reasonable to conclude that the weather or
mechanical failures caused only about 20% of 
recent plane crashes?

b) In what percent of crashes were the causes not 
determined?

c) Create an appropriate display for these data.

T

T

T

T

films that offer “good, clean fun.” The writer offered
the bar chart below as evidence to support his claim.
Does the bar chart support his claim? Explain.
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14. Winter Olympics 2006. Twenty-six countries 
won medals in the 2006 Winter Olympics. The table
lists them, along with the total number of medals 
each won:
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Causes of Oil Spillage

Other/Unknown

Pie Chart for Cause of Spillage

Fires & 
explosions

Hull
failures

Collisions

Groundings

Country Medals Country Medals

Germany 29 Finland 9
United States 25 Czech Republic 4
Canada 24 Estonia 3
Austria 23 Croatia 3
Russia 22 Australia 2
Norway 19 Poland 2
Sweden 14 Ukraine 2
Switzerland 14 Japan 1
South Korea 11 Belarus 1
Italy 11 Bulgaria 1
China 11 Great Britain 1
France 9 Slovakia 1
Netherlands 9 Latvia 1

a) Try to make a display of these data. What problems do
you encounter?

b) Can you find a way to organize the data so that the
graph is more successful?

15. Global Warming. The Pew Research Center for the
People and the Press (http://people-press.org) has asked
a representative sample of U.S. adults about global
warming, repeating the question over time. In January
2007, the responses reflected an increased belief that
global warming is real and due to human activity. Here’s
a display of the percentages of respondents choosing each
of the major alternatives offered:

Due to Natural 
Patterns 21% 

Don’t Know
10% 

No Solid 
Evidence 20% 

Due to Human 
Activity 41% 
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a) What problems do you see with the graph?
b) Consider the percentages for the named modalities.

Do you see anything odd about them?

17. Teen smokers. The organization Monitoring the
Future (www.monitoringthefuture.org) asked 2048 eighth
graders who said they smoked cigarettes what brands
they preferred. The table below shows brand preferences
for two regions of the country. Write a few sentences de-
scribing the similarities and differences in brand prefer-
ences among eighth graders in the two regions listed.

List the errors in this display.

16. Modalities. A survey of athletic trainers (Scott F.
Nadler, Michael Prybicien, Gerard A. Malanga, and Dan
Sicher. “Complications from Therapeutic Modalities: Re-
sults of a National Survey of Athletic Trainers.” Archives
of Physical Medical Rehabilitation 84 [June 2003]) asked
what modalities (treatment methods such as ice, whirl-
pool, ultrasound, or exercise) they commonly use to treat
injuries. Respondents were each asked to list three
modalities. The article included the following figure re-
porting the modalities used:

Brand preference South West

Marlboro 58.4% 58.0%
Newport 22.5% 10.1%
Camel 3.3% 9.5%
Other (over 20 brands) 9.1% 9.5%
No usual brand 6.7% 12.9%

13. Oil spills 2006. Data from the International Tanker
Owners Pollution Federation Limited (www.itopf.com)
give the cause of spillage for 312 large oil tanker acci-
dents from 1974–2006. Here are displays. 
a) Write a brief report interpreting what the displays

show. 
b) Is a pie chart an appropriate display for these data?

Why or why not?

18. Handguns. In an effort to reduce the number of gun-
related homicides, some cities have run buyback programs
in which the police offer cash (often $50) to anyone who
turns in an operating handgun. Chance magazine looked at
results from a four-year period in Milwaukee. The table on
the next page shows what types of guns were turned in and
what types were used in homicides during a four-year pe-
riod. Write a few sentences comparing the two distributions.
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group included African-American, Asian, Hispanic, and
Native American students):

G PG PG-13 R Total
Action/Adventure 3.33% 4.17 14.2 7.50 29.2

Comedy 1.67 10 16.7 3.33 31.7

Drama 0 2.50 6.67 14.2 23.3

Thriller/Horror 0 0 9.17 6.67 15.8

Total 5 16.7 46.7 31.7 100%

19. Movies by Genre and Rating. Here’s a table that clas-
sifies movies released in 2005 by genre and MPAA rating:

a) How can you tell that this table holds table percent-
ages (rather than row or column percentages)?

b) What was the most common genre/rating combina-
tion in 2005 movies?

c) How many of these movies were PG-rated comedies?
d) How many were G-rated?
e) An editorial about the movies noted, “More than

three-quarters of the movies made today can be seen
only by patrons 13 years old or older.” Does this table
support that assertion? Explain.

21. Seniors. Prior to graduation, a high school class was
surveyed about its plans. The following table displays the
results for white and minority students (the “Minority”

a) What percent of the seniors are white?
b) What percent of the seniors are planning to attend a 

2-year college?
c) What percent of the seniors are white and planning to

attend a 2-year college?
d) What percent of the white seniors are planning to at-

tend a 2-year college?
e) What percent of the seniors planning to attend 

a 2-year college are white?

22. Politics. Students in an Intro Stats course were asked 
to describe their politics as “Liberal,” “Moderate,” or
“Conservative.” Here are the results:

a) What percent of the class is male?
b) What percent of the class considers themselves to be

“Conservative”?
c) What percent of the males in the class consider 

themselves to be “Conservative”?
d) What percent of all students in the class are males

who consider themselves to be “Conservative”?

23. More about seniors. Look again at the table of post-
graduation plans for the senior class in Exercise 21.
a) Find the conditional distributions (percentages) of

plans for the white students.
b) Find the conditional distributions (percentages) of

plans for the minority students.
c) Create a graph comparing the plans of white and 

minority students.
d) Do you see any important differences in the post-

graduation plans of white and minority students?
Write a brief summary of what these data show, in-
cluding comparisons of conditional distributions.

24. Politics revisited. Look again at the table of political
views for the Intro Stats students in Exercise 22.
a) Find the conditional distributions (percentages) of 

political views for the females.
b) Find the conditional distributions (percentages) of 

political views for the males.
c) Make a graphical display that compares the two 

distributions.
d) Do the variables Politics and Sex appear to be 

independent? Explain.

Caliber of gun Buyback Homicide

Small (.22, .25, .32) 76.4% 20.3%
Medium (.357, .38, 9 mm) 19.3% 54.7%
Large (.40, .44, .45) 2.1% 10.8%
Other 2.2% 14.2%

G PG PG-13 R Total
Action/Adventure 66.7 25 30.4 23.7 29.2

Comedy 33.3 60.0 35.7 10.5 31.7

Drama 0 15.0 14.3 44.7 23.3

Thriller/Horror 0 0 19.6 21.1 15.8

Total 100% 100% 100% 100% 100%

a) The table gives column percents. How could you tell
that from the table itself?

b) What percentage of these movies were comedies?
c) What percentage of the PG-rated movies were

comedies?
d) Which of the following can you learn from this table?

Give the answer if you can find it from the table.

i) The percentage of PG-13 movies that were comedies
ii) The percentage of dramas that were R-rated
iii) The percentage of dramas that were G-rated
iv) The percentage of 2005 movies that were PG-rated

comedies

20. The Last Picture Show. Here’s another table showing
information about 120 movies released in 2005. This table
gives percentages of the table total:

T

Pl
an

s

White Minority
4-year college 198 44
2-year college 36 6

Military 4 1
Employment 14 3
Other 16 3

Politics

L M C Total
Female 35 36 6 77
Male 50 44 21 115

Total 85 80 27 192

T

Se
x

Seniors
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25. Magnet schools revisited. The Chance magazine arti-
cle described in Exercise 9 further examined the impact of
an applicant’s ethnicity on the likelihood of admission to
the Houston Independent School District’s magnet
schools programs. Those data are summarized in the
table below:

a) What percent of all applicants were Asian?
b) What percent of the students accepted were Asian?
c) What percent of Asians were accepted?
d) What percent of all students were accepted?

26. More politics. Look once more at the table summariz-
ing the political views of Intro Stats students in Exercise 22.
a) Produce a graphical display comparing the condi-

tional distributions of males and females among the
three categories of politics.

b) Comment briefly on what you see from the display in a.

27. Back to school. Examine the table about ethnicity and
acceptance for the Houston Independent School District’s
magnet schools program, shown in Exercise 25. Does it
appear that the admissions decisions are made independ-
ent of the applicant’s ethnicity? Explain.

28. Cars. A survey of autos parked in student and staff lots
at a large university classified the brands by country of
origin, as seen in the table.

a) What percent of all the cars surveyed were foreign?
b) What percent of the American cars were owned by

students?
c) What percent of the students owned American cars?
d) What is the marginal distribution of origin?
e) What are the conditional distributions of origin by

driver classification?
f) Do you think that the origin of the car is independent

of the type of driver? Explain.

29. Weather forecasts. Just how accurate are the weather
forecasts we hear every day? The following table com-
pares the daily forecast with a city’s actual weather for 
a year:

a) On what percent of days did it actually rain?
b) On what percent of days was rain predicted?
c) What percent of the time was the forecast correct?
d) Do you see evidence of an association between the

type of weather and the ability of forecasters to make
an accurate prediction? Write a brief explanation, in-
cluding an appropriate graph.

30. Twins. In 2000, the Journal of the American Medical
Association (JAMA) published a study that examined
pregnancies that resulted in the birth of twins. Births
were classified as preterm with intervention (induced
labor or cesarean), preterm without procedures, or
term/post-term. Researchers also classified the
pregnancies by the level of prenatal medical care the
mother received (inadequate, adequate, or intensive).
The data, from the years 1995–1997, are summarized in
the table below. Figures are in thousands of births.
(JAMA 284 [2000]:335–341)

a) What percent of these mothers received inadequate
medical care during their pregnancies?

b) What percent of all twin births were preterm?
c) Among the mothers who received inadequate medical

care, what percent of the twin births were preterm?
d) Create an appropriate graph comparing the outcomes

of these pregnancies by the level of medical care the
mother received.

e) Write a few sentences describing the association
between these two variables.

TWIN BIRTHS 1995–1997 (IN THOUSANDS)

Preterm 
(induced 

or 
cesarean)

Preterm 
(without 

procedures)
Term or 

post-term Total

Intensive 18 15 28 61
Adequate 46 43 65 154
Inadequate 12 13 38 63

Total 76 71 131 278

Admission Decision

Et
h
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ity

Accepted Wait-listed Turned away Total
Black/Hispanic 485 0 32 517
Asian 110 49 133 292
White 336 251 359 946
Total 931 300 524 1755

Driver

Student Staff

O
ri

g
in American 107 105

European 33 12
Asian 55 47

Actual Weather

Fo
re

ca
st Rain No rain

Rain 27 63
No rain 7 268
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31. Blood pressure. A company held a blood pressure screen-
ing clinic for its employees. The results are summarized in
the table below by age group and blood pressure level:

Age

Under 30 30–49 Over 50

B
lo

o
d
 

Pr
es

su
re Low 27 37 31

Normal 48 91 93
High 23 51 73
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Body Mass Index

Normal 
(%)

Overweight 
(%)

Obese 
(%)

Ph
ys

ic
al

 A
ct

iv
ity

Inactive 23.8 26.0 35.6
Irregularly 

active
27.8 28.7 28.1

Regular, not 
intense

31.6 31.1 27.2

Regular, 
intense

16.8 14.2 9.1

a) Find the marginal distribution of blood pressure level.
b) Find the conditional distribution of blood pressure

level within each age group.
c) Compare these distributions with a segmented bar

graph.
d) Write a brief description of the association between

age and blood pressure among these employees.
e) Does this prove that people’s blood pressure increases

as they age? Explain.

32. Obesity and exercise. The Centers for Disease Con-
trol and Prevention (CDC) has estimated that 19.8% of
Americans over 15 years old are obese. The CDC con-
ducts a survey on obesity and various behaviors. Here is
a table on self-reported exercise classified by body mass
index (BMI):

Age
Male Drivers

(number)
Female Drivers

(number) Total

19 and under 4,777,694 4,553,946 9,331,640

20–24 8,611,161 8,398,879 17,010,040
25–29 8,879,476 8,666,701 17,546,177
30–34 9,262,713 8,997,662 18,260,375
35–39 9,848,050 9,576,301 19,424,351
40–44 10,617,456 10,484,149 21,101,605
45–49 10,492,876 10,482,479 20,975,355
50–54 9,420,619 9,475,882 18,896,501
55–59 8,218,264 8,265,775 16,484,039
60–64 6,103,732 6,147,569 12,251,361
65–69 4,571,157 4,643,913 9,215,070
70–74 3,617,908 3,761,039 7,378,947
75–79 2,890,155 3,192,408 6,082,563
80–84 1,907,743 2,222,412 4,130,155
85 and over 1,170,817 1,406,271 2,577,088

Total 100,389,881 100,275,386 200,665,267

Do these results suggest there’s an association between 
taking SSRI antidepressants and experiencing bone 
fractures? Explain.

35. Drivers’ licenses 2005. The following table shows the
number of licensed U.S. drivers by age and by sex
(www.dot.gov):

a) Are these percentages column percentages, row
percentages, or table percentages?

b) Use graphical displays to show different percentages
of physical activities for the three BMI groups.

c) Do these data prove that lack of exercise causes
obesity? Explain.

33. Anorexia. Hearing anecdotal reports that some patients
undergoing treatment for the eating disorder anorexia
seemed to be responding positively to the antidepressant
Prozac, medical researchers conducted an experiment to
investigate. They found 93 women being treated for
anorexia who volunteered to participate. For one year, 49
randomly selected patients were treated with Prozac and
the other 44 were given an inert substance called a
placebo. At the end of the year, patients were diagnosed
as healthy or relapsed, as summarized in the table:

Taking SSRI No SSRI Total

Experienced fractures 14 244 258
No fractures 123 4627 4750

Total 137 4871 5008

Do these results provide evidence that Prozac might be
helpful in treating anorexia? Explain.

34. Antidepressants and bone fractures. For a period of
five years, physicians at McGill University Health Center
followed more than 5000 adults over the age of 50. The

Prozac Placebo Total

Healthy 35 32 67
Relapse 14 12 26

Total 49 44 93

a) What percent of total drivers are under 20?
b) What percent of total drivers are male?
c) Write a few sentences comparing the number of male

and female licensed drivers in each age group.
d) Do a driver’s age and sex appear to be independent?

Explain?

36. Tattoos. A study by the University of Texas Southwest-
ern Medical Center examined 626 people to see if an in-
creased risk of contracting hepatitis C was associated with
having a tattoo. If the subject had a tattoo, researchers
asked whether it had been done in a commercial tattoo
parlor or elsewhere. Write a brief description of the
association between tattooing and hepatitis C, including
an appropriate graphical display.

researchers were investigating whether people taking a
certain class of antidepressants (SSRIs) might be at 
greater risk of bone fractures. Their observations are 
summarized in the table:
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37. Hospitals. Most patients who undergo surgery make
routine recoveries and are discharged as planned. Others
suffer excessive bleeding, infection, or other postsurgical
complications and have their discharges from the hospital
delayed. Suppose your city has a large hospital and a small
hospital, each performing major and minor surgeries. You
collect data to see how many surgical patients have their
discharges delayed by postsurgical complications, and you
find the results shown in the following table.

Pr
o

g
ra

m

Males accepted
(of applicants)

Females accepted 
(of applicants)

1 511 of 825 89 of 108
2 352 of 560 17 of 25
3 137 of 407 132 of 375
4 22 of 373 24 of 341

Total 1022 of 2165 262 of 849

Tattoo 
done in 
commercial 
parlor

Tattoo done 
elsewhere No tattoo

Has hepatitis C 17 8 18
No hepatitis C 35 53 495

Delivery 
Service

Type of 
Service

Number of 
Deliveries

Number of 
Late Packages

Pack Rats
Regular 

Overnight
400
100

12
16

Boxes R Us
Regular 

Overnight
100
400

2
28

Discharge Delayed

Large hospital Small hospital

Major surgery 120 of 800 10 of 50
Minor surgery 10 of 200 20 of 250

a) Overall, for what percent of patients was discharge
delayed?

b) Were the percentages different for major and minor
surgery?

c) Overall, what were the discharge delay rates at each
hospital?

d) What were the delay rates at each hospital for each
kind of surgery?

e) The small hospital advertises that it has a lower rate of
postsurgical complications. Do you agree?

f) Explain, in your own words, why this confusion occurs.

38. Delivery service. A company must decide which of
two delivery services it will contract with. During a
recent trial period, the company shipped numerous
packages with each service and kept track of how often
deliveries did not arrive on time. Here are the data:

39. Graduate admissions. A 1975 article in the magazine
Science examined the graduate admissions process at
Berkeley for evidence of sex discrimination. The table
below shows the number of applicants accepted to each
of four graduate programs:

a) What percent of total applicants were admitted?
b) Overall, was a higher percentage of males or females

admitted?
c) Compare the percentage of males and females

admitted in each program.
d) Which of the comparisons you made do you consider

to be the most valid? Why?

40. Be a Simpson! Can you design a Simpson’s paradox?
Two companies are vying for a city’s “Best Local Em-
ployer” award, to be given to the company most committed
to hiring local residents. Although both employers hired
300 new people in the past year, Company A brags that it
deserves the award because 70% of its new jobs went to
local residents, compared to only 60% for Company B.
Company B concedes that those percentages are correct, but
points out that most of its new jobs were full-time, while
most of Company A’s were part-time. Not only that, says
Company B, but a higher percentage of its full-time jobs
went to local residents than did Company A’s, and the
same was true for part-time jobs. Thus, Company B argues,
it’s a better local employer than Company A.

Show how it’s possible for Company B to fill a higher
percentage of both full-time and part-time jobs with 
local residents, even though Company A hired more 
local residents overall.

a) Compare the two services’ overall percentage of late
deliveries.

b) On the basis of the results in part a, the company has
decided to hire Pack Rats. Do you agree that Pack Rats
delivers on time more often? Explain.

c) The results here are an instance of what phenomenon?

JUST CHECKING 
Answers

1. 50.0%

2. 44.4%

3. 25.0%

4. 15.6% Blue, 56.3% Brown, 28.1%
Green/Hazel/Other

5. 18.8% Blue, 62.5% Brown, 18.8% Green/Hazel/
Other

6. 40% of the blue-eyed students are female, while 
50% of all students are female.

7. Since blue-eyed students appear less likely to be
female, it seems that Sex and Eye Color may not be
independent. (But the numbers are small.)
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CHAPTER

4
Displaying and
Summarizing
Quantitative Data

WHO 1240 earthquakes
known to have
caused tsunamis
for which we
have data or 
good estimates

WHAT Magnitude (Richter
scale 2), depth (m),
date, location, and
other variables 

WHEN From 2000 B.C.E. to
the present

WHERE All over the earth 1 www.ngdc.noaa.gov
2 Technically, Richter scale values are in units of log dyne-cm. But the Richter scale is so
common now that usually the units are assumed. The U.S. Geological Survey gives the
background details of Richter scale measurements on its Web site www.usgs.gov/.

Tsunamis are potentially destructive waves that can occur when the sea
floor is suddenly and abruptly deformed. They are most often caused by
earthquakes beneath the sea that shift the earth’s crust, displacing a large
mass of water.

The tsunami of December 26, 2004, with epicenter off the west coast of Suma-
tra, was caused by an earthquake of magnitude 9.0 on the Richter scale. It killed
an estimated 297,248 people, making it the most disastrous tsunami on record.
But was the earthquake that caused it truly extraordinary, or did it just happen at
an unlucky place and time? The U.S. National Geophysical Data Center1 has in-
formation on more than 2400 tsunamis dating back to 2000 B.C.E., and we have
estimates of the magnitude of the underlying earthquake for 1240 of them. What
can we learn from these data?

Histograms
Let’s start with a picture. For categorical variables, it is easy to draw the distribu-
tion because each category is a natural “pile.” But for quantitative variables,
there’s no obvious way to choose piles. So, usually, we slice up all the possible
values into equal-width bins. We then count the number of cases that fall into
each bin. The bins, together with these counts, give the distribution of the quanti-
tative variable and provide the building blocks for the histogram. By representing
the counts as bars and plotting them against the bin values, the histogram dis-
plays the distribution at a glance.
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Like a bar chart, a histogram plots the bin counts as the heights of bars. In
this histogram of earthquake magnitudes, each bin has a width of 0.2, so, for ex-
ample, the height of the tallest bar says that there were about 230 earthquakes
with magnitudes between 7.0 and 7.2. In this way, the histogram displays the en-
tire distribution of earthquake magnitudes.

Does the distribution look as you expected? It is often a good idea to imagine
what the distribution might look like before you make the display. That way
you’ll be less likely to be fooled by errors in the data or when you accidentally
graph the wrong variable.

From the histogram, we can see that these earthquakes typically have magni-
tudes around 7. Most are between 5.5 and 8.5, and some are as small as 3 and as
big as 9. Now we can answer the question about the Sumatra tsunami. With a
value of 9.0 it’s clear that the earthquake that caused it was an extraordinarily
powerful earthquake—one of the largest on record.3

The bar charts of categorical variables we saw in Chapter 3 had spaces be-
tween the bars to separate the counts of different categories. But in a histogram,
the bins slice up all the values of the quantitative variable, so any spaces in a his-
togram are actual gaps in the data, indicating a region where there are no values.

Sometimes it is useful to make a relative frequency histogram, replacing the
counts on the vertical axis with the percentage of the total number of cases falling
in each bin. Of course, the shape of the histogram is exactly the same; only the
vertical scale is different.
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FIGURE 4.1
A histogram of earthquake magnitudes
shows the number of earthquakes with
magnitudes (in Richter scale units) in
each bin.

One surprising feature of the
earthquake magnitudes is
the spike around magnitude
7.0. Only one other bin holds
even half that many
earthquakes.These values
include historical data for
which the magnitudes were
estimated by experts and not
measured by modern
seismographs. Perhaps the
experts thought 7 was a
typical and reasonable value
for a tsunami-causing
earthquake when they
lacked detailed information.
That would explain the
overabundance of
magnitudes right at 7.0
rather than spread out near
that value.

3 Some experts now estimate the magnitude at between 9.1 and 9.3.

For example, here are the Magnitudes (on the Richter scale) of the 1240 earth-
quakes in the NGDC data:
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FIGURE 4.2
A relative frequency histogram looks
just like a frequency histogram except 
for the labels on the y-axis, which now
show the percentage of earthquakes in
each bin.
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TI Tips Making a histogram

Your calculator can create histograms. First you need some data. For an agility
test, fourth-grade children jump from side to side across a set of parallel lines,
counting the number of lines they clear in 30 seconds. Here are their scores:

22, 17, 18, 29, 22, 22, 23, 24, 23, 17, 21, 25, 20
12, 19, 28, 24, 22, 21, 25, 26, 25, 16, 27, 22 

Enter these data into L1.

Now set up the calculator’s plot:

• Go to 2nd STATPLOT, choose Plot1, then ENTER.
• In the Plot1 screen choose On, select the little histogram icon, then specify
Xlist:L1 and Freq:1.

• Be sure to turn off any other graphs the calculator may be set up for. Just hit
the Y= button, and deactivate any functions seen there.

All set? To create your preliminary plot go to ZOOM, select 9:ZoomStat, and
then ENTER.

You now see the calculator’s initial attempt to create a histogram of these data.
Not bad. We can see that the distribution is roughly symmetric. But it’s hard to
tell exactly what this histogram shows, right? Let’s fix it up a bit.

• Under WINDOW, let’s reset the bins to convenient, sensible values. Try
Xmin=12, Xmax=30 and Xscl=2. That specifies the range of values
along the -axis and makes each bar span two lines.

• Hit GRAPH (not ZoomStat—this time we want control of the scale!).

There. We still see rough symmetry, but also see that one of the scores was
much lower than the others. Note that you can now find out exactly what the
bars indicate by activating TRACE and then moving across the histogram us-
ing the arrow keys. For each bar the calculator will indicate the interval of val-
ues and the number of data values in that bin. We see that 3 kids had agility
scores of 20 or 21.

Play around with the WINDOW settings. A different Ymax will make the bars
appear shorter or taller. What happens if you set the bar width (Xscl)
smaller? Or larger? You don’t want to lump lots of values into just a few bins
or make so many bins that the overall shape of the histogram is not clear.
Choosing the best bar width takes practice.

Finally, suppose the data are given as a frequency table. Consider a set of test
scores, with two grades in the 60s, four in the 70s, seven in the 80s, five in the
90s, and one 100. Enter the group cutoffs 60, 70, 80, 90, 100 in L2 and the corre-
sponding frequencies 2, 4, 7, 5, 1 in L3. When you set up the histogram
STATPLOT, specify Xlist:L2 and Freq:L3. Can you specify the
WINDOW settings to make this histogram look the way you want it? (By the
way, if you get a DIM MISMATCH error, it means you can’t count. Look at L2
and L3; you’ll see the two lists don’t have the same number of entries. Fix the
problem by correcting the data you entered.) 

x
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Stem-and-Leaf Displays
Histograms provide an easy-to-understand summary of the distribution of a
quantitative variable, but they don’t show the data values themselves. Here’s a
histogram of the pulse rates of 24 women, taken by a researcher at a health
clinic: 
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FIGURE 4.3
The pulse rates of 24 women at a
health clinic

The story seems pretty clear. We can see the entire span of the data and 
can easily see what a typical pulse rate might be. But is that all there is to these
data?

A stem-and-leaf display is like a histogram, but it shows the individual val-
ues. It’s also easier to make by hand. Here’s a stem-and-leaf display of the same
data: 
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Turn the stem-and-leaf on its side (or turn your head to the right) and squint
at it. It should look roughly like the histogram of the same data. Does it? Well, it’s
backwards because now the higher values are on the left, but other than that, it
has the same shape.4

What does the line at the top of the display that says 8|8 mean? It stands for a
pulse of 88 beats per minute (bpm). We’ve taken the tens place of the number and
made that the “stem.” Then we sliced off the ones place and made it a “leaf.” The
next line down is 8|000044. That shows that there were four pulse rates of 80 and
two of 84 bpm.

Stem-and-leaf displays are especially useful when you make them by hand
for batches of fewer than a few hundred data values. They are a quick way to
display—and even to record—numbers. Because the leaves show the individ-
ual values, we can sometimes see even more in the data than the distribution’s
shape. Take another look at all the leaves of the pulse data. See anything

The Stem-and-Leaf display
was devised by John W.
Tukey, one of the greatest
statisticians of the 20th
century. It is called a
“Stemplot”in some texts and
computer programs, but we
prefer Tukey’s original name
for it.

Activity: Stem-and-Leaf
Displays. As you might expect of
something called “stem-and
leaf,” these displays grow as you
consider each data value.

4 You could make the stem-and-leaf with the higher values on the bottom. Usually, though,
higher on the top makes sense.
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How do stem-and-leaf displays work? Stem-and-leaf displays work like
histograms, but they show more information. They use part of the number itself
(called the stem) to name the bins. To make the “bars,” they use the next digit of
the number. For example, if we had a test score of 83, we could write it 8 3, where
8 serves as the stem and 3 as the leaf. Then, to display the scores 83, 76, and 88
together, we would write 

ƒ

For the pulse data, we have
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(5   6 means 56 beats/min)

This display is OK, but a little crowded. A histogram might split each line into two
bars. With a stem-and-leaf, we can do the same by putting the leaves 0–4 on one
line and 5–9 on another, as we saw above: 
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For numbers with three or more digits, you’ll often decide to truncate (or round) the
number to two places, using the first digit as the stem and the second as the leaf.
So, if you had 432, 540, 571, and 638, you might display them as shown below
with an indication that 6 3 means 630–639. ƒ

When you make a stem-and-leaf by hand, make sure to give each digit the same
width, in order to preserve the area principle. (That can lead to some fat 1’s and
thin 8’s—but it makes the display honest.)

unusual? At a glance you can see that they are all even. With a bit more thought
you can see that they are all multiples of 4—something you couldn’t possibly
see from a histogram. How do you think the nurse took these pulses? Counting
beats for a full minute or counting for only 15 seconds and multiplying by 4? 
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FIGURE 4.4
A dotplot of Kentucky Derby winning times plots each race as its own dot, showing the 
bimodal distribution.

Think Before You Draw, Again
Suddenly, we face a lot more options when it’s time to invoke our first rule of data
analysis and make a picture. You’ll need to Think carefully to decide which type
of graph to make. In the previous chapter you learned to check the Categorical
Data Condition before making a pie chart or a bar chart. Now, before making a
stem-and-leaf display, a histogram, or a dotplot, you need to check the

Quantitative Data Condition: The data are values of a quantitative variable
whose units are known.

Although a bar chart and a histogram may look somewhat similar, they’re not
the same display. You can’t display categorical data in a histogram or quantitative
data in a bar chart. Always check the condition that confirms what type of data
you have before proceeding with your display.

Step back from a histogram or stem-and-leaf display. What can you say about
the distribution? When you describe a distribution, you should always tell about
three things: its shape, center, and spread.

The Shape of a Distribution
1. Does the histogram have a single, central hump or several separated humps? These

humps are called modes.5 The earthquake magnitudes have a single mode

5 Well, technically, it’s the value on the horizontal axis of the histogram that is the mode,
but anyone asked to point to the mode would point to the hump.

Dotplots
A dotplot is a simple display. It just places a dot along an axis for each case in the
data. It’s like a stem-and-leaf display, but with dots instead of digits for all the
leaves. Dotplots are a great way to display a small data set (especially if you for-
get how to write the digits from 0 to 9). Here’s a dotplot of the time (in seconds)
that the winning horse took to win the Kentucky Derby in each race between the
first Derby in 1875 and the 2008 Derby.

Dotplots show basic facts about the distribution. We can find the slowest and
quickest races by finding times for the topmost and bottommost dots. It’s also
clear that there are two clusters of points, one just below 160 seconds and the
other at about 122 seconds. Something strange happened to the Derby times.
Once we know to look for it, we can find out that in 1896 the distance of the Derby
race was changed from 1.5 miles to the current 1.25 miles. That explains the two
clusters of winning times.

Some dotplots stretch out horizontally, with the counts on the vertical axis, like
a histogram. Others, such as the one shown here, run vertically, like a stem-and-
leaf display. Some dotplots place points next to each other when they would
otherwise overlap. Others just place them on top of one another. Newspapers
sometimes offer dotplots with the dots made up of little pictures.

Activity: Dotplots. Click
on points to see their values and
even drag them around.
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50 CHAPTER 4    Displaying and Summarizing Quantitative Data

The (usually) thinner ends of a distribution are called the tails. If one tail
stretches out farther than the other, the histogram is said to be skewed to the
side of the longer tail. 

at just about 7. A histogram with one peak, such as the earth-
quake magnitudes, is dubbed unimodal; histograms with two
peaks are bimodal, and those with three or more are called
multimodal.6 For example, here’s a bimodal histogram. 
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The mode is sometimes defined as the single
value that appears most often.That definition is
fine for categorical variables because all we need
to do is count the number of cases for each
category. For quantitative variables, the mode 
is more ambiguous. What is the mode of the
Kentucky Derby times? Well, seven races were
timed at 122.2 seconds—more than any other race
time. Should that be the mode? Probably not. For
quantitative data, it makes more sense to use the
term “mode”in the more general sense of the
peak of the histogram rather than as a single
summary value. In this sense, the important
feature of the Kentucky Derby races is that there
are two distinct modes, representing the two
different versions of the race and warning us to
consider those two versions separately.

FIGURE 4.5
A bimodal histogram has two
apparent peaks.

A histogram that doesn’t appear to have any mode and in which all the bars
are approximately the same height is called uniform.
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FIGURE 4.6
In a uniform histogram, the bars are all
about the same height. The histogram
doesn’t appear to have a mode.

2. Is the histogram symmetric? Can you fold it along a vertical line through the
middle and have the edges match pretty closely, or are more of the values on
one side? 

You’ve heard of pie à la
mode. Is there a connection
between pie and the mode of
a distribution? Actually,
there is! The mode of a
distribution is a popular
value near which a lot of the
data values gather. And “à la
mode”means “in style”—not
“with ice cream.” That just
happened to be a popular
way to have pie in Paris
around 1900.
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FIGURE 4.7

6 Apparently, statisticians don’t like to count past two.
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3. Do any unusual features stick out? Often such features tell us something inter-
esting or exciting about the data. You should always mention any stragglers,
or outliers, that stand off away from the body of the distribution. If you’re
collecting data on nose lengths and Pinocchio is in the group, you’d probably
notice him, and you’d certainly want to mention it.

Outliers can affect almost every method we discuss in this course. So we’ll
always be on the lookout for them. An outlier can be the most informative part
of your data. Or it might just be an error. But don’t throw it away without com-
ment. Treat it specially and discuss it when you tell about your data. Or find
the error and fix it if you can. Be sure to look for outliers. Always. 

In the next chapter you’ll learn a handy rule of thumb for deciding when a
point might be considered an outlier. 
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FIGURE 4.8
Two skewed histograms showing data on two variables for all female heart attack patients in New York state in
one year. The blue one (age in years) is skewed to the left. The purple one (charges in $) is skewed to the right.

15

10

5

2.625 3.000 3.375
People/Housing Unit

# 
of

 C
itie

s

FIGURE 4.9
A histogram with outliers. There are three 
cities in the leftmost bar.

Activity: Attributes of
Distribution Shape. This activity
and the others on this page show
off aspects of distribution shape
through animation and example,
then let you make and interpret
histograms with your statistics
package.

Describing histogramsFOR EXAMPLE

A credit card company wants to see how much customers in a particular 
segment of their market use their credit card. They have provided you with data7

on the amount spent by 500 selected customers during a 3-month period and
have asked you to summarize the expenditures. Of course, you begin by making
a histogram. 

Question: Describe the shape of this distribution. 

The distribution of expenditures is unimodal and skewed to
the high end. There is an extraordinarily large value at about
$7000, and some of the expenditures are negative.
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7 These data are real, but cannot be further identified for obvious privacy reasons.
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JUST CHECKING
It’s often a good idea to think about what the distribution of a data set might look like before we collect the data.

What do you think the distribution of each of the following data sets will look like? Be sure to discuss its shape.
Where do you think the center might be? How spread out do you think the values will be?

1. Number of miles run by Saturday morning joggers
at a park.

2. Hours spent by U.S. adults watching football on
Thanksgiving Day.

3. Amount of winnings of all people playing a particular
state’s lottery last week.

4. Ages of the faculty members at your school.

5. Last digit of phone numbers on your campus.

Toto, I’ve a feeling we’re not in math class anymore . . . When Dorothy
and her dog Toto land in Oz, everything is more vivid and colorful, but also more
dangerous and exciting. Dorothy has new choices to make. She can’t always rely on
the old definitions, and the yellow brick road has many branches. You may be com-
ing to a similar realization about Statistics.

When we summarize data, our goal is usually more than just developing a de-
tailed knowledge of the data we have at hand. Scientists generally don’t care about
the particular guinea pigs they’ve treated, but rather about what their reactions say
about how animals (and, perhaps, humans) would respond.

When you look at data, you want to know what the data say about the world, so
you’d like to know whether the patterns you see in histograms and summary statis-
tics generalize to other individuals and situations. You’ll want to calculate summary
statistics accurately, but then you’ll also want to think about what they may say be-
yond just describing the data. And your knowledge about the world matters when
you think about the overall meaning of your analysis.

It may surprise you that many of the most important concepts in Statistics are not
defined as precisely as most concepts in mathematics. That’s done on purpose, to
leave room for judgment.

Because we want to see broader patterns rather than focus on the details of the
data set we’re looking at, we deliberately leave some statistical concepts a bit vague.
Whether a histogram is symmetric or skewed, whether it has one or more modes,
whether a point is far enough from the rest of the data to be considered an outlier—
these are all somewhat vague concepts. And they all require judgment. You may be
used to finding a single correct and precise answer, but in Statistics, there may be
more than one interpretation. That may make you a little uncomfortable at first, but
soon you’ll see that this room for judgment brings you enormous power and respon-
sibility. It means that using your own knowledge and judgment and supporting your
findings with statistical evidence and justifications entitles you to your own opinions
about what you see.

Are there any gaps in the distribution? The Kentucky Derby data that we
saw in the dotplot on page 49 has a large gap between two groups of times,
one near 120 seconds and one near 160. Gaps help us see multiple modes and
encourage us to notice when the data may come from different sources or
contain more than one group.

The Center of the Distribution: The Median
Let’s return to the tsunami earthquakes. But this time, let’s look at just 25 years
of data: 176 earthquakes that occurred from 1981 through 2005. These should be
more accurately measured than prehistoric quakes because seismographs were
in wide use. Try to put your finger on the histogram at the value you think is

BOCK_C04_0321570448 pp3.qxd  11/12/08  2:41 AM  Page 52



The Center of the Distribution: The Median 53

typical. (Read the value from the horizontal axis and remember it.) When we
think of a typical value, we usually look for the center of the distribution.
Where do you think the center of this distribution is? For a unimodal, symmet-
ric distribution such as these earthquake data, it’s easy. We’d all agree on the
center of symmetry, where we would fold the histogram to match the two sides.
But when the distribution is skewed or possibly multimodal, it’s not immedi-
ately clear what we even mean by the center. 

One reasonable choice of typical value is the value that is literally in the
middle, with half the values below it and half above it. 
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FIGURE 4.10 Tsunami-causing earthquakes
(1981–2005)
The median splits the histogram into two halves
of equal area.

Histograms follow the area principle, and each half of the data has about
88 earthquakes, so each colored region has the same area in the display. The mid-
dle value that divides the histogram into two equal areas is called the median.

The median has the same units as the data. Be sure to include the units when-
ever you discuss the median.

For the recent tsunamis, there are 176 earthquakes, so the median is found at
the place in the sorted data. That “.5” just says to average
the two values on either side: the 88th and the 89th. The median earthquake mag-
nitude is 7.0. 

1176 + 12>2 = 88.5th

How do medians work? Finding the median of a batch of numbers is easy as
long as you remember to order the values first. If is odd, the median is the middle 

value. Counting in from the ends, we find this value in the position.

When is even, there are two middle values. So, in this case, the median is the

average of the two values in positions and 

Here are two examples:
Suppose the batch has these values: 14.1, 3.2, 25.3, 2.8, -17.5, 13.9, 45.8.
First we order the values: -17.5, 2.8, 3.2, 13.9, 14.1, 25.3, 45.8.
Since there are 7 values, the median is the value, counting from

the top or bottom: 13.9. Notice that 3 values are lower, 3 higher.
Suppose we had the same batch with another value at 35.7. Then the ordered

values are -17.5, 2.8, 3.2, 13.9, 14.1, 25.3, 35.7, 45.8.
The median is the average of the or 4th, and the or 5th, values.

So the median is Four data values are lower, and four
higher.

113.9 + 14.12>2 = 14.0.
(8>2) + 1,8>2

17 + 12>2 = 4th

n
2

+ 1.
n
2

n

n + 1
2

n
nNOTATION ALERT:

We always use n to indicate the
number of values. Some people
even say,“How big is the n?”
when they mean the number of
data values.

The median is one way to find the center of the data. But there are many oth-
ers. We’ll look at an even more important measure later in this chapter.
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How do quartiles work? A simple way to find the quartiles is to start by split-
ting the batch into two halves at the median. (When is odd, some statisticians in-
clude the median in both halves; others omit it.) The lower quartile is the median of
the lower half, and the upper quartile is the median of the upper half.

Here are our two examples again.
The ordered values of the first batch were -17.5, 2.8, 3.2, 13.9, 14.1, 25.3,

and 45.8, with a median of 13.9. Excluding the median, the two halves of the list
are -17.5, 2.8, 3.2 and 14.1, 25.3, 45.8.

Each half has 3 values, so the median of each is the middle one. The lower quar-
tile is 2.8, and the upper quartile is 25.3.

The second batch of data had the ordered values -17.5, 2.8, 3.2, 13.9, 14.1,
25.3, 35.7, and 45.8.

Here is even, so the two halves of 4 values are -17.5, 2.8, 3.2, 13.9 and
14.1, 25.3, 35.7, 45.8.

Now the lower quartile is and the upper quartile is
125.3 + 35.72>2 = 30.5.

12.8 + 3.22>2 = 3.0,

n

n

Knowing the median, we could say that a typical tsunami-causing earth-
quake, worldwide, was about 7.0 on the Richter scale. How much does that really
say? How well does the median describe the data? After all, not every earthquake
has a Richter scale value of 7.0. Whenever we find the center of data, the next step
is always to ask how well it actually summarizes the data.

Spread: Home on the Range
If every earthquake that caused a tsunami registered 7.0 on the Richter scale, then
knowing the median would tell us everything about the distribution of earth-
quake magnitudes. The more the data vary, however, the less the median alone
can tell us. So we need to measure how much the data values vary around the
center. In other words, how spread out are they? When we describe a distribution
numerically, we always report a measure of its spread along with its center.

How should we measure the spread? We could simply look at the extent of
the data. How far apart are the two extremes? The range of the data is defined as
the difference between the maximum and minimum values:

Notice that the range is a single number, not an interval of values, as you might
think from its use in common speech. The maximum magnitude of these earth-
quakes is 9.0 and the minimum is 3.7, so the range is 

The range has the disadvantage that a single extreme value can make it very
large, giving a value that doesn’t really represent the data overall. 

Spread: The Interquartile Range
A better way to describe the spread of a variable might be to ignore the ex-
tremes and concentrate on the middle of the data. We could, for example, find
the range of just the middle half of the data. What do we mean by the middle
half? Divide the data in half at the median. Now divide both halves in half
again, cutting the data into four quarters. We call these new dividing points
quartiles. One quarter of the data lies below the lower quartile, and one quar-
ter of the data lies above the upper quartile, so half the data lies between them.
The quartiles border the middle half of the data. 

9.0 - 3.7 = 5.3.

Range = max - min.

Statistics pays close attention
to what we don’t know as
well as what we do know.
Understanding how spread
out the data are is a first step
in understanding what a
summary cannot tell us about
the data. It’s the beginning of
telling us what we don’t
know.

BOCK_C04_0321570448 pp3.qxd  11/12/08  2:41 AM  Page 54



Spread: The Interquartile Range 55

The difference between the quartiles tells us how much territory the middle
half of the data covers and is called the interquartile range. It’s commonly abbre-
viated IQR (and pronounced “eye-cue-are,” not “ikker”):

For the earthquakes, there are 88 values below the median and 88 values
above the median. The midpoint of the lower half is the average of the 44th and
45th values in the ordered data; that turns out to be 6.6. In the upper half we aver-
age the 132nd and 133rd values, finding a magnitude of 7.6 as the third quartile.
The difference between the quartiles gives the IQR:

Now we know that the middle half of the earthquake magnitudes extends
across a (interquartile) range of 1.0 Richter scale units. This seems like a reasonable
summary of the spread of the distribution, as we can see from this histogram: 

IQR = 7.6 - 6.6 = 1.0.

IQR = upper quartile - lower quartile.
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FIGURE 4.11
The quartiles bound the middle 50% of the
values of the distribution. This gives a visual
indication of the spread of the data. Here we
see that the IQR is 1.0 Richter scale units.

The IQR is almost always a reasonable summary of the spread of a distribu-
tion. Even if the distribution itself is skewed or has some outliers, the IQR should
provide useful information. The one exception is when the data are strongly
bimodal. For example, remember the dotplot of winning times in the Kentucky
Derby (page 49)? Because the race distance was changed, we really have data on
two different races, and they shouldn’t be summarized together.

So, what is a quartile anyway? Finding the quartiles sounds easy, but sur-
prisingly, the quartiles are not well-defined. It’s not always clear how to find a value
such that exactly one quarter of the data lies above or below that value. We offered a
simple rule for Finding Quartiles in the box on page 54: Find the median of each half
of the data split by the median. When is odd, we (and your TI calculator) omit the
median from each of the halves. Some other texts include the median in both halves
before finding the quartiles. Both methods are commonly used. If you are willing to
do a bit more calculating, there are several other methods that locate a quartile some-
where between adjacent data values. We know of at least six different rules for find-
ing quartiles. Remarkably, each one is in use in some software package or calculator.

So don’t worry too much about getting the “exact” value for a quartile. All of the
methods agree pretty closely when the data set is large. When the data set is small,
different rules will disagree more, but in that case there’s little need to summarize
the data anyway.

Remember, Statistics is about understanding the world, not about calculating the
right number. The “answer” to a statistical question is a sentence about the issue
raised in the question.

n
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NOTATION ALERT:
We always use Q1 to label the
lower (25%) quartile and Q3 to
label the upper (75%) quartile.
We skip the number 2 because
the median would, by this
system, naturally be labeled
Q2—but we don’t usually call
it that.

5-Number Summary
The 5-number summary of a distribution reports its median, quartiles, and ex-
tremes (maximum and minimum). The 5-number summary for the recent tsunami
earthquake Magnitudes looks like this:

Max 9.0
Q3 7.6
Median 7.0
Q1 6.6
Min 3.7

It’s good idea to report the number of data values and the identity of the cases
(the Who). Here there are 176 earthquakes. 

The 5-number summary provides a good overview of the distribution of
magnitudes of these tsunami-causing earthquakes. For a start, we can see that
the median magnitude is 7.0. Because the IQR is only we see that
many quakes are close to the median magnitude. Indeed, the quartiles show us
that the middle half of these earthquakes had magnitudes between 6.6 and 7.6.
One quarter of the earthquakes had magnitudes above 7.6, although one tsunami
was caused by a quake measuring only 3.7 on the Richter scale.

7.6 - 6.6 = 1,

The U.S. Bureau of Transportation Statistics (www.bts.gov) reports data on airline
flights. Let’s look at data giving the percentage of flights cancelled each month be-
tween 1995 and 2005.

Question: How often are flights cancelled? 

Shape, Center, and Spread: Flight CancellationsSTEP-BY-STEP EXAMPLE

WHO Months

WHAT Percentage of flights cancelled at U.S. airports

WHEN 1995–2005

WHERE United States

The lower and upper quartiles are also known as the 25th and 75th percentiles
of the data, respectively, since the lower quartile falls above 25% of the data and
the upper quartile falls above 75% of the data. If we count this way, the median is
the 50th percentile. We could, of course, define and calculate any percentile that
we want. For example, the 10th percentile would be the number that falls above
the lowest 10% of the data values. 
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5-Number Summary 57

I want to learn about the monthly percentage
of flight cancellations at U.S airports.

I have data from the U.S. Bureau of Trans-
portation Statistics giving the percentage of
flights cancelled at U.S. airports each month
between 1995 and 2005.

Ç Quantitative Data Condition: Percentages
are quantitative. A histogram and numeri-
cal summaries would be appropriate.

Variable: Identify the variable, and 
decide how you wish to display it.

To identify a variable, report the W’s.

Select an appropriate display based on
the nature of the data and what you want
to know.

The histogram shows a distribution skewed 
to the high end and one extreme outlier, a
month in which more than 20% of flights were 
cancelled.

In most months, fewer than 5% of flights are
cancelled and usually only about 2% or 3%.
That seems reasonable.

Mechanics: We usually make histograms
with a computer or graphing calculator.
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It’s always a good idea to think about
what you expect to see so that you can
check whether the histogram looks like
what you expected.

With 132 cases, we probably have more
data than you’d choose to work with by
hand. The results given here are from
technology. 

REALITY CHECK

Count 132
Max 20.240
Q3 2.615
Median 1.755
Q1 1.445
Min 0.770
IQR 1.170
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Summarizing Symmetric Distributions: The Mean
Medians do a good job of summarizing the center of a distribution, even when
the shape is skewed or when there is an outlier, as with the flight cancellations.
But when we have symmetric data, there’s another alternative. You probably
already know how to average values. In fact, to find the median when n is
even, we said you should average the two middle values, and you didn’t even
flinch.

The earthquake magnitudes are pretty close to symmetric, so we can also
summarize their center with a mean. The mean tsunami earthquake magnitude is
6.96—about what we might expect from the histogram. You already know how to
average values, but this is a good place to introduce notation that we’ll use
throughout the book. We use the Greek capital letter sigma, , to mean “sum”
(sigma is “S” in Greek), and we’ll write:

The formula says to add up all the values of the variable and divide that sum by
the number of data values, n—just as you’ve always done.8

Once we’ve averaged the data, you’d expect the result to be called the
average, but that would be too easy. Informally, we speak of the “average per-
son” but we don’t add up people and divide by the number of people. A median
is also a kind of average. To make this distinction, the value we calculated is
called the mean, and pronounced “ -bar.”yy,

y =

Total
n

=

ay

n
.

©
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NOTATION ALERT:
In Algebra you used letters to
represent values in a problem,
but it didn’t matter what letter
you picked.You could call the
width of a rectangle X or you
could call it w (or Fred, for that
matter). But in Statistics, the
notation is part of the vocabulary.
For example, in Statistics n is
always the number of data
values. Always.

We have already begun to
point out such special notation
conventions: n, Q1, and Q3.
Think of them as part of the
terminology you need to learn
in this course.

Here’s another one:
Whenever we put a bar over a
symbol, it means “find the
mean.”

8 You may also see the variable called and the equation written Don’t let

that throw you. You are free to name the variable anything you want, but we’ll generally
use for variables like this that we want to summarize, model, or predict. (Later we’ll talk
about variables that are used to explain, model, or predict . We’ll call them .)xy

y

x =

Total
n

=

ax

n
.x

Interpretation: Describe the shape,
center, and spread of the distribution. Re-
port on the symmetry, number of modes,
and any gaps or outliers. You should also
mention any concerns you may have
about the data.

The distribution of cancellations is skewed to
the right, and this makes sense: The values
can’t fall below 0%, but can increase almost 
arbitrarily due to bad weather or other 
events.

The median is 1.76% and the IQR is 1.17%. The 
low IQR indicates that in most months the 
cancellation rate is close to the median. In fact,
it’s between 1.4% and 2.6% in the middle 50% of
all months, and in only 1/4 of the months were
more than 2.6% of flights cancelled.

There is one extraordinary value: 20.2%. Looking
it up, I find that the extraordinary month was
September 2001. The attacks of September 11
shut down air travel for several days, account-
ing for this outlier. 
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Mean or Median?
Using the center of balance makes sense when the data are symmetric. But data
are not always this well behaved. If the distribution is skewed or has outliers,
the center is not so well defined and the mean may not be what we want. For ex-
ample, the mean of the flight cancellations doesn’t give a very good idea of the
typical percentage of cancellations. 

Mean or Median? 59
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FIGURE 4.12
The mean is located at the balancing
point of the histogram.

In everyday language,
sometimes “average”does
mean what we want it to
mean. We don’t talk about
your grade point mean or a
baseball player’s batting
mean or the Dow Jones
Industrial mean. So we’ll
continue to say “average”
when that seems most
natural. When we do, though,
you may assume that what
we mean is the mean.

The mean feels like the center because it is the point where the histogram
balances: 

Balancing Point
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FIGURE 4.13
The median splits the area of the
histogram in half at 1.755%. Because
the distribution is skewed to the right,
the mean (2.28%) is higher than the
median. The points at the right have
pulled the mean toward them away from
the median.

The mean is 2.28%, but nearly 70% of months had cancellation rates below
that, so the mean doesn’t feel like a good overall summary. Why is the balancing
point so high? The large outlying value pulls it to the right. For data like these, the
median is a better summary of the center.

Because the median considers only the order of the values, it is resistant to
values that are extraordinarily large or small; it simply notes that they are one of
the “big ones” or the “small ones” and ignores their distance from the center.

For the tsunami earthquake magnitudes, it doesn’t seem to make much 
difference—the mean is 6.96; the median is 7.0. When the data are symmetric, the
mean and median will be close, but when the data are skewed, the median is likely
to be a better choice. So, why not just use the median? Well, for one, the median
can go overboard. It’s not just resistant to occasional outliers, but can be unaffected
by changes in up to half the data values. By contrast, the mean includes input from

Activity: The Center of a
Distribution. Compare measures
of center by dragging points up
and down and seeing the
consequences. Another activity
shows how to find summaries
with your statistics package.

Mean, median, and outliers.
Drag data points around to explore
how outliers affect the mean and
median.
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each data value and gives each one equal weight. It’s also easier to work with, so
when the distribution is unimodal and symmetric, we’ll use the mean.

Of course, to choose between mean and median, we’ll start by looking at the
data. If the histogram is symmetric and there are no outliers, we’ll prefer the mean.
However, if the histogram is skewed or has outliers, we’re usually better off with
the median. If you’re not sure, report both and discuss why they might differ. 

60 CHAPTER 4    Displaying and Summarizing Quantitative Data

Describing centerFOR EXAMPLE

Recap: You want to summarize the expenditures of 500 credit card company
customers, and have looked at a histogram. 

Question: You have found the mean expenditure to be $478.19 and the median
to be $216.28. Which is the more appropriate measure of center, and why?

Because the distribution of expenditures is skewed, the median is the more appropriate measure of center. Unlike the
mean, it’s not affected by the large outlying value or by the skewness. Half of these credit card customers had average
monthly expenditures less than $216.28 and half more.
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When to expect skewness Even without making a histogram, we can expect
some variables to be skewed. When values of a quantitative variable are bounded
on one side but not the other, the distribution may be skewed. For example, in-
comes and waiting times can’t be less than zero, so they are often skewed to the
right. Amounts of things (dollars, employees) are often skewed to the right for the
same reason. If a test is too easy, the distribution will be skewed to the left because
many scores will bump against 100%. And combinations of things are often
skewed. In the case of the cancelled flights, flights are more likely to be cancelled
in January (due to snowstorms) and in August (thunderstorms). Combining values
across months leads to a skewed distribution.

What About Spread? The Standard Deviation
The IQR is always a reasonable summary of spread, but because it uses only the
two quartiles of the data, it ignores much of the information about how individ-
ual values vary. A more powerful approach uses the standard deviation, which
takes into account how far each value is from the mean. Like the mean, the stan-
dard deviation is appropriate only for symmetric data.

One way to think about spread is to examine how far each data value is from
the mean. This difference is called a deviation. We could just average the devia-
tions, but the positive and negative differences always cancel each other out. So
the average deviation is always zero—not very helpful.

To keep them from canceling out, we square each deviation. Squaring always
gives a positive value, so the sum won’t be zero. That’s great. Squaring also 
emphasizes larger differences—a feature that turns out to be both good and bad.

Activity: The Spread of a
Distribution. What happens to
measures of spread when data
values change may not be quite
what you expect.
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When we add up these squared deviations and find their average (almost),
we call the result the variance:

Why almost? It would be a mean if we divided the sum by n. Instead, we divide
by Why? The simplest explanation is “to drive you crazy.” But there are
good technical reasons, some of which we’ll see later.

The variance will play an important role later in this book, but it has a prob-
lem as a measure of spread. Whatever the units of the original data are, the vari-
ance is in squared units. We want measures of spread to have the same units as the
data. And we probably don’t want to talk about squared dollars or mpg2. So, to
get back to the original units, we take the square root of s2. The result, s, is the
standard deviation.

Putting it all together, the standard deviation of the data is found by the fol-
lowing formula:

You will almost always rely on a calculator or computer to do the calculating. 
Understanding what the standard deviation really means will take some

time, and we’ll revisit the concept in later chapters. For now, have a look at
this histogram of resting pulse rates. The distribution is roughly symmetric, so
it’s okay to choose the mean and standard deviation as our summaries of cen-
ter and spread. The mean pulse rate is 72.7 beats per minute, and we can see
that’s a typical heart rate. We also see that some heart rates are higher and
some lower—but how much? Well, the standard deviation of 6.5 beats per
minute indicates that, on average, we might expect people’s heart rates to differ
from the mean rate by about 6.5 beats per minute. Looking at the histogram,
we can see that 6.5 beats above or below the mean appears to be a typical
deviation. 

s = Ba
1y - y22

n - 1
.

n - 1.

s2
=

a 1y - y22

n - 1
.

What About Spread? The Standard Deviation 61
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How does standard deviation work? To find the standard deviation, start
with the mean, . Then find the deviations by taking from each value: 
Square each deviation: .

Now you’re nearly home. Just add these up and divide by . That gives you
the variance, . To find the standard deviation, s, take the square root. Here we go:

Suppose the batch of values is 14, 13, 20, 22, 18, 19, and 13.
The mean is So the deviations are found by subtracting 17 from each value:y = 17.

s2
n - 1

1y - y22
1y - y2yy

Add up the squared deviations: 
Now divide by 
Finally, take the square root: s = 213.33 = 3.65

80/6 = 13.33.n - 1:
9 + 16 + 9 + 25 + 1 + 4 + 16 = 80.

Original Values Deviations Squared Deviations

14 14 - 17 = -3 1-322 = 9
13 13 - 17 = -4 1-422 = 16
20 20 - 17 = 3 9
22 22 - 17 = 5 25
18 18 - 17 = 1 1
19 19 - 17 = 2 4
13 13 - 17 = -4 16

NOTATION ALERT:
always means the variance

of a set of data, and s always
denotes the standard deviation.

s2
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Thinking About Variation
Statistics is about variation, so spread is an important fundamental concept in
Statistics. Measures of spread help us to be precise about what we don’t know. If
many data values are scattered far from the center, the IQR and the standard
deviation will be large. If the data values are close to the center, then these meas-

ures of spread will be small. If all our data values were exactly
the same, we’d have no question about summarizing the center,
and all measures of spread would be zero—and we wouldn’t
need Statistics. You might think this would be a big plus, but it
would make for a boring world. Fortunately (at least for Statis-
tics), data do vary.

Measures of spread tell how well other summaries describe
the data. That’s why we always (always!) report a spread along
with any summary of the center.

62 CHAPTER 4    Displaying and Summarizing Quantitative Data

Why do banks favor a single line that feeds
several teller windows rather than separate lines
for each teller? The average waiting time is the
same. But the time you can expect to wait is less
variable when there is a single line, and people
prefer consistency.

Activity: Displaying
Spread. What does the standard
deviation look like on a
histogram? How about the IQR?

JUST CHECKING
6. The U.S. Census Bureau reports the median family income in its summary of census data. Why do you suppose

they use the median instead of the mean? What might be the disadvantages of reporting the mean?

7. You’ve just bought a new car that claims to get a highway fuel efficiency of 31 miles per gallon. Of course, your
mileage will “vary.” If you had to guess, would you expect the IQR of gas mileage attained by all cars like yours
to be 30 mpg, 3 mpg, or 0.3 mpg? Why?

8. A company selling a new MP3 player advertises that the player has a mean lifetime of 5 years. If you were in
charge of quality control at the factory, would you prefer that the standard deviation of lifespans of the players
you produce be 2 years or 2 months? Why?

What to Tell About a Quantitative Variable
What should you Tell about a quantitative variable?

u Start by making a histogram or stem-and-leaf display, and discuss the shape
of the distribution.

u Next, discuss the center and spread.
u We always pair the median with the IQR and the mean with the standard

deviation. It’s not useful to report one without the other. Reporting a cen-
ter without a spread is dangerous. You may think you know more than
you do about the distribution. Reporting only the spread leaves us won-
dering where we are.

u If the shape is skewed, report the median and IQR. You may want to in-
clude the mean and standard deviation as well, but you should point out
why the mean and median differ.

u If the shape is symmetric, report the mean and standard deviation and
possibly the median and IQR as well. For unimodal symmetric data, the
IQR is usually a bit larger than the standard deviation. If that’s not true of
your data set, look again to make sure that the distribution isn’t skewed
and there are no outliers.

Activity: Playing with
Summaries. Here’s a Statistics
game about summaries that even
some experienced statisticians 
find . . . well, challenging. Your
intuition may be better. Give it 
a try!

Standard deviation, IQR, and
outliers. Drag data points around
to explore how outliers affect
measures of spread.
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One of the authors owned a 1989 Nissan Maxima for 8 years. Being a statistician, he recorded the
car’s fuel efficiency (in mpg) each time he filled the tank. He wanted to know what fuel efficiency
to expect as “ordinary” for his car. (Hey, he’s a statistician. What would you expect?9) Knowing
this, he was able to predict when he’d need to fill the tank again and to notice if the fuel efficiency
suddenly got worse, which could be a sign of trouble.

Question: How would you describe the distribution of Fuel efficiency for this car?

Summarizing a distributionSTEP-BY-STEP EXAMPLE

I want to summarize the distribution of Nissan
Maxima fuel efficiency.

The data are the fuel efficiency values in miles
per gallon for the first 100 fill-ups of a 1989
Nissan Maxima between 1989 and 1992.

Ç Quantitative Data Condition: The fuel effi-
ciencies are quantitative with units of
miles per gallon. Histograms and boxplots
are appropriate displays for displaying the 
distribution. Numerical summaries are 
appropriate as well.

Plan State what you want to find out.

Variable Identify the variable and report
the W’s.

Be sure to check the appropriate 
condition.

9 He also recorded the time of day, temperature, price of gas, and phase of the moon. (OK,
maybe not phase of the moon.) His data are on the DVD.

How “Accurate” 
Should We Be?
Don’t think you should 
report means and standard
deviations to a zillion decimal
places; such implied accuracy
is really meaningless.
Although there is no ironclad
rule, statisticians commonly
report summary statistics to
one or two decimal places
more than the original data
have.

u Also, discuss any unusual features.
u If there are multiple modes, try to understand why. If you can identify a

reason for separate modes (for example, women and men typically have
heart attacks at different ages), it may be a good idea to split the data into
separate groups.

u If there are any clear outliers, you should point them out. If you are re-
porting the mean and standard deviation, report them with the outliers
present and with the outliers removed. The differences may be reveal-
ing. (Of course, the median and IQR won’t be affected very much by the
outliers.)

BOCK_C04_0321570448 pp3.qxd  11/12/08  2:41 AM  Page 63



64 CHAPTER 4    Displaying and Summarizing Quantitative Data

A histogram of the data shows a fairly 
symmetric distribution with a low outlier.

A value of 22 mpg seems reasonable for
such a car. The spread is reasonable, 
although the range looks a bit large.

The distribution of mileage is unimodal and
roughly symmetric with a mean of 22.4 mpg.
There is a low outlier that should be investi-
gated, but it does not influence the mean very
much. The standard deviation suggests that
from tankful to tankful, I can expect the car’s
fuel economy to differ from the mean by an
average of about 2.45 mpg.

Conclusion Summarize and interpret
your findings in context. Be sure to dis-
cuss the distribution’s shape, center,
spread, and unusual features (if any).

REALITY CHECK

The mean and median are close, so the outlier
doesn’t seem to be a problem. I can use the
mean and standard deviation.

Are my statistics “right”? When you calculate a mean, the computation is
clear: You sum all the values and divide by the sample size. You may round your
answer less or more than someone else (we recommend one more decimal place
than the data), but all books and technologies agree on how to find the mean. Some
statistics, however, are more problematic. For example we’ve already pointed out
that methods of finding quartiles differ.

Differences in numeric results can also arise from decisions in the middle of calcu-
lations. For example, if you round off your value for the mean before you calculate
the sum of squared deviations, your standard deviation probably won’t agree with a
computer program that calculates using many decimal places. (We do recommend
that you do calculations using as many digits as you can to minimize this effect.)

Don’t be overly concerned with these discrepancies, especially if the differences
are small. They don’t mean that your answer is “wrong,” and they usually won’t
change any conclusion you might draw about the data. Sometimes (in footnotes and
in the answers in the back of the book) we’ll note alternative results, but we could
never list all the possible values, so we’ll rely on your common sense to focus on
the meaning rather than on the digits. Remember: Answers are sentences!

Mechanics Make a histogram and 
boxplot. Based on the shape, choose 
appropriate numerical summaries.
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Mean 22.4 mpg
StdDev 2.45
Q1 20.8
Median 22.0
Q3 24.0
IQR 3.2
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TI Tips Calculating the statistics

Your calculator can easily find all the numerical summaries of data. To try it
out, you simply need a set of values in one of your datalists. We’ll illustrate us-
ing the boys’ agility test results from this chapter’s earlier TI Tips (still in L1),
but you can use any data currently stored in your calculator.

• Under the STAT CALC menu, select 1-Var Stats and hit ENTER.
• Specify the location of your data, creating a command like 1-Var
Stats L1.

• Hit ENTER again.

Voilà! Everything you wanted to know, and more. Among all of the informa-
tion shown, you are primarily interested in these statistics: x– (the mean), Sx
(the standard deviation), n (the count), and—scrolling down—minX (the
smallest datum), Q

1
(the first quartile), Med (the median), Q

3
(the third quar-

tile), and maxX (the largest datum).

Sorry, but the TI doesn’t explicitly tell you the range or the IQR. Just subtract:
What’s the range?

By the way, if the data come as a frequency table with the values stored in, say,
L4 and the corresponding frequencies in L5, all you have to do is ask for 
1-Var Stats L4,L5.

IQR = Q3 - Q1 = 25 - 19.5 = 5.5.

WHAT CAN GO WRONG?
A data display should tell a story about the data. To do that, it must speak in a clear lan-
guage, making plain what variable is displayed, what any axis shows, and what the val-
ues of the data are. And it must be consistent in those decisions.

A display of quantitative data can go wrong in many ways. The most
common failures arise from only a few basic errors:

u Don’t make a histogram of a categorical variable. Just because the
variable contains numbers doesn’t mean that it’s quantitative.
Here’s a histogram of the insurance policy numbers of some
workers. It’s not very informative because the policy numbers
are just labels. A histogram or stem-and-leaf display of a cate-
gorical variable makes no sense. A bar chart or pie chart would
be more appropriate.

u Don’t look for shape, center, and spread of a bar chart. A bar chart
showing the sizes of the piles displays the distribution of a cat-
egorical variable, but the bars could be arranged in any order
left to right. Concepts like symmetry, center, and spread make
sense only for quantitative variables.
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FIGURE 4.14
It’s not appropriate to display these data with a 
histogram.

(continued)
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u Don’t use bars in every display—save them for histograms and bar charts. In a bar chart, the
bars indicate how many cases of a categorical variable are piled in each category.
Bars in a histogram indicate the number of cases piled in each interval of a quantita-
tive variable. In both bar charts and histograms, the bars represent counts of data
values. Some people create other displays that use bars to represent individual data
values. Beware: Such graphs are neither bar charts nor histograms. For example, a
student was asked to make a histogram from data showing the number of juvenile
bald eagles seen during each of the 13 weeks in the winter of 2003–2004 at a site in
Rock Island, IL. Instead, he made this plot:

66 CHAPTER 4    Displaying and Summarizing Quantitative Data

10 Edward Tufte, in his book The Visual Display of Quantitative Information, proposes that
graphs should have a high data-to-ink ratio. That is, we shouldn’t waste a lot of ink to dis-
play a single number when a dot would do the job.

FIGURE 4.15
This isn’t a histogram or a bar chart. It’s an 
ill-conceived graph that uses bars to represent
individual data values (number of eagles
sighted) week by week.
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Look carefully. That’s not a histogram. A histogram shows What we’ve measured
along the horizontal axis and counts of the associated Who’s represented as bar
heights. This student has it backwards: He used bars to show counts of birds for
each week.10 We need counts of weeks. A correct histogram should have a tall bar at
“0” to show there were many weeks when no eagles were seen, like this:

FIGURE 4.16
A histogram of the eagle-sighting data shows
the number of weeks in which different counts
of eagles occurred. This display shows the dis-
tribution of juvenile-eagle sightings.
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u Choose a bin width appropriate to the data. Computer programs usually do a pretty
good job of choosing histogram bin widths. Often there’s an easy way to adjust the
width, sometimes interactively. Here are the tsunami earthquakes with two (rather
extreme) choices for the bin size:
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The task of summarizing a quantitative variable is relatively simple, and there is a sim-
ple path to follow. However, you need to watch out for certain features of the data that
make summarizing them with a number dangerous. Here’s some advice:

u Don’t forget to do a reality check. Don’t let the computer or calculator do your thinking
for you. Make sure the calculated summaries make sense. For example, does the
mean look like it is in the center of the histogram? Think about the spread: An IQR
of 50 mpg would clearly be wrong for gas mileage. And no measure of spread can
be negative. The standard deviation can take the value 0, but only in the very un-
usual case that all the data values equal the same number. If you see an IQR or stan-
dard deviation equal to 0, it’s probably a sign that something’s wrong with the data.

u Don’t forget to sort the values before finding the median or percentiles. It seems obvious,
but when you work by hand, it’s easy to forget to sort the data first before counting
in to find medians, quartiles, or other percentiles. Don’t report that the median of
the five values 194, 5, 1, 17, and 893 is 1 just because 1 is the middle number.

u Don’t worry about small differences when using different methods. Finding the 10th per-
centile or the lower quartile in a data set sounds easy enough. But it turns out that
the definitions are not exactly clear. If you compare different statistics packages or
calculators, you may find that they give slightly different answers for the same data.
These differences, though, are unlikely to be important in interpreting the data, the
quartiles, or the IQR, so don’t let them worry you.

u Don’t compute numerical summaries of a categorical variable.
Neither the mean zip code nor the standard deviation of
social security numbers is meaningful. If the variable is
categorical, you should instead report summaries such
as percentages of individuals in each category. It is easy
to make this mistake when using technology to do the
summaries for you. After all, the computer doesn’t
care what the numbers mean.

u Don’t report too many decimal places. Statistical programs
and calculators often report a ridiculous number of digits. A general rule for numer-
ical summaries is to report one or two more digits than the number of digits in the
data. For example, earlier we saw a dotplot of the Kentucky Derby race times. The
mean and standard deviation of those times could be reported as:

But we knew the race times only to the nearest quarter second, so the extra digits are
meaningless.

u Don’t round in the middle of a calculation. Don’t report too many decimal places, but it’s
best not to do any rounding until the end of your calculations. Even though you
might report the mean of the earthquakes as 7.08, it’s really 7.08339. Use the more
precise number in your calculations if you’re finding the standard deviation by
hand—or be prepared to see small differences in your final result.

s = 13.66448201942662 secy = 130.63401639344262 sec

Gold Card Customers—Regions National Banks

Month April 2007 May 2007

Average
Zip Code

45,034.34 38,743.34

(continued)
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68 CHAPTER 4    Displaying and Summarizing Quantitative Data

u Watch out for multiple modes. The summaries of the Kentucky Derby times are mean-
ingless for another reason. As we saw in the dotplot, the Derby was initially a longer
race. It would make much more sense to report that the old 1.5 mile Derby had a
mean time of 159.6 seconds, while the current Derby has a mean time of 124.6 sec-
onds. If the distribution has multiple modes, consider separating the data into dif-
ferent groups and summarizing each group separately.

u Beware of outliers. The median and IQR are resistant to outliers, but the mean and
standard deviation are not. To help spot outliers . . .

u Don’t forget to: Make a picture (make a picture, make a picture). The sensitivity of the
mean and standard deviation to outliers is one reason you should always make a
picture of the data. Summarizing a variable with its mean and standard deviation
when you have not looked at a histogram or dotplot to check for outliers or skew-
ness invites disaster. You may find yourself drawing absurd or dangerously wrong
conclusions about the data. And, of course, you should demand no less of others.
Don’t accept a mean and standard deviation blindly without some evidence that the
variable they summarize is unimodal, symmetric, and free of outliers.

CONNECTIONS
Distributions of quantitative variables, like those of categorical variables, show the possible values
and their relative frequencies. A histogram shows the distribution of values in a quantitative vari-
able with adjacent bars. Don’t confuse histograms with bar charts, which display categorical
variables. For categorical data, the mode is the category with the biggest count. For quantitative
data, modes are peaks in the histogram.

The shape of the distribution of a quantitative variable is an important concept in most of the
subsequent chapters. We will be especially interested in distributions that are unimodal and
symmetric.

In addition to their shape, we summarize distributions with center and spread, usually pairing
a measure of center with a measure of spread: median with IQR and mean with standard devia-
tion. We favor the mean and standard deviation when the shape is unimodal and symmetric, but
choose the median and IQR for skewed distributions or when there are outliers we can’t otherwise
set aside.

WHAT HAVE WE LEARNED?

We’ve learned how to make a picture of quantitative data to help us see the story the data have to Tell.

u We can display the distribution of quantitative data with a histogram, a stem-and-leaf display,
or a dotplot.

u We Tell what we see about the distribution by talking about shape, center, spread, and any
unusual features. 

We’ve learned how to summarize distributions of quantitative variables numerically.

u Measures of center for a distribution include the median and the mean.

We write the formula for the mean as 

u Measures of spread include the range, IQR, and standard deviation.

The standard deviation is computed as 

The median and IQR are not usually given as formulas.

s = Ca
1y - y22

n - 1
.

y =

ay

n
.
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u We’ll report the median and IQR when the distribution is skewed. If it’s symmetric, we’ll sum-
marize the distribution with the mean and standard deviation (and possibly the median and IQR
as well). Always pair the median with the IQR and the mean with the standard deviation.

We’ve learned to Think about the type of variable we’re summarizing.

u All the methods of this chapter assume that the data are quantitative.
u The Quantitative Data Condition serves as a check that the data are, in fact, quantitative. One

good way to be sure is to know the measurement units. You’ll want those as part of the Think
step of your answers.

Terms
Distribution 44. The distribution of a quantitative variable slices up all the possible values of the variable into

equal-width bins and gives the number of values (or counts) falling into each bin.

Histogram (relative 45. A histogram uses adjacent bars to show the distribution of a quantitative variable. Each bar
frequency histogram) represents the frequency (or relative frequency) of values falling in each bin.

Gap 45. A region of the distribution where there are no values.

Stem-and-leaf display 47. A stem-and-leaf display shows quantitative data values in a way that sketches the distribution
of the data. It’s best described in detail by example.

Dotplot 49. A dotplot graphs a dot for each case against a single axis.

Shape 49. To describe the shape of a distribution, look for
u single vs. multiple modes.
u symmetry vs. skewness.
u outliers and gaps.

Center 52, 58. The place in the distribution of a variable that you’d point to if you wanted to attempt the
impossible by summarizing the entire distribution with a single number. Measures of center include
the mean and median.

Spread 54, 61. A numerical summary of how tightly the values are clustered around the center. Measures
of spread include the IQR and standard deviation.

Mode 49. A hump or local high point in the shape of the distribution of a variable. The apparent location
of modes can change as the scale of a histogram is changed.

Unimodal (Bimodal) 50. Having one mode. This is a useful term for describing the shape of a histogram when it’s gener-
ally mound-shaped. Distributions with two modes are called bimodal. Those with more than two are
multimodal.

Uniform 50. A distribution that’s roughly flat is said to be uniform.

Symmetric 50. A distribution is symmetric if the two halves on either side of the center look approximately like
mirror images of each other.

Tails 50. The tails of a distribution are the parts that typically trail off on either side. Distributions can be
characterized as having long tails (if they straggle off for some distance) or short tails (if they don’t).

Skewed 50. A distribution is skewed if it’s not symmetric and one tail stretches out farther than the other.
Distributions are said to be skewed left when the longer tail stretches to the left, and skewed right
when it goes to the right.

Outliers 51. Outliers are extreme values that don’t appear to belong with the rest of the data. They may be
unusual values that deserve further investigation, or they may be just mistakes; there’s no obvious
way to tell. Don’t delete outliers automatically—you have to think about them. Outliers can affect
many statistical analyses, so you should always be alert for them.

Median 52. The median is the middle value, with half of the data above and half below it. If n is even, it is
the average of the two middle values. It is usually paired with the IQR.

Range 54. The difference between the lowest and highest values in a data set.

Quartile 54. The lower quartile (Q1) is the value with a quarter of the data below it. The upper quartile (Q3)
has three quarters of the data below it. The median and quartiles divide data into four parts with
equal numbers of data values.

Range =  max -  min .

What Have We Learned? 69
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70 CHAPTER 4    Displaying and Summarizing Quantitative Data

Interquartile range (IQR) 55. The IQR is the difference between the first and third quartiles. It is usually 
reported along with the median.

Percentile 55. The ith percentile is the number that falls above i% of the data.

5-Number Summary 56. The 5-number summary of a distribution reports the minimum value, Q1, the median, Q3, and
the maximum value.

Mean 58. The mean is found by summing all the data values and dividing by the count:

It is usually paired with the standard deviation.

Resistant 59. A calculated summary is said to be resistant if outliers have only a small effect on it.

Variance 61. The variance is the sum of squared deviations from the mean, divided by the count minus 1:

It is useful in calculations later in the book.

Standard deviation 61. The standard deviation is the square root of the variance:

It is usually reported along with the mean.

Skills
u Be able to identify an appropriate display for any quantitative variable.

u Be able to guess the shape of the distribution of a variable by knowing something about the data.

u Be able to select a suitable measure of center and a suitable measure of spread for a variable
based on information about its distribution.

u Know the basic properties of the median: The median divides the data into the half of the data
values that are below the median and the half that are above.

u Know the basic properties of the mean: The mean is the point at which the histogram balances.

u Know that the standard deviation summarizes how spread out all the data are around the mean.

u Understand that the median and IQR resist the effects of outliers, while the mean and standard
deviation do not.

u Understand that in a skewed distribution, the mean is pulled in the direction of the skewness
(toward the longer tail) relative to the median.

u Know how to display the distribution of a quantitative variable with a stem-and-leaf display (drawn
by hand for smaller data sets), a dotplot, or a histogram (made by computer for larger data sets).

u Know how to compute the mean and median of a set of data.

u Know how to compute the standard deviation and IQR of a set of data.

u Be able to describe the distribution of a quantitative variable in terms of its shape, center, and spread.

u Be able to describe any anomalies or extraordinary features revealed by the display of a variable.

u Know how to describe summary measures in a sentence. In particular, know that the common
measures of center and spread have the same units as the variable that they summarize, and
should be described in those units.

u Be able to describe the distribution of a quantitative variable with a description of the shape of
the distribution, a numerical measure of center, and a numerical measure of spread. Be sure to
note any unusual features, such as outliers, too.

s = Ba
1y - y22

n - 1

s2
=

a 1y - y22

n - 1
.

y =

Total
n

=

ay

n
.

IQR = Q3 - Q1.
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Displaying and Summarizing Quantitative Variables on the Computer 71

DISPLAYING AND SUMMARIZING QUANTITATIVE 
VARIABLES ON THE COMPUTER

Almost any program that displays data can make a histogram, but some will do a better job of determining
where the bars should start and how they should partition the span of the data.

Many statistics packages offer a prepackaged collection of summary measures. The result might look 
like this:

The axis should be clearly labeled
so you can tell what "pile" each bar
represents. You should be able to tell
the lower and upper bounds of each bar.

The vertical scale may be
counts or proportions.
Sometimes it isn't clear
which. But the shape of
the histogram is the same
either way.

28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0
Run Times

Most packages choose
the number of bars for 
you automatically. Often
you can adjust that choice.

Variable: W eight
N = 234
Mean = 143.3 Median = 139
St. Dev = 11.1 IQR = 14

Alternatively, a package might make a table for several variables and summary measures:

Variable N mean median stdev IQR
Weight 234 143.3 139 11.1 14
Height 234 68.3 68.1 4.3 5
Score 234 86 88 9 5

It is usually easy to read the results and identify each computed summary. You should be able to read the
summary statistics produced by any computer package.

Packages often provide many more summary statistics than you need. Of course, some of these may not be
appropriate when the data are skewed or have outliers. It is your responsibility to check a histogram or stem-
and-leaf display and decide which summary statistics to use.

It is common for packages to report summary statistics to many decimal places of “accuracy.” Of course, it is
rare data that have such accuracy in the original measurements. The ability to calculate to six or seven digits
beyond the decimal point doesn’t mean that those digits have any meaning. Generally it’s a good idea to round
these values, allowing perhaps one more digit of precision than was given in the original data.

Displays and summaries of quantitative variables are among the simplest things you can do in most statistics
packages.

Case Study: Describing
Distribution Shapes. Who’s safer
in a crash—passengers or the
driver? Investigate with your
statistics package.
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EXERCISES

1. Histogram. Find a histogram that shows the distribu-
tion of a variable in a newspaper, a magazine, or the 
Internet.
a) Does the article identify the W’s?
b) Discuss whether the display is appropriate.
c) Discuss what the display reveals about the variable

and its distribution.
d) Does the article accurately describe and interpret the

data? Explain.

2. Not a histogram. Find a graph other than a histogram
that shows the distribution of a quantitative variable in a
newspaper, a magazine, or the Internet.
a) Does the article identify the W’s?
b) Discuss whether the display is appropriate for 

the data.
c) Discuss what the display reveals about the variable

and its distribution.
d) Does the article accurately describe and interpret the

data? Explain.

3. In the news. Find an article in a newspaper, a maga-
zine, or the Internet that discusses an “average.”
a) Does the article discuss the W’s for the data?
b) What are the units of the variable?
c) Is the average used the median or the mean? How can

you tell?
d) Is the choice of median or mean appropriate for the

situation? Explain.

4. In the news II. Find an article in a newspaper, a maga-
zine, or the Internet that discusses a measure of spread.
a) Does the article discuss the W’s for the data?
b) What are the units of the variable?
c) Does the article use the range, IQR, or standard 

deviation?
d) Is the choice of measure of spread appropriate for the

situation? Explain.

5. Thinking about shape. Would you expect distribu-
tions of these variables to be uniform, unimodal, or 
bimodal? Symmetric or skewed? Explain why.
a) The number of speeding tickets each student in the

senior class of a college has ever had.
b) Players’ scores (number of strokes) at the U.S. Open

golf tournament in a given year.
c) Weights of female babies born in a particular hospital

over the course of a year.
d) The length of the average hair on the heads of 

students in a large class.

6. More shapes. Would you expect distributions of these
variables to be uniform, unimodal, or bimodal? Sym-
metric or skewed? Explain why.
a) Ages of people at a Little League game.
b) Number of siblings of people in your class.
c) Pulse rates of college-age males.
d) Number of times each face of a die shows in 100

tosses.

7. Sugar in cereals. The histogram displays the sugar
content (as a percent of weight) of 49 brands of breakfast
cereals.

a) Describe this distribution.
b) What do you think might account for this shape?

8. Singers. The display shows the heights of some of the
singers in a chorus, collected so that the singers could be
positioned on stage with shorter ones in front and taller
ones in back.

a) Describe the distribution.
b) Can you account for the features you see here?

9. Vineyards. The histogram shows the sizes (in acres) of
36 vineyards in the Finger Lakes region of New York.

a) Approximately what percentage of these vineyards
are under 60 acres?

b) Write a brief description of this distribution (shape,
center, spread, unusual features).
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10. Run times. One of the authors collected the times (in
minutes) it took him to run 4 miles on various courses
during a 10-year period. Here is a histogram of the times.

Describe the distribution and summarize the important
features. What is it about running that might account for
the shape you see?

11. Heart attack stays. The histogram shows the lengths of
hospital stays (in days) for all the female patients admitted
to hospitals in New York during one year with a primary
diagnosis of acute myocardial infarction (heart attack).

a) From the histogram, would you expect the mean or
median to be larger? Explain.

b) Write a few sentences describing this distribution
(shape, center, spread, unusual features).

c) Which summary statistics would you choose to sum-
marize the center and spread in these data? Why?

12. E-mails. A university teacher saved every e-mail re-
ceived from students in a large Introductory Statistics
class during an entire term. He then counted, for each
student who had sent him at least one e-mail, how many
e-mails each student had sent.

a) From the histogram, would you expect the mean or
the median to be larger? Explain.

b) Write a few sentences describing this distribution
(shape, center, spread, unusual features).
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c) Which summary statistics would you choose to sum-
marize the center and spread in these data? Why?

13. Super Bowl points. How many points do football
teams score in the Super Bowl? Here are the total num-
bers of points scored by both teams in each of the first 42
Super Bowl games:

45, 47, 23, 30, 29, 27, 21, 31, 22, 38, 46, 37, 66, 50, 37, 47, 44,
47, 54, 56, 59, 52, 36, 65, 39, 61, 69, 43, 75, 44, 56, 55, 53, 39,
41, 37, 69, 61, 45, 31, 46, 31

a) Find the median.
b) Find the quartiles.
c) Write a description based on the 5-number summary.

14. Super Bowl wins. In the Super Bowl, by how many
points does the winning team outscore the losers? Here are
the winning margins for the first 42 Super Bowl games:

25, 19, 9, 16, 3, 21, 7, 17, 10, 4, 18, 17, 4, 12, 17, 5, 10, 29, 22,
36, 19, 32, 4, 45, 1, 13, 35, 17, 23, 10, 14, 7, 15, 7, 27, 3, 27, 3,
3, 11, 12, 3

a) Find the median.
b) Find the quartiles.
c) Write a description based on the 5-number summary.

15. Standard deviation I. For each lettered part, a through
c, examine the two given sets of numbers. Without doing
any calculations, decide which set has the larger standard
deviation and explain why. Then check by finding the
standard deviations by hand.

Set 1 Set 2

a) 3, 5, 6, 7, 9 2, 4, 6, 8, 10
b) 10, 14, 15, 16, 20 10, 11, 15, 19, 20
c) 2, 6, 6, 9, 11, 14 82, 86, 86, 89, 91, 94

16. Standard deviation II. For each lettered part, a
through c, examine the two given sets of numbers. With-
out doing any calculations, decide which set has the
larger standard deviation and explain why. Then check
by finding the standard deviations by hand.

Set 1 Set 2

a) 4, 7, 7, 7, 10 4, 6, 7, 8, 10
b) 100, 140, 150, 160, 200 10, 50, 60, 70, 110
c) 10, 16, 18, 20, 22, 28 48, 56, 58, 60, 62, 70

17. Pizza prices. The histogram shows the distribution 
of the prices of plain pizza slices (in $) for 156 weeks in
Dallas, TX.

Which summary statistics would you choose to summa-
rize the center and spread in these data? Why?
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18. Neck size. The histogram shows the neck sizes (in
inches) of 250 men recruited for a health study in Utah.

Which summary statistics would you choose to summa-
rize the center and spread in these data? Why?

19. Pizza prices again. Look again at the histogram of the
pizza prices in Exercise 17.
a) Is the mean closer to $2.40, $2.60, or $2.80? Why?
b) Is the standard deviation closer to $0.15, $0.50, or

$1.00? Explain.

20. Neck sizes again. Look again at the histogram of
men’s neck sizes in Exercise 18.
a) Is the mean closer to 14, 15, or 16 inches? Why?
b) Is the standard deviation closer to 1 inch, 3 inches, or 

5 inches? Explain.

21. Movie lengths. The histogram shows the running
times in minutes of 122 feature films released in 2005.

a) You plan to see a movie this weekend. Based on these
movies, how long do you expect a typical movie to run?

b) Would you be surprised to find that your movie ran
for hours (150 minutes)?

c) Which would you expect to be higher: the mean or the
median run time for all movies? Why?

22. Golf drives. The display shows the average drive 
distance (in yards) for 202 professional golfers on the
men’s PGA tour.
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a) Describe this distribution.
b) Approximately what proportion of professional male

golfers drive, on average, less than 280 yards?
c) Estimate the mean by examining the histogram.
d) Do you expect the mean to be smaller than, approxi-

mately equal to, or larger than the median? Why?

23. Movie lengths II. Exercise 21 looked at the running
times of movies released in 2005. The standard deviation
of these running times is 19.6 minutes, and the quartiles
are minutes and minutes.
a) Write a sentence or two describing the spread in 

running times based on 
i) the quartiles.
ii) the standard deviation.

b) Do you have any concerns about using either of these
descriptions of spread? Explain.

24. Golf drives II. Exercise 22 looked at distances PGA
golfers can hit the ball. The standard deviation of these
average drive distances is 9.3 yards, and the quartiles are

yards and yards.
a) Write a sentence or two describing the spread in 

distances based on
i) the quartiles.
ii) the standard deviation.

b) Do you have any concerns about using either of these
descriptions of spread? Explain.

25. Mistake. A clerk entering salary data into a company
spreadsheet accidentally put an extra “0” in the boss’s
salary, listing it as $2,000,000 instead of $200,000. Explain
how this error will affect these summary statistics for the
company payroll:
a) measures of center: median and mean.
b) measures of spread: range, IQR, and standard 

deviation.

26. Cold weather. A meteorologist preparing a talk about
global warming compiled a list of weekly low tempera-
tures (in degrees Fahrenheit) he observed at his southern
Florida home last year. The coldest temperature for any
week was , but he inadvertently recorded the Celsius
value of Assuming that he correctly listed all the other
temperatures, explain how this error will affect these
summary statistics:
a) measures of center: mean and median.
b) measures of spread: range, IQR, and standard 

deviation.

27. Movie budgets. The histogram shows the budgets 
(in millions of dollars) of major release movies in 2005.

An industry publication reports that the average movie
costs $35 million to make, but a watchdog group con-
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cerned with rising ticket prices says that the average cost
is $46.8 million. What statistic do you think each group is
using? Explain.

28. Sick days. During contract negotiations, a company
seeks to change the number of sick days employees may
take, saying that the annual “average” is 7 days of ab-
sence per employee. The union negotiators counter that
the “average” employee misses only 3 days of work each
year. Explain how both sides might be correct, identifying
the measure of center you think each side is using and
why the difference might exist.

29. Payroll. A small warehouse employs a supervisor at
$1200 a week, an inventory manager at $700 a week, 
six stock boys at $400 a week, and four drivers at $500 
a week.
a) Find the mean and median wage.
b) How many employees earn more than the mean

wage?
c) Which measure of center best describes a typical wage

at this company: the mean or the median?
d) Which measure of spread would best describe the

payroll: the range, the IQR, or the standard deviation?
Why?

30. Singers. The frequency table shows the heights (in
inches) of 130 members of a choir.

a) Find the median and IQR.
b) Find the mean and standard deviation.
c) Display these data with a histogram.
d) Write a few sentences describing the distribution.

31. Gasoline. In March 2006, 16 gas stations in Grand 
Junction, CO, posted these prices for a gallon of regular
gasoline:

2.22 2.21 2.45 2.24
2.27 2.28 2.27 2.23
2.26 2.46 2.29 2.32
2.36 2.38 2.33 2.27

a) Make a stem-and-leaf display of these gas prices. Use
split stems; for example, use two 2.2 stems—one for
prices between $2.20 and $2.24 and the other for prices
from $2.25 to $2.29.

b) Describe the shape, center, and spread of this 
distribution.

c) What unusual feature do you see?

32. The Great One. During his 20 seasons in the NHL,
Wayne Gretzky scored 50% more points than anyone who
ever played professional hockey. He accomplished this
amazing feat while playing in 280 fewer games than
Gordie Howe, the previous record holder. Here are the
number of games Gretzky played during each season:

79, 80, 80, 80, 74, 80, 80, 79, 64, 78, 73, 78, 74, 45, 81, 48, 80,
82, 82, 70

a) Create a stem-and-leaf display for these data, using
split stems.

b) Describe the shape of the distribution.
c) Describe the center and spread of this distribution.
d) What unusual feature do you see? What might explain

this?

33. States. The stem-and-leaf display shows populations of
the 50 states and Washington, DC, in millions of people,
according to the 2000 census. 

a) What measures of center and spread are most 
appropriate?

b) Without doing any calculations, which must be larger:
the median or the mean? Explain how you know.

c) From the stem-and-leaf display, find the median and
the interquartile range.

d) Write a few sentences describing this distribution.

34. Wayne Gretzky. In Exercise 32, you examined the
number of games played by hockey great Wayne Gretzky
during his 20-year career in the NHL.
a) Would you use the median or the mean to describe the

center of this distribution? Why?
b) Find the median.
c) Without actually finding the mean, would you expect

it to be higher or lower than the median? Explain.

35. Home runs. The stem-and-leaf display shows the num-
ber of home runs hit by Mark McGwire during the
1986–2001 seasons. Describe the distribution, mentioning
its shape and any unusual features. 
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Exercises 75

Height Count Height Count

60 2 69 5
61 6 70 11
62 9 71 8
63 7 72 9
64 5 73 4
65 20 74 2
66 18 75 4
67 7 76 1
68 12
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36. Bird species. The Cornell Lab of Ornithology holds an
annual Christmas Bird Count (www.birdsource.org), in
which bird watchers at various locations around the
country see how many different species of birds they can
spot. Here are some of the counts reported from sites in
Texas during the 1999 event:

228 178 186 162 206 166 163
183 181 206 177 175 167 162
160 160 157 156 153 153 152

a) Create a stem-and-leaf display of these data.
b) Write a brief description of the distribution. Be sure 

to discuss the overall shape as well as any unusual
features.

37. Hurricanes 2006. The data below give the number of
hurricanes classified as major hurricanes in the Atlantic
Ocean each year from 1944 through 2006, as reported by
NOAA (www.nhc.noaa.gov):

3, 2, 1, 2, 4, 3, 7, 2, 3, 3, 2, 5, 2, 2, 4, 2, 2, 6, 0, 2, 5, 1, 3, 1, 0,
3, 2, 1, 0, 1, 2, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 3, 0, 1, 3, 2, 1, 2, 1, 1,
0, 5, 6, 1, 3, 5, 3, 3, 2, 3, 6, 7, 2

a) Create a dotplot of these data.
b) Describe the distribution.

38. Horsepower. Create a stem-and-leaf display for these
horsepowers of autos reviewed by Consumer Reports one
year, and describe the distribution:

155 103 130 80 65
142 125 129 71 69
125 115 138 68 78
150 133 135 90 97
68 105 88 115 110
95 85 109 115 71
97 110 65 90
75 120 80 70

39. Home runs again. Students were asked to make a 
histogram of the number of home runs hit by Mark 
McGwire from 1986 to 2001 (see Exercise 35). One 
student submitted the following display: 

a) Comment on this graph.
b) Create your own histogram of the data.
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40. Return of the birds. Students were given the 
assignment to make a histogram of the data on bird
counts reported in Exercise 36. One student submitted 
the following display: 

a) Comment on this graph.
b) Create your own histogram of the data.

41. Acid rain. Two researchers measured the pH (a scale
on which a value of 7 is neutral and values below 7 are
acidic) of water collected from rain and snow over a 
6-month period in Allegheny County, PA. Describe their
data with a graph and a few sentences:

4.57 5.62 4.12 5.29 4.64 4.31 4.30 4.39 4.45
5.67 4.39 4.52 4.26 4.26 4.40 5.78 4.73 4.56
5.08 4.41 4.12 5.51 4.82 4.63 4.29 4.60

42. Marijuana 2003. In 2003 the Council of Europe 
published a report entitled The European School Survey
Project on Alcohol and Other Drugs (www.espad.org).
Among other issues, the survey investigated the per-
centages of 16-year-olds who had used marijuana.
Shown here are the results for 20 European countries.
Create an appropriate graph of these data, and describe
the distribution.
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Country Percentage

Austria 21%
Belgium 32%
Bulgaria 21%
Croatia 22%
Cyprus 4%
Czech 

Republic 44%
Denmark 23%
Estonia 23%
Faroe 

Islands 9%
Finland 11%
France 22%
Germany 27%
Greece 6%
Greenland 27%
Hungary 16%
Iceland 13%
Ireland 39%
Isle of Man 39%

Country Percentage

Italy 27%
Latvia 16%
Lithuania 13%
Malta 10%
Netherlands 28%
Norway 9%
Poland 18%
Portugal 15%
Romania 3%
Russia 22%
Slovak 

Republic 27%
Slovenia 28%
Sweden 7%
Switzerland 40%
Turkey 4%
Ukraine 21%
United 

Kingdom 38%
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43. Final grades. A professor (of something other than Sta-
tistics!) distributed the following histogram to show the
distribution of grades on his 200-point final exam. Com-
ment on the display. 

44. Final grades revisited. After receiving many com-
plaints about his final-grade histogram from students
currently taking a Statistics course, the professor from 
Exercise 43 distributed the following revised histogram: 

a) Comment on this display.
b) Describe the distribution of grades.

45. Zip codes. Holes-R-Us, an Internet company that sells
piercing jewelry, keeps transaction records on its sales. At a
recent sales meeting, one of the staff presented a histogram
of the zip codes of the last 500 customers, so that the staff
might understand where sales are coming from. Comment
on the usefulness and appropriateness of the display. 

46. Zip codes revisited. Here are some summary statistics
to go with the histogram of the zip codes of 500 cus-
tomers from the Holes-R-Us Internet Jewelry Salon that
we saw in Exercise 45:

What can these statistics tell you about the company’s
sales?
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47. Math scores 2005. The National Center for Education
Statistics (http://nces.ed.gov/nationsreportcard/) 
reported 2005 average mathematics achievement scores
for eighth graders in all 50 states:

a) Find the median, the IQR, the mean, and the standard
deviation of these state averages.

b) Which summary statistics would you report for these
data? Why?

c) Write a brief summary of the performance of eighth
graders nationwide.

48. Boomtowns. In 2006, Inc. magazine (www.inc.com)
listed its choice of “boomtowns” in the United States—
larger cities that are growing rapidly. Here is the maga-
zine’s top 20, along with their job growth percentages:

Exercises 77

Count 500
Mean 64,970.0
StdDev 23,523.0
Median 64,871
IQR 44,183
Q1 46,050
Q3 90,233

T

T

State Score State Score

Alabama 225 Montana 241
Alaska 236 Nebraska 238
Arizona 230 Nevada 230
Arkansas 236 New Hampshire 246
California 230 New Jersey 244
Colorado 239 New Mexico 224
Connecticut 242 New York 238
Delaware 240 North Carolina 241
Florida 239 North Dakota 243
Georgia 234 Ohio 242
Hawaii 230 Oklahoma 234
Idaho 242 Oregon 238
Illinois 233 Pennsylvania 241
Indiana 240 Rhode Island 233
Iowa 240 South Carolina 238
Kansas 246 South Dakota 242
Kentucky 231 Tennessee 232
Louisiana 230 Texas 242
Maine 241 Utah 239
Maryland 238 Vermont 244
Massachusetts 247 Virginia 240
Michigan 238 Washington 242
Minnesota 246 West Virginia 231
Mississippi 227 Wisconsin 241
Missouri 235 Wyoming 243

City
1-Year 

Job Growth (%)

Las Vegas, NV 7.5
Fort Lauderdale, FL 4.2
Orlando, FL 4.5
West Palm Beach-Boca Raton, FL 3.4
San Bernadino-Riverside, CA 1.9
Phoenix, AZ 4.4
Northern Virginia, VA 3.1
Washington, DC-Arlington-
Alexandria, VA 3.2

Tampa-St. Petersburg, FL 2.6
Camden-Burlington counties, NJ 2.6

(continued)
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a) Make a suitable display of the growth rates.
b) Summarize the typical growth rate among these cities

with a median and mean. Why do they differ?
c) Given what you know about the distribution, which

of the measures in b) does the better job of summariz-
ing the growth rates? Why?

d) Summarize the spread of the growth rate distribution
with a standard deviation and with an IQR.

e) Given what you know about the distribution, which
of the measures in d) does the better job of summariz-
ing the growth rates? Why?

f) Suppose we subtract from each of the preceding
growth rates the predicted U.S. average growth rate of
1.20%, so that we can look at how much these growth
rates exceed the U.S. rate. How would this change the
values of the summary statistics you calculated
above? (Hint: You need not recompute any of the 
summary statistics from scratch.)

g) If we were to omit Las Vegas from the data, how would
you expect the mean, median, standard deviation, and
IQR to change? Explain your expectations for each.

h) Write a brief report about all of these growth rates.

49. Gasoline usage 2004. The California Energy Commis-
sion (www.energy.ca.gov/gasoline/) collects data on the
amount of gasoline sold in each state. The following data
show the per capita (gallons used per person) consump-
tion in the year 2004. Using appropriate graphical 
displays and summary statistics, write a report on the
gasoline use by state in the year 2004.

50. Prisons 2005. A report from the U.S. Department of
Justice (www.ojp.usdoj.gov/bjs/) reported the percent
changes in federal prison populations in 21 northeastern
and midwestern states during 2005. Using appropriate
graphical displays and summary statistics, write a report
on the changes in prison populations.

78 CHAPTER 4    Displaying and Summarizing Quantitative Data

State
Gallons 

per Capita State
Gallons 

per Capita

Alabama 529.4 Hawaii 358.7
Alaska 461.7 Idaho 454.8
Arizona 381.9 Illinois 408.3
Arkansas 512.0 Indiana 491.7
California 414.4 Iowa 555.1
Colorado 435.7 Kansas 511.8
Connecticut 435.7 Kentucky 526.6
Delaware 541.6 Louisiana 507.8
Florida 496.0 Maine 576.3
Georgia 537.1 Maryland 447.5

City
1-Year 

Job Growth (%)

Jacksonville, FL 2.6
Charlotte, NC 3.3
Raleigh-Cary, NC 2.8
Richmond, VA 2.9
Salt Lake City, UT 3.3
Putnam-Rockland-Westchester 

counties, New York 2.3
Santa Ana-Anaheim-Irvine, CA 1.7
Miami-Miami Beach, FL 2.2
Sacramento, CA 1.5
San Diego, CA 1.4

T

T

Percent Percent
State Change State Change

Connecticut Iowa 2.5
Maine 0.0 Kansas 1.1
Massachusetts 5.5 Michigan 1.4
New Hampshire 3.3 Minnesota 6.0
New Jersey 2.2 Missouri
New York Nebraska 7.9
Pennsylvania 3.5 North Dakota 4.4
Rhode Island 6.5 Ohio 2.3
Vermont 5.6 South Dakota 11.9
Illinois 2.0 Wisconsin
Indiana 1.9

-1.0

-1.6
-0.8

-0.3

Massachusetts 458.5 Oklahoma 614.2
Michigan 482.0 Oregon 418.4
Minnesota 527.7 Pennsylvania 386.8
Mississippi 558.5 Rhode Island 454.6
Missouri 550.5 South Carolina 578.6
Montana 544.4 South Dakota 564.4
Nebraska 470.1 Tennessee 552.5
Nevada 367.9 Texas 532.7
New Hampshire 544.4 Utah 460.6
New Jersey 488.2 Vermont 545.5
New Mexico 508.8 Virginia 526.9
New York 293.4 Washington 423.6
North Carolina 505.0 West Virginia 426.7
North Dakota 553.7 Wisconsin 449.8
Ohio 451.1 Wyoming 615.0
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Exercises 79

JUST CHECKING 
Answers

(Thoughts will vary.)

1. Roughly symmetric, slightly skewed to the right.
Center around 3 miles? Few over 10 miles.

2. Bimodal. Center between 1 and 2 hours? Many 
people watch no football; others watch most of one 
or more games. Probably only a few values over 
5 hours.

3. Strongly skewed to the right, with almost everyone 
at $0; a few small prizes, with the winner an outlier.

4. Fairly symmetric, somewhat uniform, perhaps
slightly skewed to the right. Center in the 40s? Few
ages below 25 or above 70.

5. Uniform, symmetric. Center near 5. Roughly equal
counts for each digit 0–9.

6. Incomes are probably skewed to the right and not
symmetric, making the median the more appropriate
measure of center. The mean will be influenced by
the high end of family incomes and not reflect the
“typical” family income as well as the median would.
It will give the impression that the typical income is
higher than it is.

7. An IQR of 30 mpg would mean that only 50% of the
cars get gas mileages in an interval 30 mpg wide.
Fuel economy doesn’t vary that much. 3 mpg is 
reasonable. It seems plausible that 50% of the cars
will be within about 3 mpg of each other. An IQR of
0.3 mpg would mean that the gas mileage of half
the cars varies little from the estimate. It’s unlikely
that cars, drivers, and driving conditions are that
consistent.

8. We’d prefer a standard deviation of 2 months. Mak-
ing a consistent product is important for quality. 
Customers want to be able to count on the MP3
player lasting somewhere close to 5 years, and a 
standard deviation of 2 years would mean that life-
spans were highly variable.
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80

CHAPTER

5
Understanding 
and Comparing
Distributions

The Hopkins Memorial Forest is a 2500-acre reserve in Massachusetts,
New York, and Vermont managed by the Williams College Center for En-
vironmental Studies (CES). As part of their mission, CES monitors forest
resources and conditions over the long term. They post daily measure-

ments at their Web site.1 You can go there, download, and analyze data for any
range of days. We’ll focus for now on 1989. As we’ll see, some interesting things
happened that year. 

One of the variables measured in the forest is wind speed. Three remote
anemometers generate far too much data to report, so, as summaries, you’ll find
the minimum, maximum, and average wind speed (in mph) for each day.

Wind is caused as air flows from areas of high pressure to areas of low pres-
sure. Centers of low pressure often accompany storms, so both high winds and
low pressure are associated with some of the fiercest storms. Wind speeds can
vary greatly during a day and from day to day, but if we step back a bit farther,
we can see patterns. By modeling these patterns, we can understand things about
Average Wind Speed that we may not have known.

In Chapter 3 we looked at the association between two categorical variables
using contingency tables and displays. Here we’ll explore different ways of
examining the relationship between two variables when one is quantitative, and
the other is categorical and indicates groups to compare. We are given wind speed
averages for each day of 1989. But we can collect the days together into different
size groups and compare the wind speeds among them. If we consider Time as a
categorical variable in this way, we’ll gain enormous flexibility for our analysis
and for our understanding. We’ll discover new insights as we change the granu-
larity of the grouping variable—from viewing the whole year’s data at one
glance, to comparing seasons, to looking for patterns across months, and, finally,
to looking at the data day by day.

WHO Days during 1989

WHAT Average daily wind
speed (mph), Average
barometric pressure
(mb), Average daily
temperature (deg 
Celsius)

WHEN 1989

WHERE Hopkins Forest, 
in Western 
Massachusetts

WHY Long-term observa-
tions to study ecology
and climate

1 www.williams.edu/CES/hopkins.htm
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Boxplots and 5-Number Summaries 81

The Big Picture
Let’s start with the “big picture.” Here’s a histogram and 5-
number summary of the Average Wind Speed for every day in 1989.
Because of the skewness, we’ll report the median and IQR. We can
see that the distribution of Average Wind Speed is unimodal and
skewed to the right. Median daily wind speed is about 1.90 mph,
and on half of the days, the average wind speed is between 1.15
and 2.93 mph. We also see a rather windy 8.67-mph day. Was that
unusually windy or just the windiest day of the year? To answer
that, we’ll need to work with the summaries a bit more.

2 The axis could also run horizontally.
3 Some computer programs draw wider boxes for larger data sets. That can be useful when
comparing groups.
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FIGURE 5.1
A histogram of daily Average Wind Speed for 1989. It is uni-
modal and skewed to the right, with a possible high outlier.

Boxplots and 5-Number Summaries
Once we have a 5-number summary of a (quantitative) variable, we can display
that information in a boxplot. To make a boxplot of the average wind speeds,
follow these steps:

1. Draw a single vertical axis spanning the extent of the data.2 Draw short horizon-
tal lines at the lower and upper quartiles and at the median. Then connect them
with vertical lines to form a box. The box can have any width that looks OK.3

2. To help us construct the boxplot, we erect “fences” around the main part of the
data. We place the upper fence 1.5 IQRs above the upper quartile and the lower
fence 1.5 IQRs below the lower quartile. For the wind speed data, we compute

and

The fences are just for construction and are not part of the display. We show
them here with dotted lines for illustration. You should never include them in
your boxplot.

3. We use the fences to grow “whiskers.” Draw lines from the ends of the box up
and down to the most extreme data values found within the fences. If a data value
falls outside one of the fences, we do not connect it with a whisker.

4. Finally, we add the outliers by displaying any data values beyond the fences
with special symbols. (We often use a different symbol for “far outliers”—
data values farther than 3 IQRs from the quartiles.) 

What does a boxplot show? The center of a boxplot is (remarkably enough)
a box that shows the middle half of the data, between the quartiles. The height of
the box is equal to the IQR. If the median is roughly centered between the quar-
tiles, then the middle half of the data is roughly symmetric. If the median is not
centered, the distribution is skewed. The whiskers show skewness as well if they
are not roughly the same length. Any outliers are displayed individually, both to
keep them out of the way for judging skewness and to encourage you to give
them special attention. They may be mistakes, or they may be the most interest-
ing cases in your data.

Lowerfence = Q1 - 1.5 IQR = 1.15 - 1.5 * 1.78 = -1.52 mph

Upper fence = Q3 + 1.5 IQR = 2.93 + 1.5 * 1.78 = 5.60 mph
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Boxplots. Watch a boxplot
under construction.

Boxplots and dotplots. Drag data
points around to explore what a
boxplot shows (and doesn’t).
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FIGURE 5.3
Histograms of Average Wind Speed
for days in Spring/Summer (left) and
Fall/Winter (right) show very different
patterns.
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FIGURE 5.2
By turning the boxplot and putting it on
the same scale as the histogram, we can
compare both displays of the daily wind
speeds and see how each represents the
distribution.

For the Hopkins Forest data, the central box contains each day whose Average
Wind Speed is between 1.15 and 2.93 miles per hour (see Figure 5.2). From the
shape of the box, it looks like the central part of the distribution of wind speeds is
roughly symmetric, but the longer upper whisker indicates that the distribution
stretches out at the upper end. We also see a few very windy days. Boxplots are
particularly good at pointing out outliers. These extraordinarily windy days may
deserve more attention. We’ll give them that extra attention shortly. 

The prominent statistician
John W.Tukey, the originator
of the boxplot, was asked by
one of the authors why the
outlier nomination rule cut
at 1.5 IQRs beyond each
quartile. He answerd that 
the reason was that 1 IQR
would be too small and 
2 IQRs would be too large.
That works for us.

Activity: Playing with
Summaries. See how different
summary measures behave as
you place and drag values, and
see how sensitive some statistics
are to individual data values.

Comparing Groups with Histograms
It is almost always more interesting to compare groups. Is it windier in the winter or
the summer? Are any months particularly windy? Are weekends a special problem?
Let’s split the year into two groups: April through September (Spring/Summer) and
October through March (Fall/Winter). To compare the groups, we create two his-
tograms, being careful to use the same scale. Here are displays of the average daily
wind speed for Spring/Summer (on the left) and Fall/Winter (on the right): 

The shapes, centers, and spreads of these two distributions are strikingly differ-
ent. During spring and summer (histogram on the left), the distribution is skewed to
the right. A typical day during these warmer months has an average wind speed of
only 1 to 2 mph, and few have average speeds above 3 mph. In the colder months
(histogram on the right), however, the shape is less strongly skewed and more
spread out. The typical wind speed is higher, and days with average wind speeds
above 3 mph are not unusual. There are several noticeable high values.

Summaries for Average Wind Speed by Season

Group Mean StdDev Median IQR

Fall/Winter 2.71 1.36 2.47 1.87
Spring/Summer 1.56 1.01 1.34 1.32

the shape of a distribution is not
always evident in a boxplot.
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Comparing Groups with Boxplots 83

Comparing Groups with Boxplots
Are some months windier than others? Even residents may not have a good idea
of which parts of the year are the most windy. (Do you know for your hometown?)
We’re not interested just in the centers, but also in the spreads. Are wind speeds
equally variable from month to month, or do some months show more variation?

Earlier, we compared histograms of the wind speeds for two halves of the
year. To look for seasonal trends, though, we’ll group the daily observations by
month. Histograms or stem-and-leaf displays are a fine way to look at one distri-
bution or two. But it would be hard to see patterns by comparing 12 histograms.
Boxplots offer an ideal balance of information and simplicity, hiding the details
while displaying the overall summary information. So we often plot them side by
side for groups or categories we wish to compare.

By placing boxplots side by side, we can easily see which groups have higher
medians, which have the greater IQRs, where the central 50% of the data is lo-
cated in each group, and which have the greater overall range. And, when the
boxes are in an order, we can get a general idea of patterns in both the centers and
the spreads. Equally important, we can see past any outliers in making these com-
parisons because they’ve been displayed separately.

Here are boxplots of the Average Daily Wind Speed by month: 

Video: Can Diet Prolong
Life? Here’s a subject that’s been
in the news: Can you live longer
by eating less? (Or would it just
seem longer?) Look at the data in
subsequent activities, and you’ll
find that you can learn a lot by
comparing two groups with
boxplots. 

Comparing groups with stem-and-leaf displaysFOR EXAMPLE

In 2004 the infant death rate in the United States was 6.8 deaths per 1000 live births. The Kaiser
Family Foundation collected data from all 50 states and the District of Columbia, allowing us to look
at different regions of the country. Since there are only 51 data values, a back-to-back stem-and-
leaf plot is an effective display. Here’s one comparing infant death rates in the Northeast and Mid-
west to those in the South and West. In this display the stems run down the middle of the plot, with
the leaves for the two regions to the left or right. Be careful when you read the values on the left:
4|11| means a rate of 11.4 deaths per 1000 live birth for one of the southern or western states.

Question: How do infant death rates compare for these regions?

In general, infant death rates were generally higher for states in the South
and West than in the Northeast and Midwest. The distribution for the
northeastern and midwestern states is roughly uniform, varying from a low
of 4.8 to a high of 8.1 deaths per 1000 live births. Ten southern and west-
ern states had higher infant death rates than any in the Northeast or Midwest, with one state over 11. Rates varied
more widely in the South and West, where the distribution is skewed to the right and possibly bimodal. We should inves-
tigate further to see which states represent the cluster of high death rates.

South
and West

North
and M idwest

1 1
10
9
8
7
6
5
4
3

4
3 0
0 0

0 4 1 6 9 5 8
0 5 0 3

4 1 0 4 9 1 1 6 4
6 3 6 2

1 0
5 8 0 7 4 1
3 1 5 4 4
8 4 0 6
8 8 9 7

Infant Death Rates (by state) 2004

(4 |11| means 11.4 deaths per 1000 live births)

2

4

6

8

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Av
er

ag
e 

W
in

d 
Sp

ee
d 

(m
ph

)

✴FIGURE 5.4
Boxplots of the average daily wind
speed for each month show seasonal
patterns in both the centers and
spreads.
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84 CHAPTER 5    Understanding and Comparing Distributions

Here we see that wind speeds tend to decrease in the summer. The months in
which the winds are both strongest and most variable are November through
March. And there was one remarkably windy day in November.

When we looked at a boxplot of wind speeds for the entire year, there were
only 5 outliers. Now, when we group the days by Month, the boxplots display
more days as outliers and call out one in November as a far outlier. The boxplots
show different outliers than before because some days that seemed ordinary
when placed against the entire year’s data looked like outliers for the month that
they’re in. That windy day in July certainly wouldn’t stand out in November or
December, but for July, it was remarkable.

Comparing distributionsFOR EXAMPLE

Roller coasters4 are a thrill ride in many amusement parks worldwide. And thrill seekers want a
coaster that goes fast. There are two main types of roller coasters: those with wooden tracks 
and those with steel tracks. Do they typically run at different speeds? Here are boxplots: 

Question: Compare the speeds of wood and steel roller coasters.

Overall, wooden-track roller coasters are slower than steel-track coasters.
In fact, the fastest half of the steel coasters are faster than three quar-
ters of the wooden coasters. Although the IQRs of the two groups are sim-
ilar, the range of speeds among steel coasters is larger than the range for
wooden coasters. The distribution of speeds of wooden coasters appears
to be roughly symmetric, but the speeds of the steel coasters are skewed to the right, and there
is a high outlier at 120 mph. We should look into why that steel coaster is so fast.

4 See the Roller Coaster Data Base at www.rcdb.com.

Of course, we can compare groups even when they are not in any particular order. Most scientific
studies compare two or more groups. It is almost always a good idea to start an analysis of data
from such studies by comparing boxplots for the groups. Here’s an example:

For her class project, a student compared the efficiency of various coffee containers. For her
study, she decided to try 4 different containers and to test each of them 8 different times. Each
time, she heated water to 180 F, poured it into a container, and sealed it. (We’ll learn the details of
how to set up experiments in Chapter 13.) After 30 minutes, she measured the temperature again
and recorded the difference in temperature. Because these are temperature differences, smaller
differences mean that the liquid stayed hot—just what we would want in a coffee mug.

Question: What can we say about the effectiveness of these four mugs?

°

Comparing GroupsSTEP-BY-STEP EXAMPLE
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I want to compare the effectiveness of the dif-
ferent mugs in maintaining temperature. I have
8 measurements of Temperature Change for
each of the mugs.

Ç Quantitative Data Condition: The Temper-
ature Changes are quantitative, with units
of F. Boxplots are appropriate displays 
for comparing the groups. Numerical sum-
maries of each group are appropriate 
as well.

°

Plan State what you want to find out.

Variables Identify the variables and re-
port the W’s.

Be sure to check the appropriate condition.

Mechanics Report the 5-number sum-
maries of the four groups. Including the
IQR is a good idea as well.

Make a picture. Because we want to com-
pare the distributions for four groups,
boxplots are an appropriate choice. 20
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CUPPS Nissan SIGG Starbucks
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 (°
F)

Container

Min Q1 Median Q3 Max IQR

CUPPS 6 F° 6 8.25 14.25 18.50 8.25
Nissan 0 1 2 4.50 7 3.50
SIGG 9 11.50 14.25 21.75 24.50 10.25
Starbucks 6 6.50 8.50 14.25 17.50 7.75

The individual distributions of temperature
changes are all slightly skewed to the high end.
The Nissan cup does the best job of keeping
liquids hot, with a median loss of only 2 F, and
the SIGG cup does the worst, typically losing 
14 F. The difference is large enough to be impor-
tant: A coffee drinker would be likely to notice 
a 14 drop in temperature. And the mugs are
clearly different: 75% of the Nissan tests showed
less heat loss than any of the other mugs in the
study. The IQR of results for the Nissan cup is
also the smallest of these test cups, indicating
that it is a consistent performer.

°

°

°

Conclusion Interpret what the boxplots
and summaries say about the ability of
these mugs to retain heat. Compare the
shapes, centers, and spreads, and note
any outliers.
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86 CHAPTER 5    Understanding and Comparing Distributions

JUST CHECKING
The Bureau of Transportation Statistics of the U.S. Department of Transportation collects and publishes statis-

tics on airline travel (www.transtats.bts.gov). Here are three displays of the % of flights arriving late each month
from 1995 through 2005: 

1. Describe what the histogram says about late arrivals.

2. What does the boxplot of late arrivals suggest that you can’t see in the histogram?

3. Describe the patterns shown in the boxplots by month. At what time of year are flights least likely to be late?
Can you suggest reasons for this pattern? 
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In the last chapter we looked at the performances of fourth-grade students on
an agility test. Now let’s make comparative boxplots for the boys’ scores and
the girls’ scores:

Boys: 22, 17, 18, 29, 22, 22, 23, 24, 23, 17, 21
Girls: 25, 20, 12, 19, 28, 24, 22, 21, 25, 26, 25, 16, 27, 22

Enter these data in L1 (Boys) and L2 (Girls).

Set up STATPLOT’s Plot1 to make a boxplot of the boys’ data:

• Turn the plot On;
• Choose the first boxplot icon (you want your plot to indicate outliers);
• Specify Xlist:L1 and Freq:1, and select the Mark you want the calcu-

lator to use for displaying any outliers.

Use ZoomStat to display the boxplot for Boys. You can now TRACE to see
the statistics in the five-number summary. Try it!

As you did for the boys, set up Plot2 to display the girls’ data. This time
when you use ZoomStat with both plots turned on, the display shows the
parallel boxplots. See the outlier?

This is a great opportunity to practice your “Tell” skills. How do these fourth
graders compare in terms of agility?

Comparing groups with boxplots
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Outliers
When we looked at boxplots for the Average Wind Speed by Month, we noticed that
several days stood out as possible outliers and that one very windy day in No-
vember seemed truly remarkable. What should we do with such outliers?

Cases that stand out from the rest of the data almost always deserve our at-
tention. An outlier is a value that doesn’t fit with the rest of the data, but exactly
how different it should be to be treated specially is a judgment call. Boxplots pro-
vide a rule of thumb to highlight these unusual points, but that rule doesn’t tell
you what to do with them. 

So, what should we do with outliers? The first thing to do is to try to understand
them in the context of the data. A good place to start is with a histogram. His-
tograms show us more detail about a distribution than a boxplot can, so they give
us a better idea of how the outlier fits (or doesn’t fit) in with the rest of the data.

A histogram of the Average Wind Speed in November shows a slightly
skewed main body of data and that very windy day clearly set apart from the
other days. When considering whether a case is an outlier, we often look at
the gap between that case and the rest of the data. A large gap suggests that
the case really is quite different. But a case that just happens to be the largest
or smallest value at the end of a possibly stretched-out tail may be best
thought of as just . . . the largest or smallest value. After all, some case has to
be the largest or smallest.

Some outliers are simply unbelievable. If a class survey includes a stu-
dent who claims to be 170 inches tall (about 14 feet, or 4.3 meters), you can be
pretty sure that’s an error.

Once you’ve identified likely outliers, you should always investigate
them. Some outliers are just errors. A decimal point may have been misplaced,
digits transposed, or digits repeated or omitted. The units may be wrong. (Was
that outlying height reported in centimeters rather than in inches [170 cm =
65 in.]?) Or a number may just have been transcribed incorrectly, perhaps

copying an adjacent value on the original data sheet. If you can identify the cor-
rect value, then you should certainly fix it. One important reason to look into out-
liers is to correct errors in your data.

Many outliers are not wrong; they’re just different. Such cases often repay the
effort to understand them. You can learn more from the extraordinary cases than
from summaries of the overall data set.

What about that windy November day? Was it really that windy, or could
there have been a problem with the anemometers? A quick Internet search for
weather on November 21, 1989, finds that there was a severe storm: 
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FIGURE 5.5
The Average Wind Speed in November is slightly
skewed with a high outlier.

WIND, SNOW, COLD GIVE N.E. A TASTE OF WINTER
Published on November 22, 1989
Author: Andrew Dabilis, Globe Staff

An intense storm roared like the Montreal Express through New England
yesterday, bringing frigid winds of up to 55 m.p.h., 2 feet of snow in some
parts of Vermont and a preview of winter after weeks of mild weather.
Residents throughout the region awoke yesterday to an icy vortex that
lifted an airplane off the runway in Newark and made driving dangerous
in New England because of rapidly shifting winds that seemed to come
from all directions.
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88 CHAPTER 5    Understanding and Comparing Distributions

When we have outliers, we need to decide what to Tell about the data. If we
can correct an error, we’ll just summarize the corrected data (and note the correc-
tion). But if we see no way to correct an outlying value, or if we confirm that it is
correct, our best path is to report summaries and analyses with and without the
outlier. In this way a reader can judge for him- or herself what influence the out-
lier has and decide what to think about the data.

There are two things we should never do with outliers. The first is to silently
leave an outlier in place and proceed as if nothing were unusual. Analyses of
data with outliers are very likely to be influenced by those outliers—sometimes
to a large and misleading degree. The other is to drop an outlier from the analy-
sis without comment just because it’s unusual. If you want to exclude an outlier,
you must discuss your decision and, to the extent you can, justify your decision.

Case Study: Are
passengers or drivers safer in a
crash? Practice the skills of this
chapter by comparing these two
groups.

Checking out the outliersFOR EXAMPLE

Recap: We’ve looked at the speeds of roller coasters and found a difference between steel- and wooden-
track coasters. We also noticed an extraordinary value.

Question: The fastest coaster in this collection turns out to be the “Top Thrill Dragster” at Cedar Point
amusement park. What might make this roller coaster unusual? You’ll have to do some research, but
that’s often what happens with outliers.

The Top Thrill Dragster is easy to find in an Internet search. We learn that it is a “hy-
draulic launch” coaster. That is, it doesn’t get its remarkable speed just from gravity,
but rather from a kick-start by a hydraulic piston. That could make it different from
the other roller coasters.
(You might also discover that it is no longer the fastest roller coaster in the world.)
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Timeplots: Order, Please!
The Hopkins Forest wind speeds are reported as daily averages. Previously, we
grouped the days into months or seasons, but we could look at the wind speed
values day by day. Whenever we have data measured over time, it is a good idea
to look for patterns by plotting the data in time order. Here are the daily average
wind speeds plotted over time: 
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FIGURE 5.6
A timeplot of Average Wind Speed
shows the overall pattern and
changes in variation.
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Re-expressing Data: A First Look 89

A display of values against time is sometimes called a timeplot. This timeplot
reflects the pattern that we saw when we plotted the wind speeds by month. But
without the arbitrary divisions between months, we can see a calm period during
the summer, starting around day 200 (the middle of July), when the wind is rela-
tively mild and doesn’t vary greatly from day to day. We can also see that the
wind becomes both more variable and stronger during the early and late parts of
the year.

Looking into the Future
It is always tempting to try to extend what we see in a timeplot into the future.
Sometimes that makes sense. Most likely, the Hopkins Forest climate follows reg-
ular seasonal patterns. It’s probably safe to predict a less windy June next year
and a windier November. But we certainly wouldn’t predict another storm on
November 21.

Other patterns are riskier to extend into the future. If a stock has been ris-
ing, will it continue to go up? No stock has ever increased in value indefinitely,
and no stock analyst has consistently been able to forecast when a stock’s value
will turn around. Stock prices, unemployment rates, and other economic, social,
or psychological concepts are much harder to predict than physical quantities.
The path a ball will follow when thrown from a certain height at a given speed
and direction is well understood. The path interest rates will take is much less
clear. Unless we have strong (nonstatistical) reasons for doing otherwise, we
should resist the temptation to think that any trend we see will continue, even
into the near future.

Statistical models often tempt those who use them to think beyond the data.
We’ll pay close attention later in this book to understanding when, how, and how
much we can justify doing that.

Re-expressing Data: A First Look

Re-expressing to Improve Symmetry
When the data are skewed, it can be hard to summarize them simply with a cen-
ter and spread, and hard to decide whether the most extreme values are outliers
or just part of the stretched-out tail. How can we say anything useful about such
data? The secret is to re-express the data by applying a simple function to each
value.

Many relationships and “laws” in the sciences and social sciences include
functions such as logarithms, square roots, and reciprocals. Similar relationships
often show up in data. Here’s a simple example:

In 1980 large companies’ chief executive officers (CEOs) made, on average,
about 42 times what workers earned. In the next two decades, CEO compensation
soared when compared to the average worker. By 2000 that multiple had jumped5

5 Sources: United for a Fair Economy, Business Week annual CEO pay surveys, Bureau of
Labor Statistics, “Average Weekly Earnings of Production Workers, Total Private Sector.”
Series ID: EEU00500004.
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90 CHAPTER 5    Understanding and Comparing Distributions

to 525. What does the distribution of the compensation of Fortune 500 companies’
CEOs look like? Here’s a histogram and boxplot for 2005 compensation: 
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FIGURE 5.7
Compensation paid to CEOs of the Fortune 500 companies 
in 2005. The distribution seems to have outliers. But
maybe it just has a long tail on the right.

We have 500 CEOs and about 48 possible histogram bins, most of which are
empty—but don’t miss the tiny bars straggling out to the right. The boxplot indi-
cates that some CEOs received extraordinarily high compensations, while the ma-
jority received relatively “little.” But look at the values of the bins. The first bin,
with about half the CEOs, covers incomes from $0 to $5,000,000. Imagine receiving
a salary survey with these categories:

What is your income?
a) $0 to $5,000,000
b) $5,000,001 to $10,000,000
c) $10,000,001 to $15,000,000
d) More than $15,000,000

The reason that the histogram seems to leave so much of the area blank is that
the salaries are spread all along the axis from about $15,000,000 to $240,000,000.
After $50,000,000 there are so few for each bin that it’s very hard to see the tiny
bars. What we can see from this histogram and boxplot is that this distribution is
highly skewed to the right.

It can be hard to decide what we mean by the “center” of a skewed distribution,
so it’s hard to pick a typical value to summarize the distribution. What would you
say was a typical CEO total compensation? The mean value is $10,307,000, while the
median is “only” $4,700,000. Each tells us something different about the data.

One approach is to re-express, or transform, the data by applying a simple
function to make the skewed distribution more symmetric. For example, we could
take the square root or logarithm of each compensation value. Taking logs works
pretty well for the CEO compensations, as you can see: 
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FIGURE 5.8
The logarithms of 2005 CEO compensations
are much more nearly symmetric.
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Re-expressing to Equalize Spread Across Groups
Researchers measured the concentration (nanograms per milliliter) of cotinine in
the blood of three groups of people: nonsmokers who have not been exposed to
smoke, nonsmokers who have been exposed to smoke (ETS), and smokers. Coti-
nine is left in the blood when the body metabolizes nicotine, so this measure gives
a direct measurement of the effect of passive smoke exposure. The boxplots of the
cotinine levels of the three groups tell us that the smokers have higher cotinine
levels, but if we want to compare the levels of the passive smokers to those of the
nonsmokers, we’re in trouble, because on this scale, the cotinine levels for both
nonsmoking groups are too low to be seen. 

Re-expressing can help alleviate the problem of comparing groups that have
very different spreads. For measurements like the cotinine data, whose values
can’t be negative and whose distributions are skewed to the high end, a good first
guess at a re-expression is the logarithm.

After taking logs, we can compare the groups and see that the nonsmokers
exposed to environmental smoke (the ETS group) do show increased levels of
(log) cotinine, although not the high levels found in the blood of smokers.

Notice that the same re-expression has also improved the symmetry of the co-
tinine distribution for smokers and pulled in most of the apparent outliers in all
of the groups. It is not unusual for a re-expression that improves one aspect of
data to improve others as well. We’ll talk about other ways to re-express data as
the need arises throughout the book. We’ll explore some common re-expressions
more thoroughly in Chapter 10.

Re-expressing Data: A First Look 91

The histogram of the logs of the total CEO compensations is much more
nearly symmetric, so we can see that a typical log compensation is between 6,
which corresponds to $1,000,000, and 7, corresponding to $10,000,000. And it’s
easier to talk about a typical value for the logs. The mean log compensation is
6.73, while the median is 6.67. (That’s $5,370,317 and $4,677,351, respectively.) No-
tice that nearly all the values are between 6.0 and 8.0—in other words, between
$1,000,000 and $100,000,000 a year, but who’s counting?

Against the background of a generally symmetric main body of data, it’s eas-
ier to decide whether the largest compensations are outliers. In fact, the three most
highly compensated CEOs are identified as outliers by the boxplot rule of thumb
even after this re-expression. It’s perhaps impressive to be an outlier CEO in an-
nual compensation. It’s even more impressive to be an outlier in the log scale!

Dealing with logarithms You have probably learned about logs in math
courses and seen them in psychology or science classes. In this book, we use
them only for making data behave better. Base 10 logs are the easiest to under-
stand, but natural logs are often used as well. (Either one is fine.) You can think
of base 10 logs as roughly one less than the number of digits you need to write
the number. So 100, which is the smallest number to require 3 digits, has a log10
of 2. And 1000 has a log10 of 3. The log10 of 500 is between 2 and 3, but you’d
need a calculator to find that it’s approximately 2.7. All salaries of “six figures”
have log10 between 5 and 6. Logs are incredibly useful for making skewed data
more symmetric. But don’t worry—nobody does logs without technology and nei-
ther should you. Often, remaking a histogram or other display of the data is as
easy as pushing another button.
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FIGURE 5.9
Cotinine levels (nanograms per milliliter)
for three groups with different exposures
to tobacco smoke. Can you compare the
ETS (exposed to smoke) and No-ETS
groups?

FIGURE 5.10
Blood cotinine levels after taking logs.
What a difference a log makes!
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92 CHAPTER 5    Understanding and Comparing Distributions

WHAT CAN GO WRONG?
u Avoid inconsistent scales. Parts of displays should be mutually consistent—no fair

changing scales in the middle or plotting two variables on different scales but on
the same display. When comparing two groups, be sure to compare them on the
same scale.

u Label clearly. Variables should be identified clearly and axes
labeled so a reader knows what the plot displays.

Here’s a remarkable example of a plot gone wrong. It illus-
trated a news story about rising college costs. It uses time-
plots, but it gives a misleading impression. First think
about the story you’re being told by this display. Then try
to figure out what has gone wrong.

What’s wrong? Just about everything.

1 The horizontal scales are inconsistent. Both lines show
trends over time, but exactly for what years? The tuition
sequence starts in 1965, but rankings are graphed from
1989. Plotting them on the same (invisible) scale makes
it seem that they’re for the same years.

1 The vertical axis isn’t labeled. That hides the fact that it’s
inconsistent. Does it graph dollars (of tuition) or rank-
ing (of Cornell University)?

This display violates three of the rules. And it’s even
worse than that: It violates a rule that we didn’t even bother
to mention.

1 The two inconsistent scales for the vertical axis don’t
point in the same direction! The line for Cornell’s rank
shows that it has “plummeted” from 15th place to 6th
place in academic rank. Most of us think that’s an
improvement, but that’s not the message of this graph.

u Beware of outliers. If the data have outliers and you can cor-
rect them, you should do so. If they are clearly wrong or
impossible, you should remove them and report on them.
Otherwise, consider summarizing the data both with and
without the outliers.

CONNECTIONS
We discussed the value of summarizing a distribution with shape, center, and spread in Chapter 4,
and we developed several ways to measure these attributes. Now we’ve seen the value of compar-
ing distributions for different groups and of looking at patterns in a quantitative variable measured
over time. Although it can be interesting to summarize a single variable for a single group, it is al-
most always more interesting to compare groups and look for patterns across several groups and
over time. We’ll continue to make comparisons like these throughout the rest of our work.
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WHAT HAVE WE LEARNED?

u We’ve learned the value of comparing groups and looking for patterns among groups and over time.
u We’ve seen that boxplots are very effective for comparing groups graphically. When we compare

groups, we discuss their shape, center, and spreads, and any unusual features.
u We’ve experienced the value of identifying and investigating outliers. And we’ve seen that when

we group data in different ways, it can allow different cases to emerge as possible outliers.
u We’ve graphed data that have been measured over time against a time axis and looked for long-

term trends.

Terms
Boxplot 81. A boxplot displays the 5-number summary as a central box with whiskers that extend to the non-

outlying data values. Boxplots are particularly effective for comparing groups and for displaying outliers.

Outlier 81, 87. Any point more than 1.5 IQR from either end of the box in a boxplot is nominated as an
outlier.

Far Outlier 81. If a point is more than 3.0 IQR from either end of the box in a boxplot, it is nominated as a far
outlier.

Comparing distributions 82. When comparing the distributions of several groups using histograms or stem-and-leaf displays,
consider their:
u Shape
u Center
u Spread

Comparing boxplots 83. When comparing groups with boxplots:
u Compare the shapes. Do the boxes look symmetric or skewed? Are there differences between groups?
u Compare the medians. Which group has the higher center? Is there any pattern to the medians?
u Compare the IQRs. Which group is more spread out? Is there any pattern to how the IQRs change?
u Using the IQRs as a background measure of variation, do the medians seem to be different, or

do they just vary much as you’d expect from the overall variation?
u Check for possible outliers. Identify them if you can and discuss why they might be unusual. Of

course, correct them if you find that they are errors.

Timeplot 88. A timeplot displays data that change over time. Often, successive values are connected with
lines to show trends more clearly. Sometimes a smooth curve is added to the plot to help show long-
term patterns and trends.

Skills
u Be able to select a suitable display for comparing groups. Understand that histograms show dis-

tributions well, but are difficult to use when comparing more than two or three groups. Boxplots
are more effective for comparing several groups, in part because they show much less informa-
tion about the distribution of each group.

u Understand that how you group data can affect what kinds of patterns and relationships you are
likely to see. Know how to select groupings to show the information that is important for your
analysis.

u Be aware of the effects of skewness and outliers on measures of center and spread. Know how
to select appropriate measures for comparing groups based on their displayed distributions.

u Understand that outliers can emerge at different groupings of data and that, whatever their
source, they deserve special attention.

u Recognize when it is appropriate to make a timeplot.
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u Know how to make side-by-side histograms on comparable scales to compare the distributions
of two groups.

u Know how to make side-by-side boxplots to compare the distributions of two or more groups.

u Know how to describe differences among groups in terms of patterns and changes in their cen-
ter, spread, shape, and unusual values.

u Know how to make a timeplot of data that have been measured over time.

u Know how to compare the distributions of two or more groups by comparing their shapes, cen-
ters, and spreads. Be prepared to explain your choice of measures of center and spread for com-
paring the groups.

u Be able to describe trends and patterns in the centers and spreads of groups—especially if there
is a natural order to the groups, such as a time order.

u Be prepared to discuss patterns in a timeplot in terms of both the general trend of the data and
the changes in how spread out the pattern is.

u Be cautious about assuming that trends over time will continue into the future.

u Be able to describe the distribution of a quantitative variable in terms of its shape, center, and spread.

u Be able to describe any anomalies or extraordinary features revealed by the display of a variable.

u Know how to compare the distributions of two or more groups by comparing their shapes, cen-
ters, and spreads.

u Know how to describe patterns over time shown in a timeplot.

u Be able to discuss any outliers in the data, noting how they deviate from the overall pattern of
the data.

94 CHAPTER 5    Understanding and Comparing Distributions

COMPARING DISTRIBUTIONS ON THE COMPUTER

Most programs for displaying and analyzing data can display plots to compare the distributions of different
groups. Typically these are boxplots displayed side-by-side.
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Side-by-side boxplots
should be on the same
y-axis scale so they
can be compared.

Some programs offer 
a graphical way to assess 
how much the medians
differ by drawing a band
around the median or by 
“notching” the boxes.

Boxes are typically labeled with a group name.
Often they are placed in alphabetical order by
group name—not the most useful order.
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EXERCISES

1. In the news. Find an article in a newspaper, magazine,
or the Internet that compares two or more groups of data.
a) Does the article discuss the W’s?
b) Is the chosen display appropriate? Explain.
c) Discuss what the display reveals about the groups.
d) Does the article accurately describe and interpret the

data? Explain.

2. In the news. Find an article in a newspaper, magazine,
or the Internet that shows a time plot.
a) Does the article discuss the W’s?
b) Is the timeplot appropriate for the data? Explain.
c) Discuss what the timeplot reveals about the variable.
d) Does the article accurately describe and interpret the

data? Explain.

3. Time on the Internet. Find data on the Internet (or
elsewhere) that give results recorded over time. Make an
appropriate display and discuss what it shows.

4. Groups on the Internet. Find data on the Internet 
(or elsewhere) for two or more groups. Make appropriate
displays to compare the groups, and interpret what you
find.

5. Pizza prices. A company that sells frozen pizza to
stores in four markets in the United States (Denver,
Baltimore, Dallas, and Chicago) wants to examine the
prices that the stores charge for pizza slices. Here are
boxplots comparing data from a sample of stores in
each market:
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a) Do prices appear to be the same in the four markets?
Explain.

b) Does the presence of any outliers affect your overall
conclusions about prices in the four markets?

6. Costs. To help travelers know what to expect, 
researchers collected the prices of commodities in 
16 cities throughout the world. Here are boxplots
comparing the prices of a ride on public transporta-
tion, a newspaper, and a cup of coffee in the 16 cities
(prices are all in $US).
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a) On average, which commodity is the most expensive?
b) Is a newspaper always more expensive than a ride on

public transportation? Explain.
c) Does the presence of outliers affect your conclusions

in a) or b)?

7. Still rockin’. Crowd Management Strategies monitors
accidents at rock concerts. In their database, they list the
names and other variables of victims whose deaths were
attributed to “crowd crush” at rock concerts. Here are the
histogram and boxplot of the victims’ ages for data from
1999 to 2000:
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a) What features of the distribution can you see in both
the histogram and the boxplot?

b) What features of the distribution can you see in the
histogram that you could not see in the boxplot?

c) What summary statistic would you choose to summa-
rize the center of this distribution? Why?

d) What summary statistic would you choose to summa-
rize the spread of this distribution? Why?

8. Slalom times. The Men’s Combined skiing event con-
sists of a downhill and a slalom. Here are two displays of
the slalom times in the Men’s Combined at the 2006
Winter Olympics:

T

✴

10

20

30

40

50

Ag
e 

(y
r)

87.5 97.5 107.5 
Slalom Times (sec) 

2 

4 

6 

8 

10 

# 
of

 S
ki

er
s

82.5 

90.0 

97.5 

105.0 

112.5 

Slalom Times 

Se
co

nd
s 

BOCK_C05_0321570448 pp3.qxd  11/12/08  2:58 AM  Page 95
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a) What features of the distribution can you see in both
the histogram and the boxplot?

b) What features of the distribution can you see in the
histogram that you could not see in the boxplot?

c) What summary statistic would you choose to
summarize the center of this distribution? Why?

d) What summary statistic would you choose to
summarize the spread of this distribution? Why?

9. Cereals. Sugar is a major ingredient in many breakfast
cereals. The histogram displays the sugar content as a
percentage of weight for 49 brands of cereal. The boxplot
compares sugar content for adult and children’s cereals. 
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a) What is the range of the sugar contents of these cereals.
b) Describe the shape of the distribution.
c) What aspect of breakfast cereals might account for this

shape?
d) Are all children’s cereals higher in sugar than adult 

cereals?
e) Which group of cereals varies more in sugar content?

Explain.

10. Tendon transfers. People with spinal cord injuries
may lose function in some, but not all, of their muscles.
The ability to push oneself up is particularly important
for shifting position when seated and for transferring into
and out of wheelchairs. Surgeons compared two opera-
tions to restore the ability to push up in children. The his-
togram shows scores rating pushing strength two years
after surgery and boxplots compare results for the two
surgical methods. (Mulcahey, Lutz, Kozen, Betz, “Prospec-
tive Evaluation of Biceps to Triceps and Deltoid to Triceps
for Elbow Extension in Tetraplegia,” Journal of Hand
Surgery, 28, 6, 2003)

T

a) Describe the shape of this distribution.
b) What is the range of the strength scores?
c) What fact about results of the two procedures is 

hidden in the histogram?
d) Which method had the higher (better) median score?
e) Was that method always best?
f) Which method produced the most consistent results?

Explain.

11. Population growth. Here is a “back-to-back” stem-
and-leaf display that shows two data sets at once—one
going to the left, one to the right. The display compares
the percent change in population for two regions of the
United States (based on census figures for 1990 and 2000).
The fastest growing states were Nevada at 66% and Ari-
zona at 40%. To show the distributions better, this display
breaks each stem into two lines, putting leaves 0–4 on one
stem and leaves 5–9 on the other.
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a) Use the data displayed in the stem-and-leaf display to
construct comparative boxplots.

b) Write a few sentences describing the difference in
growth rates for the two regions of the United States.

12. Camp sites. Shown below are the histogram and sum-
mary statistics for the number of camp sites at public
parks in Vermont.
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a) Which statistics would you use to identify the center
and spread of this distribution? Why?

b) How many parks would you classify as outliers? 
Explain.

c) Create a boxplot for these data.
d) Write a few sentences describing the distribution.

13. Hospital stays. The U.S. National Center for Health
Statistics compiles data on the length of stay by patients
in short-term hospitals and publishes its findings in Vital
and Health Statistics. Data from a sample of 39 male pa-
tients and 35 female patients on length of stay (in days)
are displayed in the histograms below.
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a) What would you suggest be changed about these 
histograms to make them easier to compare?

b) Describe these distributions by writing a few sen-
tences comparing the duration of hospitalization for
men and women.

c) Can you suggest a reason for the peak in women’s
length of stay?

14. Deaths 2003. A National Vital Statistics Report
(www.cdc.gov/nchs/) indicated that nearly 300,000 black
Americans died in 2003, compared with just over 2 million
white Americans. Here are histograms displaying the dis-
tributions of their ages at death:
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a) Describe the overall shapes of these distributions.
b) How do the distributions differ?
c) Look carefully at the bar definitions. Where do these

plots violate the rules for statistical graphs?

15. Women’s basketball. Here are boxplots of the points
scored during the first 10 games of the season for both
Scyrine and Alexandra:
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a) Summarize the similarities and differences in their
performance so far.

b) The coach can take only one player to the state cham-
pionship. Which one should she take? Why?

16. Gas prices. Here are boxplots of weekly gas prices at a
service station in the midwestern United States (prices in
$ per gallon):
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a) Compare the distribution of prices over the three
years.

b) In which year were the prices least stable? Explain.

17. Marriage age. In 1975, did men and women marry at
the same age? Here are boxplots of the age at first mar-
riage for a sample of U.S. citizens then. Write a brief re-
port discussing what these data show.

T

BOCK_C05_0321570448 pp3.qxd  11/12/08  2:58 AM  Page 97



98 CHAPTER 5    Understanding and Comparing Distributions

18. Fuel economy. Describe what these boxplots tell you
about the relationship between the number of cylinders a
car’s engine has and the car’s fuel economy (mpg):
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19. Fuel economy II. The Environmental Protection Agency
provides fuel economy and pollution information on over
2000 car models. Here is a boxplot of Combined Fuel Econ-
omy (using an average of driving conditions) in miles per
gallon by vehicle Type (car, van, or SUV). Summarize what
you see about the fuel economies of the three vehicle types.

22. Eye and hair color. A survey of 1021 school-age chil-
dren was conducted by randomly selecting children from
several large urban elementary schools. Two of the ques-
tions concerned eye and hair color. In the survey, the fol-
lowing codes were used:

20. Ozone. Ozone levels (in parts per billion, ppb) were
recorded at sites in New Jersey monthly between 1926
and 1971. Here are boxplots of the data for each month
(over the 46 years), lined up in order (January = 1):
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a) In what month was the highest ozone level ever
recorded?

b) Which month has the largest IQR?
c) Which month has the smallest range?
d) Write a brief comparison of the ozone levels in 

January and June.
e) Write a report on the annual patterns you see in the

ozone levels.

21. Test scores. Three Statistics classes all took the same
test. Histograms and boxplots of the scores for each class
are shown below. Match each class with the correspond-
ing boxplot.
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The Statistics students analyzing the data were asked to
study the relationship between eye and hair color. They
produced this plot:
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Is their graph appropriate? If so, summarize the findings.
If not, explain why not.

23. Graduation? A survey of major universities asked
what percentage of incoming freshmen usually graduate
“on time” in 4 years. Use the summary statistics given to
answer the questions that follow.

a) Would you describe this distribution as symmetric or
skewed? Explain.

b) Are there any outliers? Explain.
c) Create a boxplot of these data.
d) Write a few sentences about the graduation rates.

24. Vineyards. Here are summary statistics for the sizes
(in acres) of Finger Lakes vineyards:

T

Count 36
Mean 46.50 acres
StdDev 47.76
Median 33.50
IQR 36.50
Min 6
Q1 18.50
Q3 55
Max 250

a) Would you describe this distribution as symmetric or
skewed? Explain.

b) Are there any outliers? Explain.
c) Create a boxplot of these data.
d) Write a few sentences about the sizes of the vineyards.

a) Describe the W’s for these data.
b) Name the variables and classify each as categorical or

quantitative.
c) Create parallel boxplots to display these results as best

you can with this information.
d) Write a few sentences comparing the performances of

the three groups.

26. SAT scores. Here are the summary statistics for Verbal
SAT scores for a high school graduating class:

25. Caffeine. A student study of the effects of caffeine
asked volunteers to take a memory test 2 hours after
drinking soda. Some drank caffeine-free cola, some drank
regular cola (with caffeine), and others drank a mixture
of the two (getting a half-dose of caffeine). Here are the 
5-number summaries for each group’s scores (number
of items recalled correctly) on the memory test:

n Min Q1 Median Q3 Max

No caffeine 15 16 20 21 24 26
Low caffeine 15 16 18 21 24 27
High caffeine 15 12 17 19 22 24

n Mean Median SD Min Max Q1 Q3

Male 80 590 600 97.2 310 800 515 650
Female 82 602 625 102.0 360 770 530 680

a) Create parallel boxplots comparing the scores of boys
and girls as best you can from the information given.

b) Write a brief report on these results. Be sure to discuss
the shape, center, and spread of the scores.

27. Derby speeds 2007. How fast do horses run? Ken-
tucky Derby winners top 30 miles per hour, as shown in
this graph. The graph shows the percentage of Derby
winners that have run slower than each given speed. Note
that few have won running less than 33 miles per hour,
but about 86% of the winning horses have run less than
37 miles per hour. (A cumulative frequency graph like
this is called an “ogive.”)
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Count 48
Mean 68.35
Median 69.90
StdDev 10.20
Min 43.20
Max 87.40
Range 44.20
25th %tile 59.15
75th %tile 74.75
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a) Estimate the median winning speed.
b) Estimate the quartiles.
c) Estimate the range and the IQR.
d) Create a boxplot of these speeds.
e) Write a few sentences about the speeds of the 

Kentucky Derby winners.

28. Cholesterol. The Framingham Heart Study recorded
the cholesterol levels of more than 1400 men. Here is
an ogive of the distribution of these cholesterol meas-
ures. (An ogive shows the percentage of cases at or be-
low a certain value.) Construct a boxplot for these data,
and write a few sentences describing the distribution.
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29. Reading scores. A class of fourth graders takes a diag-
nostic reading test, and the scores are reported by reading
grade level. The 5-number summaries for the 14 boys and
11 girls are shown:

Boys: 2.0 3.9 4.3 4.9 6.0

Girls: 2.8 3.8 4.5 5.2 5.9

a) Which group had the highest score?
b) Which group had the greater range?
c) Which group had the greater interquartile range?
d) Which group’s scores appear to be more skewed? 

Explain.
e) Which group generally did better on the test? Explain.
f) If the mean reading level for boys was 4.2 and for girls

was 4.6, what is the overall mean for the class?

30. Rainmakers? In an experiment to determine whether
seeding clouds with silver iodide increases rainfall, 
52 clouds were randomly assigned to be seeded or not.
The amount of rain they generated was then measured
(in acre-feet). Here are the summary statistics:

T

31. Industrial experiment. Engineers at a computer pro-
duction plant tested two methods for accuracy in drilling
holes into a PC board. They tested how fast they could set
the drilling machine by running 10 boards at each of two
different speeds. To assess the results, they measured the
distance (in inches) from the center of a target on the
board to the center of the hole. The data and summary
statistics are shown in the table:

Write a report summarizing the findings of the experi-
ment. Include appropriate visual and verbal displays of
the distributions, and make a recommendation to the en-
gineers if they are most interested in the accuracy of the
method.

32. Cholesterol. A study examining the health risks of
smoking measured the cholesterol levels of people who
had smoked for at least 25 years and people of similar
ages who had smoked for no more than 5 years and then
stopped. Create appropriate graphical displays for both
groups, and write a brief report comparing their choles-
terol levels. Here are the data:

33. MPG. A consumer organization compared gas mileage
figures for several models of cars made in the United
States with autos manufactured in other countries. The
data are shown in the table:

Distance (in.) Speed Distance (in.) Speed

0.000101 Fast 0.000098 Slow
0.000102 Fast 0.000096 Slow
0.000100 Fast 0.000097 Slow
0.000102 Fast 0.000095 Slow
0.000101 Fast 0.000094 Slow
0.000103 Fast 0.000098 Slow
0.000104 Fast 0.000096 Slow
0.000102 Fast 0.975600 Slow
0.000102 Fast 0.000097 Slow
0.000100 Fast 0.000096 Slow

Mean 0.000102 Mean 0.097647
StdDev 0.000001 StdDev 0.308481

T

T

T

T

a) Which of the summary statistics are most appropriate
for describing these distributions. Why?

b) Do you see any evidence that seeding clouds may be
effective? Explain.

n Mean Median SD IQR Q1 Q3

Unseeded 26 164.59 44.20 278.43 138.60 24.40 163
Seeded 26 441.98 221.60 650.79 337.60 92.40 430

Smokers Ex-Smokers

225 211 209 284 250 134 300
258 216 196 288 249 213 310
250 200 209 280 175 174 328
225 256 243 200 160 188 321
213 246 225 237 213 257 292
232 267 232 216 200 271 227
216 243 200 155 238 163 263
216 271 230 309 192 242 249
183 280 217 305 242 267 243
287 217 246 351 217 267 218
200 280 209 217 183 228
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Gas Mileage 
(mpg)

Country Gas Mileage 
(mpg)

Country

16.9 U.S. 26.8 U.S.
15.5 U.S. 33.5 U.S.
19.2 U.S. 34.2 U.S.
18.5 U.S. 16.2 Other
30.0 U.S. 20.3 Other
30.9 U.S. 31.5 Other
20.6 U.S. 30.5 Other
20.8 U.S. 21.5 Other
18.6 U.S. 31.9 Other
18.1 U.S. 37.3 Other
17.0 U.S. 27.5 Other
17.6 U.S. 27.2 Other
16.5 U.S. 34.1 Other
18.2 U.S. 35.1 Other
26.5 U.S. 29.5 Other
21.9 U.S. 31.8 Other
27.4 U.S. 22.0 Other
28.4 U.S. 17.0 Other
28.8 U.S. 21.6 Other

a) Create graphical displays for these two groups.
b) Write a few sentences comparing the distributions.

34. Baseball. American League baseball teams play their
games with the designated hitter rule, meaning that
pitchers do not bat. The League believes that replacing
the pitcher, typically a weak hitter, with another player in
the batting order produces more runs and generates more
interest among fans. Following are the average number of
runs scored in American League and National League
stadiums for the first half of the 2001 season:

T

Average Runs League Average Runs League

11.1 American 14.0 National
10.8 American 11.6 National
10.8 American 10.4 National
10.3 American 10.9 National
10.3 American 10.2 National
10.1 American 9.5 National
10.0 American 9.5 National
9.5 American 9.5 National
9.4 American 9.5 National
9.3 American 9.1 National
9.2 American 8.8 National
9.2 American 8.4 National
9.0 American 8.3 National
8.3 American 8.2 National

8.1 National
7.9 National

a) Create an appropriate graphical display of these data.
b) Write a few sentences comparing the average number

of runs scored per game in the two leagues. (Remem-
ber: shape, center, spread, unusual features!)

c) Coors Field in Denver stands a mile above sea level,
an altitude far greater than that of any other major
league ball park. Some believe that the thinner air
makes it harder for pitchers to throw curveballs and
easier for batters to hit the ball a long way. Do you see
any evidence that the 14 runs scored per game there is
unusually high? Explain.

35. Fruit Flies. Researchers tracked a population of
1,203,646 fruit flies, counting how many died each day
for 171 days. Here are three timeplots offering different
views of these data. One shows the number of flies alive
on each day, one the number who died that day, and the
third the mortality rate—the fraction of the number alive
who died. On the last day studied, the last 2 flies died, for
a mortality rate of 1.0.
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a) On approximately what day did the most flies die?
b) On what day during the first 100 days did the largest

proportion of flies die?
c) When did the number of fruit flies alive stop changing

very much from day to day?

36. Drunk driving 2005. Accidents involving drunk driv-
ers account for about 40% of all deaths on the nation’s
highways. The table tracks the number of alcohol-related
fatalities for 24 years. (www.madd.org)
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Year Deaths (thousands) Year Deaths (thousands)

1982 26.2 1994 17.3
1983 24.6 1995 17.7
1984 24.8 1996 17.7
1985 23.2 1997 16.7
1986 25.0 1998 16.7
1987 24.1 1999 16.6
1988 23.8 2000 17.4
1989 22.4 2001 17.4
1990 22.6 2002 17.5
1991 20.2 2003 17.1
1992 18.3 2004 16.9
1993 17.9 2005 16.9

a) Create a stem-and-leaf display or a histogram of these
data.

b) Create a timeplot.
c) Using features apparent in the stem-and-leaf display

(or histogram) and the timeplot, write a few sentences
about deaths caused by drunk driving.

37. Assets. Here is a histogram of the assets (in millions of
dollars) of 79 companies chosen from the Forbes list of the
nation’s top corporations:
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a) What aspect of this distribution makes it difficult to
summarize, or to discuss, center and spread?

b) What would you suggest doing with these data if we
want to understand them better?

38. Music library. Students were asked how many songs
they had in their digital music libraries. Here’s a display
of the responses:
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a) What aspect of this distribution makes it difficult to
summarize, or to discuss, center and spread?

b) What would you suggest doing with these data if we
want to understand them better?

39. Assets again. Here are the same data you saw in
Exercise 37 after re-expressions as the square root of
assets and the logarithm of assets:
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a) Which re-expression do you prefer? Why?
b) In the square root re-expression, what does the value

50 actually indicate about the company’s assets?
c) In the logarithm re-expression, what does the value 3

actually indicate about the company’s assets?

40. Rainmakers. The table lists the amount of rainfall (in
acre-feet) from the 26 clouds seeded with silver iodide
discussed in Exercise 30:

2745 703
1697 489
1656 430
978 334

302 242
274 200
274 198
255 129

119 40
118 32
115 31
92 17

7
4

T

T

a) Why is acre-feet a good way to measure the amount of
precipitation produced by cloud seeding?

b) Plot these data, and describe the distribution.
c) Create a re-expression of these data that produces a

more advantageous distribution.
d) Explain what your re-expressed scale means.

41. Stereograms. Stereograms appear to be composed en-
tirely of random dots. However, they contain separate im-
ages that a viewer can “fuse” into a three-dimensional
(3D) image by staring at the dots while defocusing the
eyes. An experiment was performed to determine
whether knowledge of the embedded image affected the

T
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Exercises 103

time required for subjects to fuse the images. One group
of subjects (group NV) received no information or just
verbal information about the shape of the embedded ob-
ject. A second group (group VV) received both verbal in-
formation and visual information (specifically, a drawing
of the object). The experimenters measured how many
seconds it took for the subject to report that he or she saw
the 3D image.
a) What two variables are discussed in this description?
b) For each variable, is it quantitative or categorical? If

quantitative, what are the units?
c) The boxplots compare the fusion times for the two

treatment groups. Write a few sentences comparing
these distributions. What does the experiment show?
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42. Stereograms, revisited. Because of the skewness of
the distributions of fusion times described in Exercise 41,
we might consider a re-expression. Here are the boxplots
of the log of fusion times. Is it better to analyze the origi-
nal fusion times or the log fusion times? Explain.
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JUST CHECKING
Answers

1. The % late arrivals have a unimodal, symmetric
distribution centered at about 20%. In most months
between 16% and 23% of the flights arrived late.

2. The boxplot of % late arrivals makes it easier to see
that the median is just below 20%, with quartiles at
about 17% and 22%. It nominates two months as high
outliers.

3. The boxplots by month show a strong seasonal pat-
tern. Flights are more likely to be late in the winter and
summer and less likely to be late in the spring and fall.
One likely reason for the pattern is snowstorms in the
winter and thunderstorms in the summer.
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CHAPTER

6

The women’s heptathlon in the Olympics consists of seven track and field
events: the 200-m and 800-m runs, 100-m high hurdles, shot put, javelin,
high jump, and long jump. To determine who should get the gold medal,
somehow the performances in all seven events have to be combined into

one score. How can performances in such different events be compared? They
don’t even have the same units; the races are recorded in minutes and seconds
and the throwing and jumping events in meters. In the 2004 Olympics, Austra
Skujyté of Lithuania put the shot 16.4 meters, about 3 meters farther than the
average of all contestants. Carolina Klüft won the long jump with a 6.78-m jump,
about a meter better than the average. Which performance deserves more points?
Even though both events are measured in meters, it’s not clear how to compare
them. The solution to the problem of how to compare scores turns out to be a
useful method for comparing all sorts of values whether they have the same
units or not.

The Standard Deviation as a Ruler
The trick in comparing very different-looking values is to
use standard deviations. The standard deviation tells us
how the whole collection of values varies, so it’s a natural
ruler for comparing an individual value to the group.
Over and over during this course, we will ask questions
such as “How far is this value from the mean?” or “How
different are these two statistics?” The answer in every
case will be to measure the distance or difference in stan-
dard deviations.

The concept of the standard deviation as a ruler is not
special to this course. You’ll find statistical distances measured in standard devia-
tions throughout Statistics, up to the most advanced levels.1 This approach is one
of the basic tools of statistical thinking. 

1 Other measures of spread could be used as well, but the standard deviation is the most
common measure, and it is almost always used as the ruler.

Grading on a Curve
If you score 79% on an exam, what grade should
you get? One teaching philosophy looks only 
at the raw percentage, 79, and bases the grade 
on that alone. Another looks at your relative
performance and bases the grade on how you 
did compared with the rest of the class.Teachers
and students still debate which method is better.

The Standard
Deviation as a 
Ruler and the 
Normal Model
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Standardizing with z-Scores 105

NOTATION ALERT:

There goes another letter.
We always use the letter z to
denote values that have been
standardized with the mean
and standard deviation.

The two winning performances on the top of each stem-and-leaf display ap-
pear to be about the same distance from the center of the pack. But look again
carefully. What do we mean by the same distance? The two displays have different
scales. Each line in the stem-and-leaf for the shot put represents half a meter, but
for the long jump each line is only a tenth of a meter. It’s only because our eyes
naturally adjust the scales and use the standard deviation as the ruler that we see

each as being about the same distance from the center of the data.
How can we make this hunch more precise? Let’s see how many stan-
dard deviations each performance is from the mean.

Klüft’s 6.78-m long jump is 0.62 meters longer than the mean jump
of 6.16 m. How many standard deviations better than the mean is that?
The standard deviation for this event was 0.23 m, so her jump was

standard deviations better than the
mean. Skujyté’s winning shot put was meters longer
than the mean shot put distance, and that’s standard
deviations better than the mean. That’s a great performance but not quite
as impressive as Klüft’s long jump, which was farther above the mean, as
measured in standard deviations.

Standardizing with z-Scores
To compare these athletes’ performances, we determined how many standard 
deviations from the event’s mean each was.

Expressing the distance in standard deviations standardizes the perform-
ances. To standardize a value, we simply subtract the mean performance in that
event and then divide this difference by the standard deviation. We can write the
calculation as

These values are called standardized values, and are commonly denoted with the
letter z. Usually, we just call them z-scores.

Standardized values have no units. z-scores measure the distance of each data
value from the mean in standard deviations. A z-score of 2 tells us that a data
value is 2 standard deviations above the mean. It doesn’t matter whether the orig-
inal variable was measured in inches, dollars, or seconds. Data values below the
mean have negative z-scores, so a z-score of means that the data value was
1.6 standard deviations below the mean. Of course, regardless of the direction, the
farther a data value is from the mean, the more unusual it is, so a z-score of -1.3

-1.6

z =

y - y

s
.

3.11>1.24 = 2.51
16.40 - 13.29 = 3.11

(6.78 - 6.16)>0.23 = 0.62>0.23 = 2.70
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FIGURE 6.1
Stem-and-leaf displays for both the long jump
and the shot put in the 2004 Olympic Hep-
tathlon. Carolina Klüft (green scores) won the
long jump, and Austra Skujyté (red scores) won
the shot put. Which heptathlete did better for
both events combined?

Event

Long Jump Shot Put

Mean
(all contestants)

6.16 m 13.29 m

SD 0.23 m 1.24 m
n 26 28

Klüft 6.78 m 14.77 m
Skujyté 6.30 m 16.40 m

In order to compare the two events, let’s start with a picture. This time we’ll
use stem-and-leaf displays so we can see the individual distances. 
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Standardizing skiing timesFOR EXAMPLE

The men’s combined skiing event in the winter Olympics consists of two races: a downhill and a slalom. Times for the two events are added together,
and the skier with the lowest total time wins. In the 2006 Winter Olympics, the mean slalom time was 94.2714 seconds with a standard deviation of
5.2844 seconds. The mean downhill time was 101.807 seconds with a standard deviation of 1.8356 seconds. Ted Ligety of the United States, who won
the gold medal with a combined time of 189.35 seconds, skied the slalom in 87.93 seconds and the downhill in 101.42 seconds.

Question: On which race did he do better compared with the competition?

For the slalom, Ligety’s z-score is found by subtracting 
the mean time from his time and then dividing by the 
standard deviation:

Similarly, his z-score for the downhill is:

The z-scores show that Ligety’s time in the slalom is farther below the mean than his time in the downhill. His
performance in the slalom was more remarkable.

zDownhill  =  
101.42 -  101.807

1.8356
 =  -0.21

zSlalom =  
87.93 -  94.2714

5.2844
 =  - 1.2

By using the standard deviation as a ruler to measure statistical distance
from the mean, we can compare values that are measured on different vari-
ables, with different scales, with different units, or for different individuals. To
determine the winner of the heptathlon, the judges must combine perform-
ances on seven very different events. Because they want the score to be ab-
solute, and not dependent on the particular athletes in each Olympics, they use
predetermined tables, but they could combine scores by standardizing each,
and then adding the z-scores together to reach a total score. The only trick is
that they’d have to switch the sign of the z-score for running events, because
unlike throwing and jumping, it’s better to have a running time below the
mean (with a negative z-score).

To combine the scores Skujyté and Klüft earned in the long jump and the shot
put, we standardize both events as shown in the table. That gives Klüft her 2.70 
z-score in the long jump and a 1.19 in the shot put, for a total of 3.89. Skujyté’s

shot put gave her a 2.51, but her long
jump was only 0.61 SDs above the mean,
so her total is 3.12.

Is this the result we wanted? Yes.
Each won one event, but Klüft’s shot
put was second best, while Skujyté’s
long jump was seventh. The z-scores
measure how far each result is from the
event mean in standard deviation units.
And because they are both in standard
deviation units, we can combine them.
Not coincidentally, Klüft went on to win
the gold medal for the entire seven-
event heptathlon, while Skujyté got the
silver. 

Event
Long Jump Shot Put

Mean
SD

6.16 m 
0.23 m

13.29 m 
1.24 m

Klüft Performance 6.78 m 14.77 m

z-score 6.78 - 6.16
0.23

= 2.70
14.77 - 13.29

1.24
= 1.19

Total z-score 2.70 + 1.19 = 3.89

Skujyté Performance 6.30 m 16.40 m

z-score 6.30 - 6.16
0.23

= 0.61 16.40 - 13.29
1.24

= 2.51

Total z-score 0.61 + 2.51 = 3.12

is more extraordinary than a z-score of 1.2. Looking at the z-scores, we can see that
even though both were winning scores, Klüft’s long jump with a z-score of 2.70 is
slightly more impressive than Skujyté’s shot put with a z-score of 2.51.
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Combining z-scoresFOR EXAMPLE

In the 2006 winter Olympics men’s combined event, lvica Kostelić of Croatia skied the slalom in 89.44 seconds and the downhill in 100.44 seconds. He
thus beat Ted Ligety in the downhill, but not in the slalom. Maybe he should have won the gold medal. 

Question: Considered in terms of standardized scores, which skier did better?

Kostelić’s z-scores are:

and

The sum of his z-scores is approximately –1.65. Ligety’s z-score sum is only about –1.41. Because the standard deviation
of the downhill times is so much smaller, Kostelić’s better performance there means that he would have won the event if
standardized scores were used.

zDownhill =

100.44 - 101.807
1.8356

= -0.74zSlalom =

89.44 - 94.2714
5.2844

= -0.91

When we standardize data to get a z-score, we do two things. First, we shift
the data by subtracting the mean. Then, we rescale the values by dividing by their
standard deviation. We often shift and rescale data. What happens to a grade dis-
tribution if everyone gets a five-point bonus? Everyone’s grade goes up, but does
the shape change? (Hint: Has anyone’s distance from the mean changed?) If we
switch from feet to meters, what happens to the distribution of heights of students
in your class? Even though your intuition probably tells you the answers to these
questions, we need to look at exactly how shifting and rescaling work.

JUST CHECKING
1. Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and

an 80 on test 2. You’re all set to drop the 80 until she announces that she grades “on a curve.” She standardized the
scores in order to decide which is the lower one. If the mean on the first test was 88 with a standard deviation of 4
and the mean on the second was 75 with a standard deviation of 5,
a) Which one will be dropped?
b) Does this seem “fair”?

Shifting Data
Since the 1960s, the Centers for Disease Control’s National Center for Health
Statistics has been collecting health and nutritional information on people of
all ages and backgrounds. A recent survey, the National Health and Nutrition
Examination Survey (NHANES) 2001–2002,2 measured a wide variety of vari-
ables, including body measurements, cardiovascular fitness, blood chemistry, and
demographic information on more than 11,000 individuals.

2 www.cdc.gov/nchs/nhanes.htm
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108 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

Their mean weight is 82.36 kg. For this age and height group, the National Insti-
tutes of Health recommends a maximum healthy weight of 74 kg, but we can see
that some of the men are heavier than the recommended weight. To compare their
weights to the recommended maximum, we could subtract 74 kg from each of
their weights. What would that do to the center, shape, and spread of the histo-
gram? Here’s the picture: 

Included in this group were 80 men between 19 and 24 years old of average
height (between and tall). Here are a histogram and boxplot of their
weights:

5¿10–5¿8–
WHO 80 male participants

of the NHANES sur-
vey between the ages
of 19 and 24 who
measured between 
68 and 70 inches tall

WHAT Their weights

UNIT Kilograms

WHEN 2001–2002

WHERE United States

WHY To study nutrition, 
and health issues and
trends

HOW National survey

25
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FIGURE 6.2
Histogram and boxplot for the men’s weights.
The shape is skewed to the right with several
high outliers.
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FIGURE 6.3
Subtracting 74 kilograms shifts the entire 
histogram down but leaves the spread and 
the shape exactly the same.

On average, they weigh 82.36 kg, so on average they’re 8.36 kg overweight. 
And, after subtracting 74 from each weight, the mean of the new distribution is

In fact, when we shift the data by adding (or subtracting) a
constant to each value, all measures of position (center, percentiles, min, max) will
increase (or decrease) by the same constant.

What about the spread? What does adding or subtracting a constant value do
to the spread of the distribution? Look at the two histograms again. Adding or
subtracting a constant changes each data value equally, so the entire distribution
just shifts. Its shape doesn’t change and neither does the spread. None of the
measures of spread we’ve discussed—not the range, not the IQR, not the standard
deviation—changes.

Adding (or subtracting) a constant to every data value adds (or subtracts) the same 
constant to measures of position, but leaves measures of spread unchanged.

Rescaling Data
Not everyone thinks naturally in metric units. Suppose we want to look at the
weights in pounds instead. We’d have to rescale the data. Because there are about
2.2 pounds in every kilogram, we’d convert the weights by multiplying each value
by 2.2. Multiplying or dividing each value by a constant changes the measurement

= 8.36 kg.82.36 - 74

Activity: Changing the
Baseline. What happens when
we shift data? Do measures of
center and spread change?

Doctors’ height and weight
charts sometimes give ideal
weights for various heights
that include 2-inch heels. If
the mean height of adult
women is 66 inches including
2-inch heels, what is the mean
height of women without
shoes? Each woman is shorter
by 2 inches when barefoot, so
the mean is decreased by 
2 inches, to 64 inches.

BOCK_C06_0321570448 pp3.qxd  12/1/08  6:00 PM  Page 108



Rescaling Data 109

units. Here are histograms of the two weight distributions, plotted on the same
scale, so you can see the effect of multiplying: 
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FIGURE 6.4
Men’s weights in both kilograms and
pounds. How do the distributions and
numerical summaries change?
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FIGURE 6.5
The boxplots (drawn on the same
scale) show the weights measured in
kilograms (on the left) and pounds 
(on the right). Because 1 kg is 2.2 lb,
all the points in the right box are 2.2
times larger than the corresponding
points in the left box. So each meas-
ure of position and spread is 2.2 times
as large when measured in pounds
rather than kilograms.

What happens to the shape of the distribution? Although the histograms
don’t look exactly alike, we see that the shape really hasn’t changed: Both are uni-
modal and skewed to the right.

What happens to the mean? Not too surprisingly, it gets multiplied by 2.2 as
well. The men weigh 82.36 kg on average, which is 181.19 pounds. As the box-
plots and 5-number summaries show, all measures of position act the same way.
They all get multiplied by this same constant.

What happens to the spread? Take a look at the boxplots. The spread in
pounds (on the right) is larger. How much larger? If you guessed 2.2 times, you’ve
figured out how measures of spread get rescaled.

Simulation: Changing the
Units. Change the center and
spread values for a distribution
and watch the summaries change
(or not, as the case may be).

Weight (kg) Weight (lb)

Min 54.3 119.46
Q1 67.3 148.06
Median 76.85 169.07
Q3 92.3 203.06
Max 161.5 355.30

IQR 25 55
SD 22.27 48.99

Rescaling the slalomFOR EXAMPLE

Recap: The times in the men’s combined event at the winter Olympics are reported in minutes and seconds. Previously, we converted these to
seconds and found the mean and standard deviation of the slalom times to be 94.2714 seconds and 5.2844 seconds, respectively.

Question: Suppose instead that we had reported the times in minutes—that is, that each individual time was divided by 60. What would the resulting
mean and standard deviation be?

Dividing all the times by 60 would divide both the mean and the standard deviation by 60:

 SD = 5.2844>60 = 0 .0881 minutes .Mean = 94.2714>60 = 1 .5712 minutes;

When we multiply (or divide) all the data values by any constant, all measures of 
position (such as the mean, median, and percentiles) and measures of spread (such as
the range, the IQR, and the standard deviation) are multiplied (or divided) by that
same constant.
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Back to z-scores
Standardizing data into z-scores is just shifting them by the mean and rescaling
them by the standard deviation. Now we can see how standardizing affects the
distribution. When we subtract the mean of the data from every data value, we
shift the mean to zero. As we have seen, such a shift doesn’t change the standard
deviation.

When we divide each of these shifted values by s, however, the standard devi-
ation should be divided by s as well. Since the standard deviation was s to start
with, the new standard deviation becomes 1.

How, then, does standardizing affect the distribution of a variable? Let’s con-
sider the three aspects of a distribution: the shape, center, and spread.

u Standardizing into z-scores does not change the shape of the distribution of a variable.

u Standardizing into z-scores changes the center by making the mean 0.

u Standardizing into z-scores changes the spread by making the standard deviation 1.

JUST CHECKING
2. In 1995 the Educational Testing Service (ETS) adjusted the scores of SAT tests. Before ETS recentered the SAT

Verbal test, the mean of all test scores was 450.
a) How would adding 50 points to each score affect the mean?
b) The standard deviation was 100 points. What would the standard deviation be after adding 50 points?
c) Suppose we drew boxplots of test takers’ scores a year before and a year after the recentering. How would the

boxplots of the two years differ?

3. A company manufactures wheels for in-line skates. The diameters of the wheels have a mean of 3 inches and 
a standard deviation of 0.1 inches. Because so many of their customers use the metric system, the company
decided to report their production statistics in millimeters They report that the standard
deviation is now 2.54 mm. A corporate executive is worried about this increase in variation. Should he be
concerned? Explain.

(1 inch = 25.4 mm).

Activity: Standardizing.
What if we both shift and rescale?
The result is so nice that we give
it a name.

z-scores have mean 0 and
standard deviation 1.

Many colleges and universities require applicants to submit scores on standardized tests such as
the SAT Writing, Math, and Critical Reading (Verbal) tests. The college your little sister wants to
apply to says that while there is no minimum score required, the middle 50% of their students
have combined SAT scores between 1530 and 1850.You’d feel confident if you knew her score was
in their top 25%, but unfortunately she took the ACT test, an alternative standardized test.

Question: How high does her ACT need to be to make it into the top quarter of equivalent SAT
scores?

To answer that question you’ll have to standardize all the scores, so you’ll need to know the
mean and standard deviations of scores for some group on both tests. The college doesn’t report
the mean or standard deviation for their applicants on either test, so we’ll use the group of all test
takers nationally. For college-bound seniors, the average combined SAT score is about 1500 and
the standard deviation is about 250 points. For the same group, the ACT average is 20.8 with a
standard deviation of 4.8.

Working with Standardized VariablesSTEP-BY-STEP EXAMPLE
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When Is a z-score BIG? 
A z-score gives us an indication of how unusual a value is because it tells us how
far it is from the mean. If the data value sits right at the mean, it’s not very far at all
and its z-score is 0. A z-score of 1 tells us that the data value is 1 standard deviation
above the mean, while a z-score of tells us that the value is 1 standard devia-

tion below the mean. How far from 0 does a z-score have to be to
be interesting or unusual? There is no universal standard, but
the larger the score is (negative or positive), the more unusual it
is. We know that 50% of the data lie between the quartiles. For
symmetric data, the standard deviation is usually a bit smaller
than the IQR, and it’s not uncommon for at least half of the data
to have z-scores between and 1. But no matter what the shape
of the distribution, a z-score of 3 (plus or minus) or more is rare,
and a z-score of 6 or 7 shouts out for attention.

To say more about how big we expect a z-score to be, we
need to model the data’s distribution. A model will let us say
much more precisely how often we’d be likely to see z-scores
of different sizes. Of course, like all models of the real world, the
model will be wrong—wrong in the sense that it can’t match

-1

-1

I want to know what ACT score corresponds to
the upper-quartile SAT score. I know the mean
and standard deviation for both the SAT and
ACT scores based on all test takers, but I have
no individual data values.

Ç Quantitative Data Condition: Scores for
both tests are quantitative but have no
meaningful units other than points.

Plan State what you want to find out.

Variables Identify the variables and 
report the W’s (if known).

The middle 50% of SAT scores at this college
fall between 1530 and 1850 points. To be in the
top quarter, my sister would have to have a
score of at least 1850. That’s a z-score of

So an SAT score of 1850 is 1.40 standard devi-
ations above the mean of all test takers.

For the ACT, 1.40 standard deviations above
the mean is 20.8 + 1.40(4.8) = 27.52.

z =  
(1850 -  1500)

250
 =  1.40

Mechanics Standardize the variables.

Check the appropriate conditions.

The y-value we seek is z standard devia-
tions above the mean.

Conclusion Interpret your results in 
context.

To be in the top quarter of applicants in terms
of combined SAT score, she’d need to have an
ACT score of at least 27.52.

Is Normal Normal?
Don’t be misled.The name “Normal”doesn’t
mean that these are the usual shapes for
histograms.The name follows a tradition of
positive thinking in Mathematics and Statistics in
which functions, equations, and relationships
that are easy to work with or have other nice
properties are called  “normal”, “common”,
“regular”, “natural”, or similar terms. It’s as if by
calling them ordinary, we could make them
actually occur more often and simplify our lives.
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112 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

reality exactly. But it can still be useful. Like a physical model, it’s something we
can look at and manipulate in order to learn more about the real world.

Models help our understanding in many ways. Just as a model of an airplane
in a wind tunnel can give insights even though it doesn’t show every rivet,3 models
of data give us summaries that we can learn from and use, even though they don’t
fit each data value exactly. It’s important to remember that they’re only models of re-
ality and not reality itself. But without models, what we can learn about the world
at large is limited to only what we can say about the data we have at hand.

There is no universal standard for z-scores, but there is a model that shows up
over and over in Statistics. You may have heard of “bell-shaped curves.” Statisti-
cians call them Normal models. Normal models are appropriate for distributions
whose shapes are unimodal and roughly symmetric. For these distributions, they
provide a measure of how extreme a z-score is. Fortunately, there is a Normal
model for every possible combination of mean and standard deviation. We write

to represent a Normal model with a mean of and a standard deviation
of Why the Greek? Well, this mean and standard deviation are not numerical
summaries of data. They are part of the model. They don’t come from the data.
Rather, they are numbers that we choose to help specify the model. Such numbers
are called parameters of the model.

We don’t want to confuse the parameters with summaries of the data such as
and s, so we use special symbols. In Statistics, we almost always use Greek let-

ters for parameters. By contrast, summaries of data are called statistics and are
usually written with Latin letters.

If we model data with a Normal model and standardize them using the corre-
sponding and we still call the standardized value a z-score, and we write

Usually it’s easier to standardize data first (using its mean and standard devia-
tion). Then we need only the model N(0,1). The Normal model with mean 0 and
standard deviation 1 is called the standard Normal model (or the standard
Normal distribution).

But be careful. You shouldn’t use a Normal model for just any data set.
Remember that standardizing won’t change the shape of the distribution. If the
distribution is not unimodal and symmetric to begin with, standardizing won’t
make it Normal.

When we use the Normal model, we assume that the distribution of the data
is, well, Normal. Practically speaking, there’s no way to check whether this
Normality Assumption is true. In fact, it almost certainly is not true. Real data
don’t behave like mathematical models. Models are idealized; real data are real.
The good news, however, is that to use a Normal model, it’s sufficient to check the
following condition:

Nearly Normal Condition. The shape of the data’s distribution is unimodal and
symmetric. Check this by making a histogram (or a Normal probability plot, which
we’ll explain later).

Don’t model data with a Normal model without checking whether the condition
is satisfied.

All models make assumptions. Whenever we model—and we’ll do that
often—we’ll be careful to point out the assumptions that we’re making. And,
what’s even more important, we’ll check the associated conditions in the data to
make sure that those assumptions are reasonable.

z =

y - m

s
.

s,m

y

s.
mN1m, s2

NOTATION ALERT:

always denotes a Normal
model.The pronounced
“mew,” is the Greek letter for
“m”and always represents the
mean in a model.The sigma,
is the lowercase Greek letter for
“s”and always represents the
standard deviation in a model.

s,

m,
N1m, s2

Is the Standard Normal 
a standard?
Yes. We call it the “Standard
Normal” because it models
standardized values. It is also
a “standard” because this is
the particular Normal model
that we almost always use.

3 In fact, the model is useful because it doesn’t have every rivet. It is because models offer a
simpler view of reality that they are so useful as we try to understand reality.

Activity: Working with
Normal Models. Learn more
about the Normal model and see
what data drawn at random from
a Normal model might look like.

“All models are wrong—but
some are useful.”

—George Box, famous
statistician
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The 68–95–99.7 Rule
Normal models give us an idea of how extreme a value is by telling us how likely
it is to find one that far from the mean. We’ll soon show how to find these num-
bers precisely—but one simple rule is usually all we need.

It turns out that in a Normal model, about 68% of the values fall within 1 stan-
dard deviation of the mean, about 95% of the values fall within 2 standard deviations
of the mean, and about 99.7%—almost all—of the values fall within 3 standard
deviations of the mean. These facts are summarized in a rule that we call (let’s 
see . . .) the 68–95–99.7 Rule.4

One in a Million
These magic 68, 95, 99.7
values come from the
Normal model. As a model,
it can give us corresponding
values for any z-score. For
example, it tells us that fewer
than 1 out of a million values
have z-scores smaller than 

or larger than So
if someone tells you you’re
“one in a million,” they must
really admire your z-score.

+5.0.-5.0

–3s –2s –1s 1s 2s 3s0

68%

95%

99.7%

FIGURE 6.6
Reaching out one, two, and
three standard deviations on
a Normal model gives the

Rule, seen
as proportions of the area
under the curve.

68-95-99.7

Using the 68–95–99.7 RuleFOR EXAMPLE

Question: In the 2006 Winter Olympics men’s combined event, Jean-Baptiste Grange of France skied the slalom in 88.46 seconds—about 1 standard
deviation faster than the mean. If a Normal model is useful in describing slalom times, about how many of the 35 skiers finishing the event would you
expect skied the slalom faster than Jean-Baptiste?

From the 68–95–99.7 Rule, we expect 68% of the skiers to be within one standard deviation of the mean. Of the
remaining 32%, we expect half on the high end and half on the low end. 16% of 35 is 5.6, so, conservatively, we’d expect
about 5 skiers to do better than Jean-Baptiste.

4 This rule is also called the “Empirical Rule” because it originally came from observation.
The rule was first published by Abraham de Moivre in 1733, 75 years before the Normal
model was discovered. Maybe it should be called “de Moivre’s Rule,” but that wouldn’t
help us remember the important numbers, 68, 95, and 99.7.

JUST CHECKING
4. As a group, the Dutch are among the tallest people in the world. The average Dutch man is 184 cm tall—just over

6 feet (and the average Dutch woman is 170.8 cm tall—just over ). If a Normal model is appropriate and the
standard deviation for men is about 8 cm, what percentage of all Dutch men will be over 2 meters ( ) tall?

5. Suppose it takes you 20 minutes, on average, to drive to school, with a standard deviation of 2 minutes. Suppose a
Normal model is appropriate for the distributions of driving times.

6¿6–

5¿7–

a) How often will you arrive at school in less than
22 minutes?

b) How often will it take you more than 24 min-
utes?

c) Do you think the distribution of your driving
times is unimodal and symmetric?

d) What does this say about the accuracy of your
predictions? Explain.

The 68–95–99.7 Rule. See it
work for yourself.
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The First Three Rules for Working with 
Normal Models

1. Make a picture.
2. Make a picture.
3. Make a picture.

Although we’re thinking about models, not histograms of data, the three
rules don’t change. To help you think clearly, a simple hand-drawn sketch is all
you need. Even experienced statisticians sketch pictures to help them think about
Normal models. You should too.

Of course, when we have data, we’ll also need to make a histogram to check the
Nearly Normal Condition to be sure we can use the Normal model to model the
data’s distribution. Other times, we may be told that a Normal model is appropri-
ate based on prior knowledge of the situation or on theoretical considerations.

Activity: Normal Models.
Normal models have several
interesting properties—see them
here.

How to Sketch a Normal Curve That Looks Normal To sketch a good
Normal curve, you need to remember only three things:

u The Normal curve is bell-shaped and symmetric around its mean. Start at the
middle, and sketch to the right and left from there.

u Even though the Normal model extends forever on either side, you need to draw
it only for 3 standard deviations. After that, there’s so little left that it isn’t worth
sketching.

u The place where the bell shape changes from curving downward to curving back
up—the inflection point—is exactly one standard deviation away from the mean.

Inflection point

–3� –2� –1� 1� 2� 3�0

The SAT Reasoning Test has three parts: Writing, Math, and Critical Reading (Verbal). Each part
has a distribution that is roughly unimodal and symmetric and is designed to have an overall
mean of about 500 and a standard deviation of 100 for all test takers. In any one year, the mean
and standard deviation may differ from these target values by a small amount, but they are a good
overall approximation.

Question: Suppose you earned a 600 on one part of your SAT. Where do you stand among all 
students who took that test?

You could calculate your z-score and find out that it’s but what
does that tell you about your percentile? You’ll need the Normal model and the Rule
to answer that question.

68-95-99.7
z = 1600 - 5002>100 = 1.0,

Working with the 68–95–99.7 RuleSTEP-BY-STEP EXAMPLE

Activity: Working with
Normal Models. Well, actually
playing with them. This interactive
tool lets you do what this chapter’s
figures can’t do, move them!
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The bounds of SAT scoring at 200 and 800 can also be explained by the
Rule. Since 200 and 800 are three standard deviations from 500, it

hardly pays to extend the scoring any farther on either side. We’d get more infor-
mation only on of students.100 - 99.7 = 0.3%

68-95-99.7

I want to see how my SAT score compares with
the scores of all other students. To do that, I’ll
need to model the distribution.

Let SAT score. Scores are quantitative
but have no meaningful units other than points.

Ç Nearly Normal Condition: If I had data, 
I would check the histogram. I have no
data, but I am told that the SAT scores
are roughly unimodal and symmetric.

I will model SAT score with a N(500, 100) model.

y = my

Plan State what you want to know.

Variables Identify the variable and 
report the W’s.

Be sure to check the appropriate 
conditions.

Specify the parameters of your model.

Mechanics Make a picture of this 
Normal model. (A simple sketch is all 
you need.)

Locate your score.

200 300 400 500 600 700 800

68%

95%

99.7%

My score of 600 is 1 standard deviation above
the mean. That corresponds to one of the
points of the Rule.68-95-99.7

About 68% of those who took the test had
scores that fell no more than 1 standard devia-
tion from the mean, so of
all students had scores more than 1 standard
deviation away. Only half of those were on the
high side, so about 16% (half of 32%) of the
test scores were better than mine. My score of
600 is higher than about 84% of all scores on
this test.

100% - 68% = 32%

Conclusion Interpret your result in 
context.

The Worst-Case Scenario* Suppose we encounter an observation that’s 5
standard deviations above the mean. Should we be surprised? We’ve just seen that
when a Normal model is appropriate, such a value is exceptionally rare. After all,
99.7% of all the values should be within 3 standard deviations of the mean, so any-
thing farther away would be unusual indeed.

But our handy Rule applies only to Normal models, and the Nor-
mal is such a nice shape. What if we’re dealing with a distribution that’s strongly

68-95-99.7
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Finding Normal Percentiles
An SAT score of 600 is easy to assess, because we can think of it as one standard de-
viation above the mean. If your score was 680, though, where do you stand among
the rest of the people tested? Your z-score is 1.80, so you’re somewhere between 1
and 2 standard deviations above the mean. We figured out that no more than 16%
of people score better than 600. By the same logic, no more than 2.5% of people
score better than 700. Can we be more specific than “between 16% and 2.5%”?

When the value doesn’t fall exactly 1, 2, or 3 standard deviations from the
mean, we can look it up in a table of Normal percentiles or use technology.6

Either way, we first convert our data to z-scores before using the table. Your SAT
score of 680 has a z-score of 1680 - 5002>100 = 1.80.

skewed (like the CEO salaries), or one that is uniform or bimodal or something re-
ally strange? A Normal model has 68% of its observations within one standard de-
viation of the mean, but a bimodal distribution could even be entirely empty in the
middle. In that case could we still say anything at all about an observation 5 stan-
dard deviations above the mean?

Remarkably, even with really weird distributions, the worst case can’t get all that
bad. A Russian mathematician named Pafnuty Tchebycheff5 answered the question
by proving this theorem:

In any distribution, at least of the values must lie within standard 

deviations of the mean.

What does that mean?

u For if the distribution is far from Normal, it’s possible 

that none of the values are within 1 standard deviation of the mean. We
should be really cautious about saying anything about 68% unless we think a
Normal model is justified. (Tchebycheff’s theorem really is about the worst
case; it tells us nothing about the middle; only about the extremes.)

u For no matter how strange the shape of the distribution, 

at least 75% of the values must be within 2 standard deviations of the mean.
Normal models may expect 95% in that 2-standard-deviation interval, but
even in a worst-case scenario it can never go lower than 75%.

u For in any distribution, at least 89% of the values lie

within 3 standard deviations of the mean.

What we see is that values beyond 3 standard deviations from the mean are un-
common, Normal model or not. Tchebycheff tells us that at least 96% of all values
must be within 5 standard deviations of the mean. While we can’t always apply the

Rule, we can be sure that the observation we encountered 5 stan-
dard deviations above the mean is unusual.
68-95-99.7

1 -

1

32
=

8
9

;k = 3,

1 -

1

22
=

3
4

;k = 2,

1 -

1

12
= 0;k = 1,

; k1 -

1

k2

5 He may have made the worst case for deviations clear, but the English spelling of his
name is not. You’ll find his first name spelled Pavnutii or Pavnuty and his last name
spelled Chebsheff, Cebysev, and other creative versions.
6

puter package) does this, too—and more easily!

Activity: Your Pulse z-
Score. Is your pulse rate high or
low? Find its z-score with the
Normal Model Tool.

Activity: The Normal
Table. Table Z just sits there, but
this version of the Normal table
changes so it always Makes a
Picture that fits.
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In the piece of the table shown, we find your z-score by looking down the left col-
umn for the first two digits, 1.8, and across the top row for the third digit, 0. The
table gives the percentile as 0.9641. That means that 96.4% of the z-scores are less
than 1.80. Only 3.6% of people, then, scored better than 680 on the SAT.

Most of the time, though, you’ll do this with your calculator. 

1.80

–3s –2s –1s 1s 2s 3s0

z .00 .01

1.7  .9554  .9564

1.8  .9641  .9649

1.9  .9713  .9719

FIGURE 6.7
A table of Normal percentiles (Table Z

centage of individuals in a Standard
Normal distribution falling below any
specified z-score value.

TI Tips Finding Normal percentages

Your calculator knows the Normal model. Have a look under 2nd DISTR.
There you will see three “norm” functions, normalpdf(, normalcdf(,
and invNorm(. Let’s play with the first two.

• normalpdf( calculates y-values for graphing a Normal curve. You proba-
bly won’t use this very often, if at all. If you want to try it, graph
Y1=normalpdf(X) in a graphing WINDOW with Xmin=–4, Xmax=4,
Ymin=–0.1, and Ymax=0.5.

• normalcdf( finds the proportion of area under the curve between two 
z-score cut points, by specifying normalcdf(zLeft,zRight). Do
make friends with this function; you will use it often!

Example 1
The Normal model shown shades the region between and

To find the shaded area:
Under 2nd DISTR select normalcdf(; hit ENTER.
Specify the cut points: normalcdf(–.5,1.0) and hit ENTER again.

There’s the area. Approximately 53% of a Normal model lies between half a
standard deviation below and one standard deviation above the mean.

Example 2
In the example in the text we used Table Z to determine the fraction of SAT
scores above your score of 680. Now let’s do it again, this time using your TI.

First we need z-scores for the cut points:

• Since 680 is 1.8 standard deviations above the mean, your z-score is 1.8;
that’s the left cut point.

–3s –2s –1s 1s 2s 3s0

–0.5

0.533

1.0

z = 1.0.z = -0.5

Normal percentiles. Explore the
relationship between z-scores and
areas in a Normal model.
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• Theoretically the standard Normal model extends rightward forever, but
you can’t tell the calculator to use infinity as the right cut point. Recall that
for a Normal model almost all the area lies within standard deviations of
the mean, so any upper cut point beyond, say, does not cut off any-
thing very important. We suggest you always use 99 (or ) when you re-
ally want infinity as your cut point—it’s easy to remember and way beyond
any meaningful area.

Now you’re ready. Use the command normalcdf(1.8,99).

There you are! The Normal model estimates that approximately 3.6% of SAT
scores are higher than 680.

-99
z = 5

;3

Standardizing the two scores, I find that

and

z =

1450 - 5002
100

= -0.50

z =

1y - m2

s
=

1600 - 5002
100

= 1.00

Mechanics Make a picture of this Nor-
mal model. Locate the desired values and
shade the region of interest.

The Normal model is our first model for data. It’s the first in a series of modeling situations where
we step away from the data at hand to make more general statements about the world. We’ll be-
come more practiced in thinking about and learning the details of models as we progress through
the book. To give you some practice in thinking about the Normal model, here are several prob-
lems that ask you to find percentiles in detail.

Question: What proportion of SAT scores fall between 450 and 600?

Working with Normal Models Part ISTEP-BY-STEP EXAMPLE

I want to know the proportion of SAT scores
between 450 and 600.

Let y = SAT score.

Ç Nearly Normal Condition: We are told that
SAT scores are nearly Normal.

I’ll model SAT scores with a N(500, 100) model,
using the mean and standard deviation speci-
fied for them.

Plan State the problem.

Variables Name the variable.

Check the appropriate conditions and
specify which Normal model to use.

450 600

0.533

200 300 400 500 600 700 800

Find z-scores for the cut points 450 and
600. Use technology to find the desired
proportions, represented by the area un-
der the curve. (This was Example 1 in the 
TI Tips—take another look.)
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So, 

 = 0.5328
 Area 1450 6 y 6 6002 = Area 1-0.5 6 z 6 1.02

(OR: From Table Z, the area 
and area so the 
proportion of z-scores between them is

or 53.28%.)0.8413 - 0.3085 = 0.5328,

1z 6 -0.52 = 0.3085,
1z 6 1.02 = 0.8413(If you use a table, then you need to sub-

tract the two areas to find the area between
the cut points.)

The Normal model estimates that about 53.3%
of SAT scores fall between 450 and 600.

Conclusion Interpret your result in 
context.

From Percentiles to Scores: z in Reverse
Finding areas from z-scores is the simplest way to work with the Normal model.
But sometimes we start with areas and are asked to work backward to find the
corresponding z-score or even the original data value. For instance, what z-score
cuts off the top 10% in a Normal model?

Make a picture like the one shown, shading the rightmost 10% of the area.
Notice that this is the 90th percentile. Look in Table Z for an area of 0.900. The ex-
act area is not there, but 0.8997 is pretty close. That shows up in the table with 1.2
in the left margin and .08 in the top margin. The z-score for the 90th percentile,
then, is approximately .

Computers and calculators will determine the cut point more precisely (and
more easily).

z = 1.28

10%

–3 –2 –1 1 2 30

90%

TI Tips Finding Normal cutpoints

To find the z-score at the 25th percentile, go to 2nd DISTR again. This time
we’ll use the third of the “norm” functions, invNorm(.

Just specify the desired percentile with the command invNorm(.25) and
hit ENTER. The calculator says that the cut point for the leftmost 25% of a
Normal model is approximately 

One more example: What z-score cuts off the highest 10% of a Normal model?
That’s easily done—just remember to specify the percentile. Since we want the
cut point for the highest 10%, we know that the other 90% must be below that 
z-score. The cut point, then, must stand at the 90th percentile, so specify 
invNorm(.90).

Only 10% of the area in a Normal model is more than about 1.28 standard de-
viations above the mean.

z = -0.674.

z .08 .09

1.2  .8997  .9015
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Question: Suppose a college says it admits only people with SAT Verbal test scores among the top
10%. How high a score does it take to be eligible?

Working with Normal Models Part IISTEP-BY-STEP EXAMPLE

How high an SAT Verbal score do I need to be in
the top 10% of all test takers?

Let y = my SAT score.

Ç Nearly Normal Condition: I am told that
SAT scores are nearly Normal. I’ll model
them with N(500, 100).

Plan State the problem.

The cut point is z = 1.28.

Mechanics Make a picture of this Nor-
mal model. Locate the desired percentile
approximately by shading the rightmost
10% of the area.

Variable Define the variable.

Check to see if a Normal model is appro-
priate, and specify which Normal model
to use.

A z-score of 1.28 is 1.28 standard deviations
above the mean. Since the SD is 100, that’s
128 SAT points. The cutoff is 128 points above
the mean of 500, or 628.

The college takes the top 10%, so its cutoff
score is the 90th percentile. Find the cor-
responding z-score using your calculator
as shown in the TI Tips. (OR: Use Table Z
as shown on p. 119.)

Convert the z-score back to the original
units.

200 300 400 500 600 700 800

90%

10%

Because the school wants SAT Verbal scores in
the top 10%, the cutoff is 628. (Actually, since
SAT scores are reported only in multiples of 10,
I’d have to score at least a 630.) 

Conclusion Interpret your results in the
proper context.

Normal models. Watch the Normal
model react as you change the
mean and standard deviation.
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Working with Normal percentiles can be a little tricky, depending on how the problem is stated.
Here are a few more worked examples of the kind you’re likely to see.

A cereal manufacturer has a machine that fills the boxes. Boxes are labeled “16 ounces,”so the
company wants to have that much cereal in each box, but since no packaging process is per-
fect, there will be minor variations. If the machine is set at exactly 16 ounces and the Normal
model applies (or at least the distribution is roughly symmetric), then about half of the boxes
will be underweight, making consumers unhappy and exposing the company to bad publicity
and possible lawsuits. To prevent underweight boxes, the manufacturer has to set the mean a
little higher than 16.0 ounces.

Based on their experience with the packaging machine, the company believes that the
amount of cereal in the boxes fits a Normal model with a standard deviation of 0.2 ounces.
The manufacturer decides to set the machine to put an average of 16.3 ounces in each box.
Let’s use that model to answer a series of questions about these cereal boxes.

Question 1: What fraction of the boxes will be underweight?

More Working with Normal ModelsSTEP-BY-STEP EXAMPLE

What proportion of boxes weigh less than
16 ounces?

Let y = weight of cereal in a box.

Ç Nearly Normal Condition: I have no data,
so I cannot make a histogram, but I am
told that the company believes the distri-
bution of weights from the machine is
Normal.

I’ll use a N(16.3, 0.2) model.

Plan State the problem.

Variable Name the variable.

Check to see if a Normal model is 
appropriate.

I want to know what fraction of the boxes will
weigh less than 16 ounces.

Mechanics Make a picture of this Nor-
mal model. Locate the value you’re
interested in on the picture, label it, and
shade the appropriate region.

Specify which Normal model to use.

z =

y - m

s
=

16 - 16.3
0.2

= - 1.50Convert your cutoff value into a z-score.

Area (y 6 16) = Area(z 6 - 1.50) = 0.0668Find the area with your calculator (or use
the Normal table).

15.7 15.9 16.116.0 16.3 16.5 16.7 16.9
Estimate from the picture the per-
centage of boxes that are underweight.
(This will be useful later to check that
your answer makes sense.) It looks like
a low percentage. Less than 20% for
sure.

REALITY CHECK 
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I estimate that approximately 6.7% of the
boxes will contain less than 16 ounces of cereal.

Conclusion State your conclusion, and
check that it’s consistent with your earlier
guess. It’s below 20%—seems okay.

Question 2: The company’s lawyers say that 6.7% is too high.They insist that no more than 4% 
of the boxes can be underweight. So the company needs to set the machine to put a little more
cereal in each box. What mean setting do they need?

What mean weight will reduce the proportion of
underweight boxes to 4%?

Let y = weight of cereal in a box.

Ç Nearly Normal Condition: I am told that a
Normal model applies.

I don’t know , the mean amount of cereal. 
The standard deviation for this machine is 
0.2 ounces. The model is 

No more than 4% of the boxes can be below 
16 ounces.

N(m, 0.2).

m

Plan State the problem.

Variable Name the variable.

Check to see if a Normal model is
appropriate.

The z-score that has 0.04 area to the left of it
is 

For 16 to be 1.75 standard deviations below the
mean, the mean must be

ounces.16 +  1.75 (0.2) = 16.35

z = - 1.75.

Mechanics Make a picture of this Nor-
mal model. Center it at (since you don’t
know the mean), and shade the region be-
low 16 ounces.

m

Specify which Normal model to use. 
This time you are not given a value for
the mean!

We found out earlier that setting the ma-
chine to ounces made 6.7% of
the boxes too light. We’ll need to raise the
mean a bit to reduce this fraction.

m = 16.3
REALITY CHECK

Using your calculator (or the Normal
table), find the z-score that cuts off the
lowest 4%.

Use this information to find It’s located
1.75 standard deviations to the right of 16.
Since is 0.2, that’s or 0.35
ounces more than 16.

1.75 * 0.2,s

m.

16 m

The company must set the machine to average
16.35 ounces of cereal per box.

Conclusion Interpret your result in 
context.
(This makes sense; we knew it would
have to be just a bit higher than 16.3.)
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From Percentiles to Scores: z in Reverse 123

Question 3: The company president vetoes that plan, saying the company should give away less
free cereal, not more. Her goal is to set the machine no higher than 16.2 ounces and still have only
4% underweight boxes.The only way to accomplish this is to reduce the standard deviation. What
standard deviation must the company achieve, and what does that mean about the machine?

What standard deviation will allow the mean to
be 16.2 ounces and still have only 4% of boxes
underweight?

Let y = weight of cereal in a box.

Ç Nearly Normal Condition: The company be-
lieves that the weights are described by a
Normal model.

I know the mean, but not the standard devia-
tion, so my model is .N(16.2, s)

Plan State the problem.

Variable Name the variable.

Check conditions to be sure that a Nor-
mal model is appropriate.

I know that the z-score with 4% below it is

 s = 0.114
 1.75 s = 0.2

 - 1.75 =

16 - 16.2
s

 z =

y - m

s

z = - 1.75.

Mechanics Make a picture of this Nor-
mal model. Center it at 16.2, and shade
the area you’re interested in. We want 4%
of the area to the left of 16 ounces.

Specify which Normal model to use. This
time you don’t know 

We know the new standard deviation
must be less than 0.2 ounces.

s.

REALITY CHECK

Find the z-score that cuts off the lowest 4%.

Solve for . (We need 16 to be ’s be-
low 16.2, so must be 0.2 ounces.
You could just start with that equation.)

1.75 s
1.75 ss

16 16.2

The company must get the machine to box ce-
real with a standard deviation of only 0.114
ounces. This means the machine must be more
consistent (by nearly a factor of 2) in filling the
boxes.

Conclusion Interpret your result in 
context.

As we expected, the standard deviation is
lower than before—actually, quite a bit
lower.
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124 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

Are You Normal? Find Out with a Normal
Probability Plot

In the examples we’ve worked through, we’ve assumed that the underlying data
distribution was roughly unimodal and symmetric, so that using a Normal model
makes sense. When you have data, you must check to see whether a Normal
model is reasonable. How? Make a picture, of course! Drawing a histogram of the
data and looking at the shape is one good way to see if a Normal model might
work.

There’s a more specialized graphical display that can help you to decide
whether the Normal model is appropriate: the Normal probability plot. If the
distribution of the data is roughly Normal, the plot is roughly a diagonal straight
line. Deviations from a straight line indicate that the distribution is not Normal.
This plot is usually able to show deviations from Normality more clearly than the
corresponding histogram, but it’s usually easier to understand how a distribution
fails to be Normal by looking at its histogram.

Some data on a car’s fuel efficiency provide an example of data that are nearly
Normal. The overall pattern of the Normal probability plot is straight. The two
trailing low values correspond to the values in the histogram that trail off the low
end. They’re not quite in line with the rest of the data set. The Normal probability
plot shows us that they’re a bit lower than we’d expect of the lowest two values
in a Normal model. 
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FIGURE 6.9
Histogram and Normal probability plot
for gas mileage (mpg) recorded by one
of the authors over the 8 years he
owned a 1989 Nissan Maxima. The
vertical axes are the same, so each dot
on the probability plot would fall into
the bar on the histogram immediately
to its left.

By contrast, the Normal probability plot of the men’s Weights from the
NHANES Study is far from straight. The weights are skewed to the high end, and
the plot is curved. We’d conclude from these pictures that approximations using
the 68–95–99.7 Rule for these data would not be very accurate. 
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FIGURE 6.10
Histogram and Normal probability plot
for men’s weights. Note how a skewed
distribution corresponds to a bent
probability plot.

Normal probability plots and
histograms. See how a normal
probability plot responds as you
change the shape of a distribution.
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How Does a Normal Probability Plot Work? 125

How Does a Normal Probability Plot Work?
Why does the Normal probability plot work like that? We looked at 100 fuel
efficiency measures for the author ’s Nissan car. The smallest of these has a 
z-score of The Normal model can tell us what value to expect for the
smallest z-score in a batch of 100 if a Normal model were appropriate. That
turns out to be So our first data value is smaller than we would expect
from the Normal.

We can continue this and ask a similar question for each value. For example,
the 14th-smallest fuel efficiency has a z-score of almost exactly , and that’s just
what we should expect (well, to be exact). A Normal probability plot takes
each data value and plots it against the z-score you’d expect that point to have if
the distribution were perfectly Normal.7

When the values match up well, the line is straight. If one or two points are
surprising from the Normal’s point of view, they don’t line up. When the entire
distribution is skewed or different from the Normal in some other way, the values
don’t match up very well at all and the plot bends.

It turns out to be tricky to find the values we expect. They’re called Normal
scores, but you can’t easily look them up in the tables. That’s why probability plots
are best made with technology and not by hand.

The best advice on using Normal probability plots is to see whether they are
straight. If so, then your data look like data from a Normal model. If not, make a
histogram to understand how they differ from the model.

-1.1
-1

-2.58.

-3.16.

TI Tips Creating a Normal probability plot

Let’s make a Normal probability plot with the calculator. Here are the boys’
agility test scores we looked at in Chapter 5; enter them in L1:

22, 17, 18, 29, 22, 23, 24, 23, 17, 21

Now you can create the plot:

• Turn a STATPLOT On.
• Tell it to make a Normal probability plot by choosing the last of the icons.
• Specify your datalist and which axis you want the data on. (We’ll use Y so

the plot looks like the others we showed you.)
• Specify the Mark you want the plot to use.
• Now ZoomStat does the rest.

The plot doesn’t look very straight. Normality is certainly questionable here.

(Not that it matters in making this decision, but that vertical line is the y-axis.
Points to the left have negative z-scores and points to the right have positive
z-scores.)

7 Sometimes the Normal probability plot switches the two axes, putting the data on the 
x-axis and the z-scores on the y-axis.

–1.25 0.00 1.25 2.50
Normal Scores

29

24

19

14

m
pg

Activity: Assessing
Normality. This activity guides
you through the process of
checking the Nearly Normal
condition using your statistics
package.
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126 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

WHAT CAN GO WRONG?
u Don’t use a Normal model when the distribution is not unimodal and symmetric. Normal mod-

els are so easy and useful that it is tempting to use them even when they don’t de-
scribe the data very well. That can lead to wrong conclusions. Don’t use a Normal
model without first checking the Nearly Normal Condition. Look at a picture of the
data to check that it is unimodal and symmetric. A histogram, or a Normal probabil-
ity plot, can help you tell whether a Normal model is appropriate.

The CEOs (p. 90) had a mean total compensation of $10,307,311.87 with a stan-
dard deviation of $17,964,615.16. Using the Normal model rule, we should expect
about 68% of the CEOs to have compensations between and
$28,271,927.03. In fact, more than 90% of the CEOs have annual compensations in
this range. What went wrong? The distribution is skewed, not symmetric. Using the
68–95–99.7 Rule for data like these will lead to silly results.

u Don’t use the mean and standard deviation when outliers are present. Both means and stan-
dard deviations can be distorted by outliers, and no model based on distorted val-
ues will do a good job. A z-score calculated from a distribution with outliers may be
misleading. It’s always a good idea to check for outliers. How? Make a picture.

u Don’t round your results in the middle of a calculation. We reported the mean of the hep-
tathletes’ long jump as 6.16 meters. More precisely, it was 6.16153846153846
meters.

You should use all the precision available in the data for all the intermediate
steps of a calculation. Using the more precise value for the mean (and also carrying
15 digits for the SD), the z-score calculation for Klüft’s long jump comes out to

We’d report that as 2.692, as opposed to the rounded-off value of 2.70 we got earlier
from the table.

u Don’t worry about minor differences in results. Because various calculators and pro-
grams may carry different precision in calculations, your answers may differ slightly
from those we show in the text and in the Step-By-Steps, or even from the values
given in the answers in the back of the book. Those differences aren’t anything to
worry about. They’re not the main story Statistics tries to tell.

z =

6.78 - 6.16153846153846
0.2297597407326585

= 2.691775053755667700

-$7,657,303.29
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What Have We Learned? 127

CONNECTIONS
Changing the center and spread of a variable is equivalent to changing its units. Indeed, the only
part of the data’s context changed by standardizing is the units. All other aspects of the context do
not depend on the choice or modification of measurement units. This fact points out an important
distinction between the numbers the data provide for calculation and the meaning of the variables
and the relationships among them. Standardizing can make the numbers easier to work with, but it
does not alter the meaning.

Another way to look at this is to note that standardizing may change the center and spread val-
ues, but it does not affect the shape of a distribution. A histogram or boxplot of standardized values
looks just the same as the histogram or boxplot of the original values except, perhaps, for the num-
bers on the axes.

When we summarized shape, center, and spread for histograms, we compared them to unimodal,
symmetric shapes. You couldn’t ask for a nicer example than the Normal model. And if the shape is
like a Normal, we’ll use the the mean and standard deviation to standardize the values.

WHAT HAVE WE LEARNED?

We’ve learned that the story data can tell may be easier to understand after shifting or rescaling
the data.

u Shifting data by adding or subtracting the same amount from each value affects measures of
center and position but not measures of spread.

u Rescaling data by multiplying or dividing every value by a constant, changes all the summary
statistics—center, position, and spread.

We’ve learned the power of standardizing data.

u Standardizing uses the standard deviation as a ruler to measure distance from the mean, creat-
ing z-scores.

u Using these z-scores, we can compare apples and oranges—values from different distributions
or values based on different units.

u And a z-score can identify unusual or surprising values among data.

We’ve learned that the 68–95–99.7 Rule can be a useful rule of thumb for understanding
distributions.

u For data that are unimodal and symmetric, about 68% fall within 1 SD of the mean, 95% fall
within 2 SDs of the mean, and 99.7% fall within 3 SDs of the mean (see p. 130).

Again we’ve seen the importance of Thinking about whether a method will work.

u Normality Assumption: We sometimes work with Normal tables (Table Z). Those tables are
based on the Normal model.

u Data can’t be exactly Normal, so we check the Nearly Normal Condition by making a histogram
(is it unimodal, symmetric, and free of outliers?) or a Normal probability plot (is it straight

Terms
Standardizing 105. We standardize to eliminate units. Standardized values can be compared and combined even

if the original variables had different units and magnitudes.

Standardized value 105. A value found by subtracting the mean and dividing by the standard deviation.
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128 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

Shifting 107. Adding a constant to each data value adds the same constant to the mean, the median, and
the quartiles, but does not change the standard deviation or IQR.

Rescaling 108. Multiplying each data value by a constant multiplies both the measures of position (mean,
median, and quartiles) and the measures of spread (standard deviation and IQR) by that constant.

Normal model 112. A useful family of models for unimodal, symmetric distributions.

Parameter 112. A numerically valued attribute of a model. For example, the values of and in a 
model are parameters.

Statistic 112. A value calculated from data to summarize aspects of the data. For example, the mean, and
standard deviation, , are statistics.

z-score 105. A z-score tells how many standard deviations a value is from the mean; z-scores have a mean
of 0 and a standard deviation of 1. When working with data, use the statistics and s:

112. When working with models, use the parameters and :

Standard Normal model 112. A Normal model, with mean and standard deviation . Also called the
standard Normal distribution.

Nearly Normal Condition 112. A distribution is nearly Normal if it is unimodal and symmetric. We can check by looking at a
histogram or a Normal probability plot.

68–95–99.7 Rule 113. In a Normal model, about 68% of values fall within 1 standard deviation of the mean, about
95% fall within 2 standard deviations of the mean, and about 99.7% fall within 3 standard devia-
tions of the mean.

Normal percentile 116. The Normal percentile corresponding to a z-score gives the percentage of values in a standard
Normal distribution found at that z-score or below.

Normal probability plot 124. A display to help assess whether a distribution of data is approximately Normal. If the plot is
nearly straight, the data satisfy the Nearly Normal Condition.

Skills
u Understand how adding (subtracting) a constant or multiplying (dividing) by a constant changes

the center and/or spread of a variable.

u Recognize when standardization can be used to compare values.

u Understand that standardizing uses the standard deviation as a ruler.

u Recognize when a Normal model is appropriate.

u Know how to calculate the z-score of an observation.

u Know how to compare values of two different variables using their z-scores.

u Be able to use Normal models and the 68–95–99.7 Rule to estimate the percentage of observa-
tions falling within 1, 2, or 3 standard deviations of the mean.

u Know how to find the percentage of observations falling below any value in a Normal model us-
ing a Normal table or appropriate technology.

u Know how to check whether a variable satisfies the Nearly Normal Condition by making a Nor-
mal probability plot or a histogram.

u Know what z-scores mean.

u Be able to explain how extraordinary a standardized value may be by using a Normal model.

s = 1m = 0N1m, s2

z =

y - m

s
.

sm

z =

y - y

s
.

y

s

y

N1m, s2sm
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NORMAL PLOTS ON THE COMPUTER

The best way to tell whether your data can be modeled well by a Normal model is to make a picture or two. We’ve
already talked about making histograms. Normal probability plots are almost never made by hand because the
values of the Normal scores are tricky to find. But most statistics software make Normal plots, though various
packages call the same plot by different names and array the information differently.

EXERCISES

1. Shipments. A company selling clothing on the Internet
reports that the packages it ships have a median weight
of 68 ounces and an IQR of 40 ounces.
a) The company plans to include a sales flyer weighing 

4 ounces in each package. What will the new median
and IQR be?

b) If the company recorded the shipping weights of these
new packages in pounds instead of ounces, what
would the median and IQR be? (1 lb. = 16 oz.)

2. Hotline. A company’s customer service hotline handles
many calls relating to orders, refunds, and other issues.
The company’s records indicate that the median length 
of calls to the hotline is 4.4 minutes with an IQR of 
2.3 minutes.
a) If the company were to describe the duration of these

calls in seconds instead of minutes, what would the
median and IQR be?

b) In an effort to speed up the customer service process,
the company decides to streamline the series of push-
button menus customers must navigate, cutting the
time by 24 seconds. What will the median and IQR of
the length of hotline calls become?

3. Payroll. Here are the summary statistics for the weekly
payroll of a small company: lowest , mean
salary $700, median $500, range $1200, IQR
$600, first quartile $350, standard deviation $400.
a) Do you think the distribution of salaries is symmetric,

skewed to the left, or skewed to the right? Explain why.
b) Between what two values are the middle 50% of the

salaries found?
c) Suppose business has been good and the company

gives every employee a $50 raise. Tell the new value of
each of the summary statistics.

d) Instead, suppose the company gives each employee a
10% raise. Tell the new value of each of the summary
statistics.

4. Hams. A specialty foods company sells “gourmet
hams” by mail order. The hams vary in size from 4.15 to
7.45 pounds, with a mean weight of 6 pounds and stan-
dard deviation of 0.65 pounds. The quartiles and median
weights are 5.6, 6.2, and 6.55 pounds.
a) Find the range and the IQR of the weights.
b) Do you think the distribution of the weights is sym-

metric or skewed? If skewed, which way? Why?

==

====

salary =  $300

c) If these weights were expressed in ounces (1 pound =
16 ounces) what would the mean, standard deviation,
quartiles, median, IQR, and range be?

d) When the company ships these hams, the box and
packing materials add 30 ounces. What are the mean,
standard deviation, quartiles, median, IQR, and range
of weights of boxes shipped (in ounces)?

e) One customer made a special order of a 10-pound ham.
Which of the summary statistics of part d might not
change if that data value were added to the distribution?

5. SAT or ACT? Each year thousands of high school stu-
dents take either the SAT or the ACT, standardized tests
used in the college admissions process. Combined SAT
Math and Verbal scores go as high as 1600, while the
maximum ACT composite score is 36. Since the two
exams use very different scales, comparisons of per-
formance are difficult. A convenient rule of thumb is

that is, multiply an ACT score by
40 and add 150 points to estimate the equivalent SAT score.
An admissions officer reported the following statistics about
the ACT scores of 2355 students who applied to her college
one year. Find the summaries of equivalent SAT scores.

Lowest score Mean Standard deviation

Q3 Median IQR

6. Cold U? A high school senior uses the Internet to get in-
formation on February temperatures in the town where
he’ll be going to college. He finds a Web site with some sta-
tistics, but they are given in degrees Celsius. The conver-
sion formula is Determine the Fahren-
heit equivalents for the summary information below.

7. Stats test. Suppose your Statistics professor reports
test grades as z-scores, and you got a score of 2.20 on an
exam. Write a sentence explaining what that means.

8. Checkup. One of the authors has an adopted grandson
whose birth family members are very short. After exam-
ining him at his 2-year checkup, the boy’s pediatrician
said that the z-score for his height relative to American 
2-year-olds was Write a sentence explaining what
that means.

-1.88.

Median = 2° IQR = 16°

Mean =  1° Standard deviation = 7°

Maximum temperature =  11°C Range =  33°

°F = 9>5 °C + 32.

= 6= 28= 30

= 3= 27= 19

SAT = 40 * ACT + 150;
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130 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

9. Stats test, part II. The mean score on the Stats exam
was 75 points with a standard deviation of 5 points, and
Gregor’s z-score was . How many points did he score?

10. Mensa. People with z-scores above 2.5 on an IQ test are
sometimes classified as geniuses. If IQ scores have a
mean of 100 and a standard deviation of 16 points, what
IQ score do you need to be considered a genius?

11. Temperatures. A town’s January high temperatures
average with a standard deviation of , while in
July the mean high temperature is and the standard
deviation is . In which month is it more unusual to
have a day with a high temperature of ? Explain.

12. Placement exams. An incoming freshman took her
college’s placement exams in French and mathematics. In
French, she scored 82 and in math 86. The overall results
on the French exam had a mean of 72 and a standard de-
viation of 8, while the mean math score was 68, with a
standard deviation of 12. On which exam did she do bet-
ter compared with the other freshmen?

13. Combining test scores. The first Stats exam had a
mean of 65 and a standard deviation of 10 points; the 
second had a mean of 80 and a standard deviation of 
5 points. Derrick scored an 80 on both tests. Julie scored 
a 70 on the first test and a 90 on the second. They both
totaled 160 points on the two exams, but Julie claims 
that her total is better. Explain.

14. Combining scores again. The first Stat exam had a
mean of 80 and a standard deviation of 4 points; the second
had a mean of 70 and a standard deviation of 15 points.
Reginald scored an 80 on the first test and an 85 on the 
second. Sara scored an 88 on the first but only a 65 on the sec-
ond. Although Reginald’s total score is higher, Sara feels she
should get the higher grade. Explain her point of view.

15. Final exams. Anna, a language major, took final exams
in both French and Spanish and scored 83 on each. Her
roommate Megan, also taking both courses, scored 77 on
the French exam and 95 on the Spanish exam. Overall,
student scores on the French exam had a mean of 81 and
a standard deviation of 5, and the Spanish scores had a
mean of 74 and a standard deviation of 15.
a) To qualify for language honors, a major must maintain

at least an 85 average for all language courses taken.
So far, which student qualifies?

b) Which student’s overall performance was better?

16. MP3s. Two companies market new batteries targeted at
owners of personal music players. DuraTunes claims a
mean battery life of 11 hours, while RockReady adver-
tises 12 hours.
a) Explain why you would also like to know the stan-

dard deviations of the battery lifespans before
deciding which brand to buy.

b) Suppose those standard deviations are 2 hours for 
DuraTunes and 1.5 hours for RockReady. You are
headed for 8 hours at the beach. Which battery is most
likely to last all day? Explain.

c) If your beach trip is all weekend, and you probably
will have the music on for 16 hours, which battery is
most likely to last? Explain.

55°
8°

74°
10°36°F

-2

17. Cattle. The Virginia Cooperative Extension reports that
the mean weight of yearling Angus steers is 1152 pounds.
Suppose that weights of all such animals can be described
by a Normal model with a standard deviation of 84 pounds.
a) How many standard deviations from the mean would

a steer weighing 1000 pounds be?
b) Which would be more unusual, a steer weighing 

1000 pounds or one weighing 1250 pounds?

18. Car speeds. John Beale of Stanford, CA, recorded the
speeds of cars driving past his house, where the speed limit
read 20 mph. The mean of 100 readings was 23.84 mph,
with a standard deviation of 3.56 mph. (He actually
recorded every car for a two-month period. These are 
100 representative readings.)
a) How many standard deviations from the mean would

a car going under the speed limit be?
b) Which would be more unusual, a car traveling 34 mph

or one going 10 mph?

19. More cattle. Recall that the beef cattle described in 
Exercise 17 had a mean weight of 1152 pounds, with a
standard deviation of 84 pounds.
a) Cattle buyers hope that yearling Angus steers will

weigh at least 1000 pounds. To see how much over 
(or under) that goal the cattle are, we could subtract
1000 pounds from all the weights. What would the
new mean and standard deviation be?

b) Suppose such cattle sell at auction for 40 cents a
pound. Find the mean and standard deviation of the
sale prices for all the steers.

20. Car speeds again. For the car speed data of Exercise 18,
recall that the mean speed recorded was 23.84 mph, with
a standard deviation of 3.56 mph. To see how many cars
are speeding, John subtracts 20 mph from all speeds.
a) What is the mean speed now? What is the new stan-

dard deviation?
b) His friend in Berlin wants to study the speeds, so John

converts all the original miles-per-hour readings to
kilometers per hour by multiplying all speeds by 1.609
(km per mile). What is the mean now? What is the
new standard deviation?

21. Cattle, part III. Suppose the auctioneer in Exercise 19
sold a herd of cattle whose minimum weight was 980
pounds, median was 1140 pounds, standard deviation 
84 pounds, and IQR 102 pounds. They sold for 40 cents a
pound, and the auctioneer took a $20 commission on each
animal. Then, for example, a steer weighing 1100 pounds
would net the owner Find the
minimum, median, standard deviation, and IQR of the
net sale prices.

22. Caught speeding. Suppose police set up radar surveil-
lance on the Stanford street described in Exercise 18. They
handed out a large number of tickets to speeders going a
mean of 28 mph, with a standard deviation of 2.4 mph, a
maximum of 33 mph, and an IQR of 3.2 mph. Local law
prescribes fines of $100, plus $10 per mile per hour over
the 20 mph speed limit. For example, a driver convicted
of going 25 mph would be fined .
Find the mean, maximum, standard deviation, and IQR
of all the potential fines.

100 + 10152 = $150

0.40 (1100) - 20 = $420.

T

T
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23. Professors. A friend tells you about a recent study
dealing with the number of years of teaching experience
among current college professors. He remembers the
mean but can’t recall whether the standard deviation was
6 months, 6 years, or 16 years. Tell him which one it must
have been, and why.

24. Rock concerts. A popular band on tour played a series
of concerts in large venues. They always drew a large
crowd, averaging 21,359 fans. While the band did not an-
nounce (and probably never calculated) the standard devia-
tion, which of these values do you think is most likely to be
correct: 20, 200, 2000, or 20,000 fans? Explain your choice.

25. Guzzlers? Environmental Protection Agency (EPA)
fuel economy estimates for automobile models tested 
recently predicted a mean of 24.8 mpg and a standard 
deviation of 6.2 mpg for highway driving. Assume that
a Normal model can be applied.
a) Draw the model for auto fuel economy. Clearly label

it, showing what the 68–95–99.7 Rule predicts.
b) In what interval would you expect the central 68% of

autos to be found?
c) About what percent of autos should get more than 

31 mpg?
d) About what percent of cars should get between 31 and

37.2 mpg?
e) Describe the gas mileage of the worst 2.5% of all cars.

26. IQ. Some IQ tests are standardized to a Normal model,
with a mean of 100 and a standard deviation of 16.
a) Draw the model for these IQ scores. Clearly label it,

showing what the 68–95–99.7 Rule predicts.
b) In what interval would you expect the central 95% of

IQ scores to be found?
c) About what percent of people should have IQ scores

above 116?
d) About what percent of people should have IQ scores

between 68 and 84?
e) About what percent of people should have IQ scores

above 132?

27. Small steer. In Exercise 17 we suggested the model
N(1152, 84) for weights in pounds of yearling Angus
steers. What weight would you consider to be unusually
low for such an animal? Explain.

28. High IQ. Exercise 26 proposes modeling IQ scores with
N(100, 16). What IQ would you consider to be unusually
high? Explain.

29. Trees. A forester measured 27 of the trees in a large
woods that is up for sale. He found a mean diameter of
10.4 inches and a standard deviation of 4.7 inches. Sup-
pose that these trees provide an accurate description of
the whole forest and that a Normal model applies.
a) Draw the Normal model for tree diameters.
b) What size would you expect the central 95% of all

trees to be?
c) About what percent of the trees should be less than an

inch in diameter?
d) About what percent of the trees should be between 5.7

and 10.4 inches in diameter?
e) About what percent of the trees should be over 15

inches in diameter?

30. Rivets. A company that manufactures rivets believes
the shear strength (in pounds) is modeled by N(800, 50).
a) Draw and label the Normal model.
b) Would it be safe to use these rivets in a situation re-

quiring a shear strength of 750 pounds? Explain.
c) About what percent of these rivets would you expect

to fall below 900 pounds?
d) Rivets are used in a variety of applications with vary-

ing shear strength requirements. What is the maximum
shear strength for which you would feel comfortable
approving this company’s rivets? Explain your 
reasoning.

31. Trees, part II. Later on, the forester in Exercise 29
shows you a histogram of the tree diameters he used in
analyzing the woods that was for sale. Do you think he
was justified in using a Normal model? Explain, citing
some specific concerns. 
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32. Car speeds, the picture. For the car speed data of Ex-
ercise 18, here is the histogram, boxplot, and Normal
probability plot of the 100 readings. Do you think it is ap-
propriate to apply a Normal model here? Explain. 
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33. Winter Olympics 2006 downhill. Fifty-three men
qualified for the men’s alpine downhill race in Torino.
The gold medal winner finished in 1 minute, 48.8 seconds.
All competitors’ times (in seconds) are found in the fol-
lowing list:

T

108.80 109.52 109.82 109.88 109.93 110.00
110.04 110.12 110.29 110.33 110.35 110.44
110.45 110.64 110.68 110.70 110.72 110.84
110.88 110.88 110.90 110.91 110.98 111.37
111.48 111.51 111.55 111.70 111.72 111.93
112.17 112.55 112.87 112.90 113.34 114.07
114.65 114.70 115.01 115.03 115.73 116.10
116.58 116.81 117.45 117.54 117.56 117.69
118.77 119.24 119.41 119.79 120.93
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132 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

a) The mean time was 113.02 seconds, with a standard
deviation of 3.24 seconds. If the Normal model is 
appropriate, what percent of times will be less than
109.78 seconds?

b) What is the actual percent of times less than 109.78
seconds?

c) Why do you think the two percentages don’t agree?
d) Create a histogram of these times. What do you see?

34. Check the model. The mean of the 100 car speeds in
Exercise 20 was 23.84 mph, with a standard deviation of
3.56 mph.
a) Using a Normal model, what values should border

the middle 95% of all car speeds?
b) Here are some summary statistics.

hoods from the U.S. Census Bureau. Eighteen of these
variables concern the ethnicity of the neighborhood of the
donor. Here are a histogram and summary statistics for the
percentage of whites in the neighborhoods of 500 donors:

Percentile Speed

100% Max 34.060
97.5% 30.976
90.0% 28.978
75.0% Q3 25.785
50.0% Median 23.525
25.0% Q1 21.547
10.0% 19.163
2.5% 16.638
0.0% Min 16.270

From your answer in part a, how well does the model do in
predicting those percentiles? Are you surprised? Explain.

35. Receivers. NFL data from the 2006 football season
reported the number of yards gained by each of the
league’s 167 wide receivers: 
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The mean is 435 yards, with a standard deviation of 384
yards.
a) According to the Normal model, what percent of re-

ceivers would you expect to gain fewer yards than 
2 standard deviations below the mean number of yards?

b) For these data, what does that mean?
c) Explain the problem in using a Normal model here.

36. Customer database. A large philanthropic organiza-
tion keeps records on the people who have contributed to
their cause. In addition to keeping records of past giving,
the organization buys demographic data on neighbor-
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a) Which is a better summary of the percentage of white
residents in the neighborhoods, the mean or the me-
dian? Explain.

b) Which is a better summary of the spread, the IQR or
the standard deviation? Explain.

c) From a Normal model, about what percentage of
neighborhoods should have a percent white within
one standard deviation of the mean?

d) What percentage of neighborhoods actually have a
percent white within one standard deviation of the
mean?

e) Explain the discrepancy between parts c and d.

37. Normal cattle. Using N(1152, 84), the Normal model
for weights of Angus steers in Exercise 17, what percent
of steers weigh
a) over 1250 pounds?
b) under 1200 pounds?
c) between 1000 and 1100 pounds?

38. IQs revisited. Based on the Normal model N(100, 16)
describing IQ scores, what percent of people’s IQs would
you expect to be
a) over 80?
b) under 90?
c) between 112 and 132?

39. More cattle. Based on the model N(1152, 84) describ-
ing Angus steer weights, what are the cutoff values for
a) the highest 10% of the weights?
b) the lowest 20% of the weights?
c) the middle 40% of the weights?

40. More IQs. In the Normal model N(100, 16), what cutoff
value bounds
a) the highest 5% of all IQs?
b) the lowest 30% of the IQs?
c) the middle 80% of the IQs?

T
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41. Cattle, finis. Consider the Angus weights model
N(1152, 84) one last time.
a) What weight represents the 40th percentile?
b) What weight represents the 99th percentile?
c) What’s the IQR of the weights of these Angus steers?

42. IQ, finis. Consider the IQ model N(100, 16) one last time.
a) What IQ represents the 15th percentile?
b) What IQ represents the 98th percentile?
c) What’s the IQR of the IQs?

43. Cholesterol. Assume the cholesterol levels of adult
American women can be described by a Normal model
with a mean of 188 mg/dL and a standard deviation of 24.
a) Draw and label the Normal model.
b) What percent of adult women do you expect to have

cholesterol levels over 200 mg/dL?
c) What percent of adult women do you expect to have

cholesterol levels between 150 and 170 mg/dL?
d) Estimate the IQR of the cholesterol levels.
e) Above what value are the highest 15% of women’s

cholesterol levels?

44. Tires. A tire manufacturer believes that the treadlife of
its snow tires can be described by a Normal model with a
mean of 32,000 miles and standard deviation of 2500 miles.
a) If you buy a set of these tires, would it be reasonable

for you to hope they’ll last 40,000 miles? Explain.
b) Approximately what fraction of these tires can be 

expected to last less than 30,000 miles?
c) Approximately what fraction of these tires can be 

expected to last between 30,000 and 35,000 miles?
d) Estimate the IQR of the treadlives.
e) In planning a marketing strategy, a local tire dealer

wants to offer a refund to any customer whose tires
fail to last a certain number of miles. However, the
dealer does not want to take too big a risk. If the
dealer is willing to give refunds to no more than 1 of
every 25 customers, for what mileage can he guaran-
tee these tires to last?

45. Kindergarten. Companies that design furniture for ele-
mentary school classrooms produce a variety of sizes for
kids of different ages. Suppose the heights of kindergarten
children can be described by a Normal model with a mean
of 38.2 inches and standard deviation of 1.8 inches.
a) What fraction of kindergarten kids should the com-

pany expect to be less than 3 feet tall?
b) In what height interval should the company expect to

find the middle 80% of kindergarteners?
c) At least how tall are the biggest 10% of kindergarteners?

46. Body temperatures. Most people think that the “nor-
mal” adult body temperature is That figure, based
on a 19th-century study, has recently been challenged. 

98.6°F.

In a 1992 article in the Journal of the American Medical Asso-
ciation, researchers reported that a more accurate figure
may be Furthermore, the standard deviation
appeared to be around Assume that a Normal
model is appropriate.
a) In what interval would you expect most people’s

body temperatures to be? Explain.
b) What fraction of people would be expected to have

body temperatures above
c) Below what body temperature are the coolest 20% of

all people?

47. Eggs. Hens usually begin laying eggs when they are
about 6 months old. Young hens tend to lay smaller eggs,
often weighing less than the desired minimum weight of
54 grams.
a) The average weight of the eggs produced by the

young hens is 50.9 grams, and only 28% of their eggs
exceed the desired minimum weight. If a Normal
model is appropriate, what would the standard devia-
tion of the egg weights be?

b) By the time these hens have reached the age of 1 year,
the eggs they produce average 67.1 grams, and 98% 
of them are above the minimum weight. What is the
standard deviation for the appropriate Normal model
for these older hens?

c) Are egg sizes more consistent for the younger hens or
the older ones? Explain.

48. Tomatoes. Agricultural scientists are working on de-
veloping an improved variety of Roma tomatoes. Market-
ing research indicates that customers are likely to bypass
Romas that weigh less than 70 grams. The current variety
of Roma plants produces fruit that averages 74 grams,
but 11% of the tomatoes are too small. It is reasonable to
assume that a Normal model applies.
a) What is the standard deviation of the weights of Ro-

mas now being grown?
b) Scientists hope to reduce the frequency of undersized

tomatoes to no more than 4%. One way to accomplish
this is to raise the average size of the fruit. If the stan-
dard deviation remains the same, what target mean
should they have as a goal?

c) The researchers produce a new variety with a mean
weight of 75 grams, which meets the 4% goal. What 
is the standard deviation of the weights of these new
Romas?

d) Based on their standard deviations, compare the
tomatoes produced by the two varieties.

98.6°F?

0.7°F.
98.2°F.
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JUST CHECKING
Answers

1. a) On the first test, the mean is 88 and the SD is 4, so
On the second test, the

mean is 75 and the SD is 5, so 
The first test has the lower z-score, so it is

the one that will be dropped.
b) No. The second test is 1 standard deviation above

the mean, farther away than the first test, so it’s
the better score relative to the class.

2. a) The mean would increase to 500.
b) The standard deviation is still 100 points.
c) The two boxplots would look nearly identical (the

shape of the distribution would remain the same),
but the later one would be shifted 50 points
higher.

3. The standard deviation is now 2.54 millimeters,
which is the same as 0.1 inches. Nothing has
changed. The standard deviation has “increased”
only because we’re reporting it in millimeters now,
not inches.

4. The mean is 184 centimeters, with a standard devia-
tion of 8 centimeters. 2 meters is 200 centimeters,
which is 2 standard deviations above the mean. We
expect 5% of the men to be more than 2 standard de-
viations below or above the mean, so half of those,
2.5%, are likely to be above 2 meters.

5. a) We know that 68% of the time we’ll be within 
1 standard deviation (2 min) of 20. So 32% of the
time we’ll arrive in less than 18 or more than 
22 minutes. Half of those times (16%) will be
greater than 22 minutes, so 84% will be less than
22 minutes.

b) 24 minutes is 2 standard deviations above the
mean. Because of the 95% rule, we know 2.5% of
the times will be more than 24 minutes.

c) Traffic incidents may occasionally increase the
time it takes to get to school, so the driving times
may be skewed to the right, and there may be 
outliers.

d) If so, the Normal model would not be appropriate
and the percentages we predict would not be 
accurate.

5 = 1.0.
z = 180 - 752>

z = 190 - 882>4 = 0.5.
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Exploring and Understanding Data
Quick Review
It’s time to put it all together. Real data don’t come tagged
with instructions for use. So let’s step back and look at how
the key concepts and skills we’ve seen work together. This
brief list and the review exercises that follow should help you
check your understanding of Statistics so far.

u We treat data two ways: as categorical and as quantitative.

u To describe categorical data:
• Make a picture. Bar graphs work well for comparing

counts in categories.
• Summarize the distribution with a table of counts or rel-

ative frequencies (percents) in each category.
• Pie charts and segmented bar charts display divisions of

a whole.
• Compare distributions with plots side by side.
• Look for associations between variables by comparing

marginal and conditional distributions.

u To describe quantitative data:
• Make a picture. Use histograms, boxplots, stem-and-leaf

displays, or dotplots. Stem-and-leafs are great when
working by hand and good for small data sets. His-
tograms are a good way to see the distribution. Boxplots
are best for comparing several distributions.

• Describe distributions in terms of their shape, center,
and spread, and note any unusual features such as gaps
or outliers.

• The shape of most distributions you’ll see will likely
be uniform, unimodal, or bimodal. It may be multi-
modal. If it is unimodal, then it may be symmetric or
skewed.

• A 5-number summary makes a good numerical descrip-
tion of a distribution: min, Q1, median, Q3, and max.

• If the distribution is skewed, be sure to include the me-
dian and interquartile range (IQR) when you describe
its center and spread.

• A distribution that is severely skewed may benefit from
re-expressing the data. If it is skewed to the high end,
taking logs often works well.

• If the distribution is unimodal and symmetric, describe its
center and spread with the mean and standard deviation.

• Use the standard deviation as a ruler to tell how un-
usual an observed value may be, or to compare or
combine measurements made on different scales.

• Shifting a distribution by adding or subtracting a con-
stant affects measures of position but not measures of
spread. Rescaling by multiplying or dividing by a con-
stant affects both.

• When a distribution is roughly unimodal and symmet-
ric, a Normal model may be useful. For Normal models,
the 68–95–99.7 Rule is a good rule of thumb.

• If the Normal model fits well (check a histogram or
Normal probability plot), then Normal percentile tables
or functions found in most statistics technology can pro-
vide more detailed values.

Need more help with some of this? It never hurts to reread
sections of the chapters! And in the following pages we offer
you more opportunities1 to review these concepts and skills.

The exercises that follow use the concepts and skills you’ve
learned in the first six chapters. To be more realistic and more
useful for your review, they don’t tell you which of the con-
cepts or methods you need. But neither will the exam.

I
PA R T

REVIEW OF PART I

1 If you doubted that we are teachers, this should convince
you. Only a teacher would call additional homework exer-
cises “opportunities.”

REVIEW EXERCISES

1. Bananas. Here are the prices (in cents per pound) of
bananas reported from 15 markets surveyed by the U.S.
Department of Agriculture.

a) Display these data with an appropriate graph.
b) Report appropriate summary statistics.
c) Write a few sentences about this distribution.

2. Prenatal care. Results of a 1996 American Medical As-
sociation report about the infant mortality rate for twins
carried for the full term of a normal pregnancy are shown
on the next page, broken down by the level of prenatal
care the mother had received.

51 52 45
48 53 52
50 49 52
48 43 46
45 42 50
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6.1

5.1

136 PART I    Exploring and Understanding Data

a) Is the overall rate the average of the other three rates?
Should it be? Explain.

b) Do these results indicate that adequate prenatal care is
important for pregnant women? Explain.

c) Do these results suggest that a woman pregnant with
twins should be wary of seeking too much medical
care? Explain.

3. Singers. The boxplots shown display the heights (in
inches) of 130 members of a choir. a) Describe the distribution.

b) Which should be larger, the mean number of sales or
the median? Explain.

c) Here are the summary statistics for Clarksburg 
Bakery’s bread sales. Use these statistics and the
histogram above to create a boxplot. You may approx-
imate the values of any outliers.
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a) It appears that the median height for sopranos is miss-
ing, but actually the median and the upper quartile
are equal. How could that happen?

b) Write a few sentences describing what you see.

4. Dialysis. In a study of dialysis, researchers found that
“of the three patients who were currently on dialysis, 67%
had developed blindness and 33% had their toes ampu-
tated.” What kind of display might be appropriate for
these data? Explain.

5. Beanstalks. Beanstalk Clubs are social clubs for very
tall people. To join, a man must be over tall, and a
woman over The National Health Survey sug-
gests that heights of adults may be Normally distrib-
uted, with mean heights of for men and for
women. The respective standard deviations are 
and .
a) You are probably not surprised to learn that men are

generally taller than women, but what does the
greater standard deviation for men’s heights indicate?

b) Who are more likely to qualify for Beanstalk member-
ship, men or women? Explain.
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d) For these data, the mean was 103 loaves sold per day,
with a standard deviation of 9 loaves. Do these statis-
tics suggest that Clarksburg Bakery should expect to
sell between 94 and 112 loaves on about 68% of the
days? Explain.

7. State University. Public relations staff at State U. col-
lected data on people’s opinions of various colleges and
universities in their state. They phoned 850 local resi-
dents. After identifying themselves, the callers asked the
survey participants their ages, whether they had attended
college, and whether they had a favorable opinion of the
university. The official report to the university’s directors
claimed that, in general, people had very favorable opin-
ions about their university.
a) Identify the W’s of these data.
b) Identify the variables, classify each as categorical or

quantitative, and specify units if relevant.
c) Are you confident about the report’s conclusion? Explain.

8. Acid rain. Based on long-term investigation, re-
searchers have suggested that the acidity (pH) of rainfall

6. Bread. Clarksburg Bakery is trying to predict how
many loaves to bake. In the last 100 days, they have sold
between 95 and 140 loaves per day. Here is a histogram of
the number of loaves they sold for the last 100 days.
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in the Shenandoah Mountains can be described by the
Normal model N(4.9, 0.6).
a) Draw and carefully label the model.
b) What percent of storms produce rainfall with pH over 6?
c) What percent of storms produce rainfall with pH 

under 4?
d) The lower the pH, the more acidic the rain. What is

the pH level for the most acidic 20% of all storms?
e) What is the pH level for the least acidic 5% of all storms?
f) What is the IQR for the pH of rainfall?

9. Fraud detection. A credit card bank is investigating
the incidence of fraudulent card use. The bank suspects
that the type of product bought may provide clues to the
fraud. To examine this situation, the bank looks at the
Standard Industrial Code (SIC) of the business related to
the transaction. This is a code that was used by the U.S.
Census Bureau and Statistics Canada to identify the type
of every registered business in North America.2 For ex-
ample, 1011 designates Meat and Meat Products (except
Poultry), 1012 is Poultry Products, 1021 is Fish Products,
1031 is Canned and Preserved Fruits and Vegetables, and
1032 is Frozen Fruits and Vegetables.

A company intern produces the following histogram of
the SIC codes for 1536 transactions:

a) Name each variable, indicating whether it is categori-
cal or quantitative, and giving the units if available.

b) These streams have been classified according to their
substrate—the composition of soil and rock over
which they flow—as summarized in the table. What
kind of graph might be used to display these data?

11. Cramming. One Thursday, researchers gave students
enrolled in a section of basic Spanish a set of 50 new vo-
cabulary words to memorize. On Friday the students
took a vocabulary test. When they returned to class the
following Monday, they were retested—without advance
warning. Both sets of test scores for the 28 students are
shown below.

2 Since 1997 the SIC has been replaced by the NAICS, a code
of six letters.
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He also reports that the mean SIC is 5823.13 with a stan-
dard deviation of 488.17.
a) Comment on any problems you see with the use of the

mean and standard deviation as summary statistics.
b) How well do you think the Normal model will work

on these data? Explain.

10. Streams. As part of the course work, a class at an up-
state NY college collects data on streams each year. Stu-
dents record a number of biological, chemical, and physi-
cal variables, including the stream name, the substrate of
the stream (limestone, shale, or mixed), the pH, the tempera-
ture ( ), and the BCI, a measure of biological diversity.°C

Group Count %

Limestone 77 44.8
Mixed 26 15.1
Shale 69 40.1

T

a) Create a graphical display to compare the two distri-
butions of scores.

b) Write a few sentences about the scores reported on 
Friday and Monday.

c) Create a graphical display showing the distribution of
the changes in student scores.

d) Describe the distribution of changes.

12. Computers and Internet. A U.S. Census Bureau re-
port (August 2000, Current Population Survey) found that
51.0% of homes had a personal computer and 41.5% had
access to the Internet. A newspaper concluded that 92.5%
of homes had either a computer or access to the Internet.
Do you agree? Explain.

13. Let’s play cards. You pick a card from a deck (see de-
scription in Chapter 11) and record its denomination 
(7, say) and its suit (maybe spades).
a) Is the variable suit categorical or quantitative?
b) Name a game you might be playing for which you

would consider the variable denomination to be cate-
gorical. Explain.

c) Name a game you might be playing for which you
would consider the variable denomination to be quanti-
tative. Explain.

14. Accidents. In 2001, Progressive Insurance asked cus-
tomers who had been involved in auto accidents how far
they were from home when the accident happened. The
data are summarized in the table.

Fri Mon Fri Mon

42 36 50 47
44 44 34 34
45 46 38 31
48 38 43 40
44 40 39 41
43 38 46 32
41 37 37 36
35 31 40 31
43 32 41 32
48 37 48 39
43 41 37 31
45 32 36 41
47 44

T
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a) Create an appropriate graph of these data.
b) Do these data indicate that driving near home is par-

ticularly dangerous? Explain.

15. Hard water. In an investigation of environmental
causes of disease, data were collected on the annual mor-
tality rate (deaths per 100,000) for males in 61 large towns
in England and Wales. In addition, the water hardness
was recorded as the calcium concentration (parts per mil-
lion, ppm) in the drinking water.
a) What are the variables in this study? For each, indicate

whether it is quantitative or categorical and what the
units are.

b) Here are histograms of calcium concentration and mor-
tality. Describe the distributions of the two variables.

a) What is the overall mean mortality rate for the two 
regions?

b) Do you see evidence of a difference in mortality rates?
Explain.

17. Seasons. Average daily temperatures in January and
July for 60 large U.S. cities are graphed in the histograms
below.

Miles from 
Home

% of 
Accidents

Less than 1 23
1 to 5 29
6 to 10 17
11 to 15 8
16 to 20 6
Over 20 17
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16. Hard water II. The data set from England and Wales
also notes for each town whether it was south or north of
Derby. Here are some summary statistics and a compara-
tive boxplot for the two regions.

T

T

Summary of Mortality

Group Count Mean Median StdDev
North 34 1631.59 1631 138.470
South 27 1388.85 1369 151.114
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c) Differences in temperatures (July–January) for each of
the cities are displayed in the boxplot above. Write a
few sentences describing what you see.

18. Old Faithful. It is a common belief that Yellowstone’s
most famous geyser erupts once an hour at very pre-
dictable intervals. The histogram below shows the time
gaps (in minutes) between 222 successive eruptions. De-
scribe this distribution.

b) Explain why it is not appropriate to find summary sta-
tistics for this distribution.

c) Let’s classify the eruptions as “long” or “short,” 
depending upon whether or not they last at least 
3 minutes. Describe what you see in the comparative
boxplots.
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19. Old Faithful? Does the duration of an eruption have
an effect on the length of time that elapses before the next
eruption?
a) The histogram below shows the duration (in minutes)

of those 222 eruptions. Describe this distribution.
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20. Teen drivers. In its Traffic Safety Facts 2005, the Na-
tional Highway Traffic Safety Administration reported
that 6.3% of licensed drivers were between the ages of 15
and 20, yet this age group was behind the wheel in 15.9%
of all fatal crashes. Use these statistics to explain the con-
cept of independence.

21. Liberty’s nose. Is the Statue of Liberty’s nose too long?
Her nose measures, , but she is a large statue, after
all. Her arm is 42 feet long. That means her arm is

times as long as her nose. Is that a reasonable
ratio? Shown in the table are arm and nose lengths of 18
girls in a Statistics class, and the ratio of arm-to-nose
length for each.

42>45 = 9.3

4¿6–

T

Arm (cm) Nose (cm) Arm/Nose Ratio

73.8 5.0 14.8
74.0 4.5 16.4
69.5 4.5 15.4
62.5 4.7 13.3
68.6 4.4 15.6
64.5 4.8 13.4
68.2 4.8 14.2
63.5 4.4 14.4
63.5 5.4 11.8
67.0 4.6 14.6
67.4 4.4 15.3
70.7 4.3 16.4
69.4 4.1 16.9
71.7 4.5 15.9
69.0 4.4 15.7
69.8 4.5 15.5
71.0 4.8 14.8
71.3 4.7 15.2

a) Make an appropriate plot and describe the distribu-
tion of the ratios.

b) Summarize the ratios numerically, choosing appropri-
ate measures of center and spread.

c) Is the ratio of 9.3 for the Statue of Liberty unrealisti-
cally low? Explain.

a) What aspect of these histograms makes it difficult to
compare the distributions?

b) What differences do you see between the distributions
of January and July average temperatures?
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22. Winter Olympics 2006 speed skating. The top 25
women’s 500-m speed skating times are listed in the table
below:

24. Sluggers. Roger Maris’s 1961 home run record stood
until Mark McGwire hit 70 in 1998. Listed below are the
home run totals for each season McGwire played. Also
listed are Babe Ruth’s home run totals.

McGwire: 3*, 49, 32, 33, 39, 22, 42, 9*,
9*, 39, 52, 58, 70, 65, 32*, 29*

Ruth: 54, 59, 35, 41, 46, 25, 47, 60, 54, 46, 49, 46, 41, 34, 22

a) Find the 5-number summary for McGwire’s career.
b) Do any of his seasons appear to be outliers? Explain.
c) McGwire played in only 18 games at the end of his

first big league season, and missed major portions of
some other seasons because of injuries to his back
and knees. Those seasons might not be representa-
tive of his abilities. They are marked with asterisks
in the list above. Omit these values and make paral-
lel boxplots comparing McGwire’s career to Babe
Ruth’s.

d) Write a few sentences comparing the two sluggers.
e) Create a side-by-side stem-and-leaf display compar-

ing the careers of the two players.
f) What aspects of the distributions are apparent in the

stem-and-leaf displays that did not clearly show in the
boxplots?

25. Be quick! Avoiding an accident when driving can
depend on reaction time. That time, measured from the
moment the driver first sees the danger until he or she
steps on the brake pedal, is thought to follow a Normal
model with a mean of 1.5 seconds and a standard devia-
tion of 0.18 seconds.
a) Use the 68–95–99.7 Rule to draw the Normal model.
b) Write a few sentences describing driver reaction times.
c) What percent of drivers have a reaction time less than

1.25 seconds?
d) What percent of drivers have reaction times between

1.6 and 1.8 seconds?
e) What is the interquartile range of reaction times?
f) Describe the reaction times of the slowest 1/3 of all

drivers.

26. Music and memory. Is it a good idea to listen to mu-
sic when studying for a big test? In a study conducted
by some Statistics students, 62 people were randomly
assigned to listen to rap music, Mozart, or no music

Skater Country Time

Svetlana Zhurova Russia 76.57
Wang Manli China 76.78
Hui Ren China 76.87
Tomomi Okazaki Japan 76.92
Lee Sang-Hwa South Korea 77.04
Jenny Wolf Germany 77.25
Wang Beixing China 77.27
Sayuri Osuga Japan 77.39
Sayuri Yoshii Japan 77.43
Chiara Simionato Italy 77.68
Jennifer Rodriguez United States 77.70
Annette Gerritsen Netherlands 78.09
Xing Aihua China 78.35
Sanne van der Star Netherlands 78.59
Yukari Watanabe Japan 78.65
Shannon Rempel Canada 78.85
Amy Sannes United States 78.89
Choi Seung-Yong South Korea 79.02
Judith Hesse Germany 79.03
Kim You-Lim South Korea 79.25
Kerry Simpson Canada 79.34
Krisy Myers Canada 79.43
Elli Ochowicz United States 79.48
Pamela Zoellner Germany 79.56
Lee Bo-Ra South Korea 79.73

T

a) The mean finishing time was 78.21 seconds, with a
standard deviation of 1.03 second. If the Normal
model is appropriate, what percent of the times
should be within 0.5 second of 78.21?

b) What percent of the times actually fall within this 
interval?

c) Explain the discrepancy between a and b.

23. Sample. A study in South Africa focusing on the impact
of health insurance identified 1590 children at birth and
then sought to conduct follow-up health studies 5 years
later. Only 416 of the original group participated in the 
5-year follow-up study. This made researchers concerned
that the follow-up group might not accurately resemble
the total group in terms of health insurance. The table in
the next column summarizes the two groups by race and
by presence of medical insurance when the child was born.
Carefully explain how this study demonstrates Simpson’s
paradox. (Birth to Ten Study, Medical Research Council,
South Africa)

Number (%) Insured

Follow-up Not traced

Ra
ce

Black 36 of 404 
(8.9%)

91 of 1048
(8.7%)

White 10 of 12 
(83.3%)

104 of 126 
(82.5%)

Overall 46 of 416
(11.1%)

195 of 1174
(16.6%)
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while attempting to memorize objects pictured on a
page. They were then asked to list all the objects they
could remember. Here are the 5-number summaries for
each group:

29. Herbal medicine. Researchers for the Herbal Medicine
Council collected information on people’s experiences
with a new herbal remedy for colds. They went to a store
that sold natural health products. There they asked 100
customers whether they had taken the cold remedy and,
if so, to rate its effectiveness (on a scale from 1 to 10) in
curing their symptoms. The Council concluded that this
product was highly effective in treating the common cold.
a) Identify the W’s of these data.
b) Identify the variables, classify each as categorical or

quantitative, and specify units if relevant.
c) Are you confident about the Council’s conclusion? 

Explain.

30. Birth order revisited. Consider again the data on birth
order and college majors in Exercise 28.
a) What is the marginal distribution of majors?
b) What is the conditional distribution of majors for the

oldest children?
c) What is the conditional distribution of majors for the

children born second?
d) Do you think that college major appears to be inde-

pendent of birth order? Explain.

31. Engines. One measure of the size of an automobile en-
gine is its “displacement,” the total volume (in liters or
cubic inches) of its cylinders. Summary statistics for sev-
eral models of new cars are shown. These displacements
were measured in cubic inches.

T

123 70 90 151 115 97
80 78 72 100 128 130
52 103 138 66 135 76

112 92 93 143 100 88
118 118 106 110 75 60
95 131 59 115 105 85

a) Plot these data.
b) Find appropriate summary statistics.
c) Write a brief description of the school’s mail 

deliveries.
d) What percent of the days actually lie within one 

standard deviation of the mean? Comment.

28. Birth order. Is your birth order related to your choice
of major? A Statistics professor at a large university
polled his students to find out what their majors were
and what position they held in the family birth order. The
results are summarized in the table.
a) What percent of these students are oldest or only 

children?
b) What percent of Humanities majors are oldest 

children?
c) What percent of oldest children are Humanities 

students?
d) What percent of the students are oldest children 

majoring in the Humanities?

T

T

Summary of Displacement

Count 38
Mean 177.29
Median 148.5
StdDev 88.88
Range 275
25th %tile 105
75th %tile 231

a) How many cars were measured?
b) Why might the mean be so much larger than the 

median?
c) Describe the center and spread of this distribution

with appropriate statistics.
d) Your neighbor is bragging about the 227-cubic-inch

engine he bought in his new car. Is that engine unusu-
ally large? Explain.

e) Are there any engines in this data set that you would
consider to be outliers? Explain.

f) Is it reasonable to expect that about 68% of car engines
measure between 88 and 266 cubic inches? (That’s

) Explain.
g) We can convert all the data from cubic inches to cubic

centimeters (cc) by multiplying by 16.4. For example,
a 200-cubic-inch engine has a displacement of 3280 cc.
How would such a conversion affect each of the sum-
mary statistics?

32. Engines, again. Horsepower is another measure com-
monly used to describe auto engines. Here are the sum-
mary statistics and histogram displaying horsepowers of
the same group of 38 cars discussed in Exercise 31.

177.289 ; 88.8767.

n Min Q1 Median Q3 Max

Rap 29 5 8 10 12 25
Mozart 20 4 7 10 12 27
None 13 8 9.5 13 17 24

a) Describe the W’s for these data: Who, What, Where,
Why, When, How.

b) Name the variables and classify each as categorical or
quantitative.

c) Create parallel boxplots as best you can from these
summary statistics to display these results.

d) Write a few sentences comparing the performances of
the three groups.

27. Mail. Here are the number of pieces of mail received at
a school office for 36 days.

Birth Order*
1 2 3 4+ Total

Math/Science 34 14 6 3 57
Agriculture 52 27 5 9 93
Humanities 15 17 8 3 43
Other 12 11 1 6 30
Total 113 69 20 21 223

* 1 = oldest or only child

M
aj

o
r
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e) What percent of the people classified as “Other” were
under 30?

f) What percent of people under 30 were classified as
“Other”?

34. Pay. According to the 2006 National Occupational Em-
ployment and Wage Estimates for Management Occupations,
the mean hourly wage for Chief Executives was $69.52
and the median hourly wage was “over $70.00.” By con-
trast, for General and Operations Managers, the mean
hourly wage was $47.73 and the median was $40.97. Are
these wage distributions likely to be symmetric, skewed
left, or skewed right? Explain.

35. Age and party II. Consider again the Pew Research
Center results on age and political party in Exercise 33.
a) What is the marginal distribution of party affiliation?
b) Create segmented bar graphs displaying the conditional

distribution of party affiliation for each age group.
c) Summarize these poll results in a few sentences that

might appear in a newspaper article about party affili-
ation in the United States.

d) Do you think party affiliation is independent of the
voter’s age? Explain.

36. Bike safety 2003. The Bicycle Helmet Safety Institute
website includes a report on the number of bicycle fatali-
ties per year in the United States. The table below shows
the counts for the years 1994–2003.

Year Bicycle fatalities

1994 796
1995 828
1996 761
1997 811
1998 757
1999 750
2000 689
2001 729
2002 663
2003 619

Summary of Horsepower

Count 38
Mean 101.7
Median 100
StdDev 26.4
Range 90
25th %tile 78
75th %tile 125
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a) Describe the shape, center, and spread of this 
distribution.

b) What is the interquartile range?
c) Are any of these engines outliers in terms of horse-

power? Explain.
d) Do you think the 68–95–99.7 Rule applies to the

horsepower of auto engines? Explain.
e) From the histogram, make a rough estimate of the per-

centage of these engines whose horsepower is within
one standard deviation of the mean.

f) A fuel additive boasts in its advertising that it can
“add 10 horsepower to any car.” Assuming that is
true, what would happen to each of these summary
statistics if this additive were used in all the cars?

33. Age and party 2007. The Pew Research Center con-
ducts surveys regularly asking respondents which politi-
cal party they identify with. Among their results is the
following table relating preferred political party and age.
(http://people-press.org/reports/)

T

a) What are the W’s for these data?
b) Display the data in a stem-and-leaf display.
c) Display the data in a timeplot.
d) What is apparent in the stem-and-leaf display that is

hard to see in the timeplot?
e) What is apparent in the timeplot that is hard to see in

the stem-and-leaf display?
f) Write a few sentences about bicycle fatalities in the

United States.

37. Some assembly required. A company that markets
build-it-yourself furniture sells a computer desk that is
advertised with the claim “less than an hour to assemble.”
However, through postpurchase surveys the company 
has learned that only 25% of its customers succeeded in
building the desk in under an hour. The mean time was
1.29 hours. The company assumes that consumer assem-
bly time follows a Normal model.

a) What percent of people surveyed were Republicans?
b) Do you think this might be a reasonable estimate of the

percentage of all voters who are Republicans? Explain.
c) What percent of people surveyed were under 30 or

over 65?
d) What percent of people were classified as “Other” and

under the age of 30?

Party

Republican Democrat Others Total

18–29 2636 2738 4765 10139

30–49 6871 6442 8160 21473

50–64 3896 4286 4806 12988

65+ 3131 3718 2934 9784

Total 16535 17183 20666 54384

A
ge
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a) Find the standard deviation of the assembly time
model.

b) One way the company could solve this problem
would be to change the advertising claim. What as-
sembly time should the company quote in order that
60% of customers succeed in finishing the desk by
then?

c) Wishing to maintain the “less than an hour” claim, the
company hopes that revising the instructions and la-
beling the parts more clearly can improve the 1-hour
success rate to 60%. If the standard deviation stays the
same, what new lower mean time does the company
need to achieve?

d) Months later, another postpurchase survey shows that
new instructions and part labeling did lower the mean
assembly time, but only to 55 minutes. Nonetheless,
the company did achieve the 60%-in-an-hour goal,
too. How was that possible?

38. Profits. Here is a stem-and-leaf display showing profits
as a percent of sales for 29 of the Forbes 500 largest 
U.S. corporations. The stems are split; each stem repre-
sents a span of 5%, from a loss of 9% to a profit of 25%.

T

a) Find the 5-number summary.
b) Draw a boxplot for these data.
c) Find the mean and standard deviation.
d) Describe the distribution of profits for these 

corporations.
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CHAPTER

7
Scatterplots,
Association, and
Correlation

Hurricane Katrina killed 1,836 people1 and caused well over 100 billion
dollars in damage—the most ever recorded. Much of the damage
caused by Katrina was due to its almost perfectly deadly aim at New
Orleans.

Where will a hurricane go? People want to know if a hurricane is coming their
way, and the National Hurricane Center (NHC) of the National Oceanic and At-
mospheric Administration (NOAA) tries to predict the path a hurricane will take.
But hurricanes tend to wander around aimlessly and are pushed by fronts and
other weather phenomena in their area, so they are notoriously difficult to pre-
dict. Even relatively small changes in a hurricane’s track can make big differences
in the damage it causes.

To improve hurricane prediction, NOAA2 relies on sophisticated computer
models, and has been working for decades to improve them. How well are they
doing? Have predictions improved in recent years? Has the improvement been
consistent? Here’s a timeplot of the mean error, in nautical miles, of the NHC’s
72-hour predictions of Atlantic hurricanes since 1970:

WHO Years 1970–2005

WHAT Mean error in the 
position of Atlantic
hurricanes as 
predicted 72 hours
ahead by the NHC

UNITS nautical miles

WHEN 1970–2005

WHERE Atlantic and Gulf of
Mexico

WHY The NHC wants to 
improve prediction
models
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m
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FIGURE 7.1
A scatterplot of the average error in 
nautical miles of the predicted position of
Atlantic hurricanes for predictions made
by the National Hurricane Center of
NOAA, plotted against the Year in which
the predictions were made.

1 In addition, 705 are still listed as missing.
2 www.nhc.noaa.gov

Look, Ma, no origin!
Scatterplots usually don’t—
and shouldn’t—show the
origin, because often neither
variable has values near 0.
The display should focus on
the part of the coordinate
plane that actually contains
the data. In our example
about hurricanes, none of
the prediction errors or years
were anywhere near 0, so 
the computer drew the
scatterplot with axes that
don’t quite meet.
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Clearly, predictions have improved. The plot shows a fairly steady decline in
the average error, from almost 500 nautical miles in the late 1970s to about 150
nautical miles in 2005. We can also see a few years when predictions were unusu-
ally good and that 1972 was a really bad year for predicting hurricane tracks.

This timeplot is an example of a more general kind of display called a scatter-
plot. Scatterplots may be the most common displays for data. By just looking at
them, you can see patterns, trends, relationships, and even the occasional extraor-
dinary value sitting apart from the others. As the great philosopher Yogi Berra3

once said, “You can observe a lot by watching.”4 Scatterplots are the best way to
start observing the relationship between two quantitative variables.

Relationships between variables are often at the heart of what we’d like to
learn from data:

u Are grades actually higher now than they used to be?

u Do people tend to reach puberty at a younger age than in previous
generations?

u Does applying magnets to parts of the body relieve pain? If so, are stronger
magnets more effective?

u Do students learn better with more use of computer technology?

Questions such as these relate two quantitative variables and ask whether
there is an association between them. Scatterplots are the ideal way to picture
such associations.

Looking at Scatterplots
How would you describe the association of hurricane Prediction Error and Year?
Everyone looks at scatterplots. But, if asked, many people would find it hard to
say what to look for in a scatterplot. What do you see? Try to describe the scatter-
plot of Prediction Error against Year.

You might say that the direction of the association is important. Over time,
the NHC’s prediction errors have decreased. A pattern like this that runs from the 

upper left to the lower right is said to be negative. A pattern running 

the other way is called positive.
The second thing to look for in a scatterplot is its form. If there is a straight line

relationship, it will appear as a cloud or swarm of points stretched out in a gener-
ally consistent, straight form. For example, the scatterplot of Prediction Error vs.
Year has such an underlying linear form, although some points stray away from it.

Scatterplots can reveal many kinds of patterns. Often they will not be
straight, but straight line patterns are both the most common and the most use-
ful for statistics.

If the relationship isn’t straight, but curves gently, while still increasing or 

decreasing steadily, , we can often find ways to make it more nearly 

straight. But if it curves sharply—up and then down, for example 
—there is much less we can say about it with the methods of this book.

Activity: Making and
Understanding Scatterplots.
See the best way to make
scatterplots—using a computer.

Look for Direction: What’s
my sign—positive, negative,
or neither?

Look for Form: straight,
curved, something exotic, or
no pattern?

Activity: Heights of
Husbands and Wives. Husbands
are usually taller than their
wives. Or are they?

3 Hall of Fame catcher and manager of the New York Mets and Yankees.
4 But then he also said “I really didn’t say everything I said.” So we can’t really be sure.
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The third feature to look for in a scatterplot is how strong the relationship is.

At one extreme, do the points appear tightly clustered in a single stream
(whether straight, curved, or bending all over the place)? Or, at the other extreme,
does the swarm of points seem to form a vague cloud through which we can 

barely discern any trend or pattern? The Prediction error vs. Year
plot shows moderate scatter around a generally straight form. This indicates that
the linear trend of improving prediction is pretty consistent and moderately strong.

Finally, always look for the unexpected. Often the most interesting thing to
see in a scatterplot is something you never thought to look for. One example of such
a surprise is an outlier standing away from the overall pattern of the scatterplot.
Such a point is almost always interesting and always deserves special attention.
In the scatterplot of prediction errors, the year 1972 stands out as a year with very
high prediction errors. An Internet search shows that it was a relatively quiet hur-
ricane season. However, it included the very unusual—and deadly—Hurricane
Agnes, which combined with another low-pressure center to ravage the north-
eastern United States, killing 122 and causing 1.3 billion 1972 dollars in damage.
Possibly, Agnes was also unusually difficult to predict.

You should also look for clusters or subgroups that stand away from the rest
of the plot or that show a trend in a different direction. Deviating groups should
raise questions about why they are different. They may be a clue that you should
split the data into subgroups instead of looking at them all together.

Look for Strength: how much
scatter?

Look for Unusual Features:
Are there outliers or
subgroups?

Describing the scatterplot of hurricane winds and pressureFOR EXAMPLE

Hurricanes develop low pressure at their centers. This pulls in moist air, pumps up their rota-
tion, and generates high winds. Standard sea-level pressure is around 1013 millibars (mb),
or 29.9 inches of mercury. Hurricane Katrina had a central pressure of 920 mb and sustained
winds of 110 knots.

Here’s a scatterplot of Maximum Wind Speed (kts) vs. Central Pressure (mb) for 163
hurricanes that have hit the United States since 1851.

Question: Describe what this plot shows.

The scatterplot shows a negative direction; in general, lower central
pressure is found in hurricanes that have higher maximum wind speeds.
This association is linear and moderately strong.
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Roles for Variables
Which variable should go on the x-axis and which on the y-axis? What we want
to know about the relationship can tell us how to make the plot. We often have
questions such as:

u Do baseball teams that score more runs sell more tickets to their games?

u Do older houses sell for less than newer ones of comparable size and 
quality?
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u Do students who score higher on their SAT tests have higher grade point
averages in college?

u Can we estimate a person’s percent body fat more simply by just measuring
waist or wrist size?

In these examples, the two variables play different roles. We’ll call the vari-
able of interest the response variable and the other the explanatory or predictor
variable.5 We’ll continue our practice of naming the variable of interest y. Natu-
rally we’ll plot it on the y-axis and place the explanatory variable on the x-axis.
Sometimes, we’ll call them the x- and y-variables. When you make a scatterplot,
you can assume that those who view it will think this way, so choose which vari-
ables to assign to which axes carefully.

The roles that we choose for variables are more about how we think about
them than about the variables themselves. Just placing a variable on the x-axis
doesn’t necessarily mean that it explains or predicts anything. And the variable
on the y-axis may not respond to it in any way. We plotted prediction error on
the y-axis against year on the x-axis because the National Hurricane Center is
interested in how their predictions have changed over time. Could we have
plotted them the other way? In this case, it’s hard to imagine reversing the
roles—knowing the prediction error and wanting to guess in what year it hap-
pened. But for some scatterplots, it can make sense to use either choice, so you
have to think about how the choice of role helps to answer the question you
have.

NOTATION ALERT

So x and y are reserved letters
as well, but not just for labeling
the axes of a scatterplot. In
Statistics, the assignment of
variables to the x- and y-axes
(and the choice of notation for
them in formulas) often conveys
information about their roles as
predictor or response variable.

Roles for Variables 149

5 The x- and y-variables have sometimes been referred to as the independent and dependent
variables, respectively. The idea was that the y-variable depended on the x-variable and the
x-variable acted independently to make y respond. These names, however, conflict with
other uses of the same terms in Statistics.

Self-Test: Scatterplot
Check. Can you identify a
scatterplot’s direction, form, and
strength?

TI Tips Creating a scatterplot

Let’s use your calculator to make a scatterplot. First you need some data. It’s
okay to just enter the data in any two lists, but let’s get fancy. When you are
handling lots of data and several variables (as you will be soon), remembering
what you stored in L1, L2, and so on can become confusing. You can—and
should—give your variables meaningful names. To see how, let’s store some
data that you will use several times in this chapter and the next. They show the
change in tuition costs at Arizona State University during the 1990s.

Naming the Lists
• Go into STAT Edit, place the cursor on one of the list names (L1, say), and

use the arrow key to move to the right across all the lists until you encounter
a blank column.

• Type YR to name this first variable, then hit ENTER.
• Often when we work with years it makes sense to use values like “90” (or

even “0”) rather than big numbers like “1990.” For these data enter the years
1990 through 2000 as 0, 1, 2, . . . , 10.

• Now go to the next blank column, name this variable TUIT, and enter these
values: 6546, 6996, 6996, 7350, 7500, 7978, 8377, 8710, 9110, 9411, 9800.
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6 The son of one of the authors, when told (as he often was) that he was tall for his age,
used to point out that, actually, he was young for his height.

Correlation
Data collected from students in Statistics classes included their Height (in inches)
and Weight (in pounds). It’s no great surprise to discover that there is a positive
association between the two. As you might suspect, taller students tend to weigh
more. (If we had reversed the roles and chosen height as the explanatory variable,
we might say that heavier students tend to be taller.)6 And the form of the scatter-
plot is fairly straight as well, although there seems to be a high outlier, as the plot
shows.

Making the Scatterplot
• Set up the STATPLOT by choosing the scatterplot icon (the first option).
• Identify which lists you want as Xlist and Ylist. If the data are in L1

and L2, that’s easy to do—but your data are stored in lists with special
names. To specify your Xlist, go to 2nd LIST NAMES, scroll down the
list of variables until you find YR, then hit ENTER.

• Use LIST NAMES again to specify Ylist:TUIT.
• Pick a symbol for displaying the points.
• Now ZoomStat to see your scatterplot. (Didn’t work? ERR:DIM MISMATCH

means you don’t have the same number of x’s and y’s. Go to STAT Edit
and look carefully at your two datalists. You can easily fix the problem once
you find it.)

• Notice that if you TRACE the scatterplot the calculator will tell you the x-
and y-value at each point.

What can you Tell about the trend in tuition costs at ASU? (Remember: direc-
tion, form, and strength!)

WHO Students

WHAT Height (inches),
weight (pounds)

WHERE Ithaca, NY

WHY Data for class

HOW Survey

120

160

200

240

280

64 68 72 76

W
ei

gh
t (

lb
)

Height (in.)

40

60

80

100

120

160 170 180 190

W
ei

gh
t (

kg
)

Height (cm)

FIGURE 7.2 Weight vs. Height of
Statistics students.
Plotting Weight vs. Height in different
units doesn’t change the shape of the
pattern.

The pattern in the scatterplots looks straight and is clearly a positive associa-
tion, but how strong is it? If you had to put a number (say, between 0 and 1) on
the strength, what would it be? Whatever measure you use shouldn’t depend on
the choice of units for the variables. After all, if we measure heights and weights
in centimeters and kilograms instead, it doesn’t change the direction, form, or
strength, so it shouldn’t change the number.

Activity: Correlation.
Here’s a good example of how
correlation works to summarize
the strength of a linear
relationship and disregard
scaling.
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FIGURE 7.3
A scatterplot of standardized heights and weights.

Since the units shouldn’t matter to our measure of strength, we can remove
them by standardizing each variable. Now, for each point, instead of the values
(x, y) we’ll have the standardized coordinates (zx, zy). Remember that to standardize
values, we subtract the mean of each variable and then divide by its standard
deviation:

.

Because standardizing makes the means of both variables 0, the center of the new
scatterplot is at the origin. The scales on both axes are now standard deviation
units.

1zx, zy2 = a
x - x

sx
, 

y - y

sy
b

Standardizing shouldn’t affect the appearance
of the plot. Does the plot of z-scores (Figure 7.3) look
like the previous plots? Well, no. The underlying lin-
ear pattern seems steeper in the standardized plot.
That’s because the scales of the axes are now the
same, so the length of one standard deviation is the
same vertically and horizontally. When we worked
in the original units, we were free to make the plot
as tall and thin
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or as squat and wide

as we wanted to, but that can change the impression the plot gives. By contrast,
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equal scaling gives a neutral way of drawing the scatterplot and a fairer im-
pression of the strength of the association.7

Which points in the scatterplot of the z-scores give the impression of a pos-
itive association? In a positive association, y tends to increase as x increases. So,
the points in the upper right and lower left (colored green) strengthen that im-
pression. For these points, zx and zy have the same sign, so the product zx zy is
positive. Points far from the origin (which make the association look more pos-
itive) have bigger products.

The red points in the upper left and lower right quadrants tend to weaken
the positive association (or support a negative association). For these points, zx
and zy have opposite signs. So the product zxzy for these points is negative.
Points far from the origin (which make the association look more negative)
have a negative product even larger in magnitude.

Points with z-scores of zero on either variable don’t vote either way, be-
cause They’re colored blue.

To turn these products into a measure of the strength of the association, just
add up the zxzy products for every point in the scatterplot:

This summarizes the direction and strength of the association for all the
points. If most of the points are in the green quadrants, the sum will tend to be
positive. If most are in the red quadrants, it will tend to be negative.

But the size of this sum gets bigger the more data we have. To adjust for
this, the natural (for statisticians anyway) thing to do is to divide the sum by

.8 The ratio is the famous correlation coefficient:

For the students’ heights and weights, the correlation is 0.644. There are a number
of alternative formulas for the correlation coefficient, but this form using z-scores
is best for understanding what correlation means.

Correlation Conditions
Correlation measures the strength of the linear association between two quantita-
tive variables. Before you use correlation, you must check several conditions:

u Quantitative Variables Condition: Are both variables quantitative? Correla-
tion applies only to quantitative variables. Don’t apply correlation to categor-
ical data masquerading as quantitative. Check that you know the variables’
units and what they measure.

u Straight Enough Condition: Is the form of the scatterplot straight enough
that a linear relationship makes sense? Sure, you can calculate a correlation co-
efficient for any pair of variables. But correlation measures the strength only

r =

a zxzy

n - 1
. 

n - 1

a zxzy.

zxzy = 0.

Simulation: Correlation
and Linearity. How much does
straightness matter?

NOTATION ALERT

The letter r is always used for
correlation, so you can’t use it
for anything else in Statistics.
Whenever you see an r, it’s safe
to assume it’s a correlation.

Activity: Correlation and
Relationship Strength. What
does a correlation of 0.8 look
like? How about 0.3?

152 CHAPTER 7    Scatterplots, Association, and Correlation

FIGURE 7.4
In this scatterplot of z-scores, points are
colored according to how they affect the as-
sociation: green for positive, red for nega-
tive, and blue for neutral.

7 When we draw a scatterplot, what often looks best is to make the length of the x-axis
slightly larger than the length of the y-axis. This is an aesthetic choice, probably related to
the Golden Ratio of the Greeks.
8 Yes, the same as in the standard deviation calculation. And we offer the same
promise to explain it later.
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of the linear association, and will be misleading if the relationship is not lin-
ear. What is “straight enough”? How non-straight would the scatterplot have
to be to fail the condition? This is a judgment call that you just have to think
about. Do you think that the underlying relationship is curved? If so, then
summarizing its strength with a correlation would be misleading.

u Outlier Condition: Outliers can distort the correlation dramatically. An out-
lier can make an otherwise weak correlation look big or hide a strong correla-
tion. It can even give an otherwise positive association a negative correlation
coefficient (and vice versa). When you see an outlier, it’s often a good idea to
report the correlation with and without that point.

Each of these conditions is easy to check with a scatterplot. Many correlations
are reported without supporting data or plots. Nevertheless, you should still
think about the conditions. And you should be cautious in interpreting (or accept-
ing others’ interpretations of) the correlation when you can’t check the conditions
for yourself.

Case Study: Mortality and
Education. Is the mortality rate
lower in cities with higher
education levels?

Correlating wind speed and pressureFOR EXAMPLE

Recap: We looked at the scatterplot displaying hurricane wind speeds and central 
pressures.

The correlation coefficient for these wind speeds and pressures is 

Question: Check the conditions for using correlation. If you feel they are satisfied, interpret
this correlation.

u Quantitative Variables Condition: Both wind speed and central pressure
are quantitative variables, measured (respectively) in knots and 
millibars.

u Straight Enough Condition: The pattern in the scatterplot is quite
straight.

u Outlier Condition: A few hurricanes seem to straggle away from the main pattern, but they don’t appear to be extreme
enough to be called outliers. It may be worthwhile to check on them, however.

The conditions for using correlation are satisfied. The correlation coefficient of indicates quite a strong
negative linear association between the wind speeds of hurricanes and their central pressures.

r = -0.879

r = -0.879.
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JUST CHECKING
Your Statistics teacher tells you that the correlation between the scores (points out of 50) on Exam

1 and Exam 2 was 0.75.

1. Before answering any questions about the cor-
relation, what would you like to see? Why?

2. If she adds 10 points to each Exam 1 score,
how will this change the correlation?

3. If she standardizes scores on each exam,
how will this affect the correlation?

4. In general, if someone did poorly on Exam
1, are they likely to have done poorly or
well on Exam 2? Explain.

5. If someone did poorly on Exam 1, can you
be sure that they did poorly on Exam 2 as
well? Explain.
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9 www.nhlbi.nih.gov/about/framingham

When your blood pressure is measured, it is reported as two values: systolic blood pressure and
diastolic blood pressure.

Questions: How are these variables related to each other? Do they tend to be both high or both
low? How strongly associated are they?

Looking at AssociationSTEP–BY–STEP EXAMPLE

I’ll examine the relationship between two meas-
ures of blood pressure.

The variables are systolic and diastolic blood
pressure (SBP and DBP), recorded in millime-
ters of mercury (mm Hg) for each of 1406
participants in the Framingham Heart Study, a
famous health study in Framingham, MA.9

Plan State what you are trying to 
investigate.

Variables Identify the two quantitative
variables whose relationship we wish to
examine. Report the W’s, and be sure
both variables are recorded for the same
individuals.

Plot Make the scatterplot. Use a com-
puter program or graphing calculator if
you can.

Ç Quantitative Variables Condition: Both
SBP and DBP are quantitative and meas-
ured in mm Hg.

Ç Straight Enough Condition: The scatter-
plot looks straight.

Ç Outlier Condition: There are a few strag-
gling points, but none far enough from the
body of the data to be called outliers.

The correlation coefficient is r = 0.792.Mechanics We usually calculate correla-
tions with technology. Here we have 1406
cases, so we’d never try it by hand.

Check the conditions.
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Looks like a strong positive linear associ-
ation. We shouldn’t be surprised if the
correlation coefficient is positive and
fairly large.

I have two quantitative variables that satisfy
the conditions, so correlation is a suitable
measure of association.

REALITY CHECK
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The scatterplot shows a positive direction, with
higher SBP going with higher DBP. The plot is
generally straight, with a moderate amount of
scatter. The correlation of 0.792 is consistent
with what I saw in the scatterplot. A few cases
stand out with unusually high SBP compared
with their DBP. It seems far less common for
the DBP to be high by itself.

Conclusion Describe the direction, form,
and strength you see in the plot, along
with any unusual points or features. Be
sure to state your interpretations in the
proper context.

TI Tips Finding the correlation

Now let’s use the calculator to find a correlation. Unfortunately, the statistics
package on your TI calculator does not automatically do that. Correlations are
one of the most important things we might want to do, so here’s how to fix
that, once and for all.

• Hit 2nd CATALOG (on the zero key). You now see a list of everything the
calculator knows how to do. Impressive, huh?

• Scroll down until you find DiagnosticOn. Hit ENTER. Again. It should
say Done.

Now and forevermore (or perhaps until you change batteries) your calculator
will find correlations.

Finding the Correlation
• Always check the conditions first. Look at the scatterplot for the Arizona

State tuition data again. Does this association look linear? Are there outliers?
This plot looks fine, but remember that correlation can be used to describe
the strength of linear associations only, and outliers can distort the results.
Eyeballing the scatterplot is an essential first step. (You should be getting
used to checking on assumptions and conditions before jumping into a sta-
tistical procedure—it’s always important.)

• Under the STAT CALC menu, select 8:LinReg(a+bx) and hit ENTER.
• Now specify x and y by importing the names of your variables from the 
LIST NAMES menu. First name your x-variable followed by a comma, then
your y-variable, creating the command

LinReg(a+bx)LYR,LTUIT

Wow! A lot of stuff happened. If you suspect all those other numbers are im-
portant, too, you’ll really enjoy the next chapter. But for now, it’s the value of r
you care about. What does this correlation, say about the trend in tu-
ition costs?

r = 0.993,
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Correlation Properties
Here’s a useful list of facts about the correlation coefficient:

u The sign of a correlation coefficient gives the direction of the association.

u Correlation is always between and Correlation can be exactly equal to
or but these values are unusual in real data because they mean that

all the data points fall exactly on a single straight line.

u Correlation treats x and y symmetrically. The correlation of x with y is the
same as the correlation of y with x.

u Correlation has no units. This fact can be especially appropriate when the
data’s units are somewhat vague to begin with (IQ score, personality index,
socialization, and so on). Correlation is sometimes given as a percentage,
but you probably shouldn’t do that because it suggests a percentage of
something—and correlation, lacking units, has no “something” of which to be
a percentage.

u Correlation is not affected by changes in the center or scale of either variable.
Changing the units or baseline of either variable has no effect on the correla-
tion coefficient. Correlation depends only on the z-scores, and they are unaf-
fected by changes in center or scale.

u Correlation measures the strength of the linear association between the two
variables. Variables can be strongly associated but still have a small correla-
tion if the association isn’t linear.

u Correlation is sensitive to outliers. A single outlying value can make a small
correlation large or make a large one small.

+1.0,-1.0
+1.-1

How strong is strong? You’ll often see correlations characterized as
“weak,” “moderate,” or “strong,” but be careful. There’s no agreement on what
those terms mean. The same numerical correlation might be strong in one context
and weak in another. You might be thrilled to discover a correlation of 0.7 be-
tween the new summary of the economy you’ve come up with and stock market
prices, but you’d consider it a design failure if you found a correlation of “only”
0.7 between two tests intended to measure the same skill. Deliberately vague
terms like “weak,” “moderate,” or “strong” that describe a linear association can
be useful additions to the numerical summary that correlation provides. But be
sure to include the correlation and show a scatterplot, so others can judge for
themselves.

Activity: Construct
Scatterplots with a Given
Correlation. Try to make a
scatterplot that has a given
correlation. How close can 
you get?

Height and Weight, Again
We could have measured the
students’ weights in stones.
In the now outdated UK
system of measures, a stone
is a measure equal to 14
pounds. And we could have
measured heights in hands.
Hands are still commonly
used to measure the heights
of horses. A hand is 4 inches.
But no matter what units we
use to measure the two
variables, the correlation stays
the same.

Changing scalesFOR EXAMPLE

Recap: We found a correlation of r between hurricane wind speeds in knots and their central pressures in millibars.

Question: Suppose we wanted to consider the wind speeds in miles per hour ( ) and central pressures in inches of
mercury ( ). How would that conversion affect the conditions, the value of r, and our interpretation of the correlation
coefficient?

Not at all! Correlation is based on standardized values (z-scores), so the conditions, the value of r, and the proper
interpretation are all unaffected by changes in units.

33.86 millibars1 inch of mercury =

0.869 knots1 mile per hour =

= -0.879

Correlation and Scatterplots. See
how the correlation changes as
you drag data points around in a
scatterplot.
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FIGURE 7.5
The number of storks in Oldenburg, Germany,
plotted against the population of the town for 
7 years in the 1930s. The association is clear.
How about the causation? (Ornithologishe
Monatsberichte, 44, no. 2)

Warning: Correlation � Causation
Whenever we have a strong correlation, it’s tempting to try to explain it by imag-
ining that the predictor variable has caused the response to change. Humans are
like that; we tend to see causes and effects in everything.

Sometimes this tendency can be amusing. A scatterplot of the human popula-
tion (y) of Oldenburg, Germany, in the beginning of the 1930s plotted against the
number of storks nesting in the town (x) shows a tempting pattern.

Does cancer cause smoking? Even if the correlation of two variables is due
to a causal relationship, the correlation itself cannot tell us what causes what.

Sir Ronald Aylmer Fisher (1890–1962) was one of the greatest statisticians of the
20th century. Fisher testified in court (in testimony paid for by the tobacco compa-
nies) that a causal relationship might underlie the correlation of smoking and cancer:

“Is it possible, then, that lung cancer . . . is one of the causes of smoking cig-
arettes? I don’t think it can be excluded . . . the pre-cancerous condition is one
involving a certain amount of slight chronic inflammation . . . .

Anyone who has seen the beginning of the movie Dumbo remembers Mrs.
Jumbo anxiously waiting for the stork to bring her new baby. Even though you
know it’s silly, you can’t help but think for a minute that this plot shows that
storks are the culprits. The two variables are obviously related to each other (the
correlation is 0.97!), but that doesn’t prove that storks bring babies.

It turns out that storks nest on house chimneys. More people means more
houses, more nesting sites, and so more storks. The causation is actually in the
opposite direction, but you can’t tell from the scatterplot or correlation. You need
additional information—not just the data—to determine the real mechanism.

A scatterplot of the damage (in dollars) caused to a house by fire would show
a strong correlation with the number of firefighters at the scene. Surely the dam-
age doesn’t cause firefighters. And firefighters do seem to cause damage, spray-
ing water all around and chopping holes. Does that mean we shouldn’t call the
fire department? Of course not. There is an underlying variable that leads to both
more damage and more firefighters: the size of the blaze.

A hidden variable that stands behind a relationship and determines it by si-
multaneously affecting the other two variables is called a lurking variable. You
can often debunk claims made about data by finding a lurking variable behind
the scenes.

Scatterplots and correlation coefficients never prove causation. That’s one
reason it took so long for the U.S. Surgeon General to get warning labels on ciga-
rettes. Although there was plenty of evidence that increased smoking was
associated with increased levels of lung cancer, it took years to provide evidence
that smoking actually causes lung cancer.
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Correlation Tables
It is common in some fields to compute the correlations between every pair of
variables in a collection of variables and arrange these correlations in a table.
The rows and columns of the table name the variables, and the cells hold the
correlations.

Correlation tables are compact and give a lot of summary information at a
glance. They can be an efficient way to start to look at a large data set, but a dan-
gerous one. By presenting all of these correlations without any checks for linear-
ity and outliers, the correlation table risks showing truly small correlations that
have been inflated by outliers, truly large correlations that are hidden by outliers,
and correlations of any size that may be meaningless because the underlying form
is not linear.

Assets Sales
Market 
Value Profits

Cash 
Flow Employees

Assets 1.000
Sales 0.746 1.000
Market Value 0.682 0.879 1.000
Profits 0.602 0.814 0.968 1.000
Cash Flow 0.641 0.855 0.970 0.989 1.000
Employees 0.594 0.924 0.818 0.762 0.787 1.000

A slight cause of irritation . . . is commonly accompanied by pulling out a cig-
arette, and getting a little compensation for life’s minor ills in that way. And . . .
is not unlikely to be associated with smoking more frequently.”

Ironically, the proof that smoking indeed is the cause of many cancers came from
experiments conducted following the principles of experiment design and analysis
that Fisher himself developed—and that we’ll see in Chapter 13.

Table 7.1

A correlation table of data reported by Forbes magazine for large companies. From this 
table, can you be sure that the variables are linearly associated and free from outliers?

The diagonal cells of a correlation table always show correlations of exactly 1.
(Can you see why?) Correlation tables are commonly offered by statistics pack-
ages on computers. These same packages often offer simple ways to make all the
scatterplots that go with these correlations.

Straightening Scatterplots
Correlation is a suitable measure of strength for straight relationships only. When
a scatterplot shows a bent form that consistently increases or decreases, we can
often straighten the form of the plot by re-expressing one or both variables.

Some camera lenses have an adjustable aperture, the hole that lets the light in.
The size of the aperture is expressed in a mysterious number called the f/stop.
Each increase of one f/stop number corresponds to a halving of the light that is
allowed to come through. The f/stops of one digital camera are

f>stop: 2.8 4 5.6 8 11 16 22 32
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FIGURE 7.6
A scatterplot of f/stop vs. Shutter Speed shows
a bent relationship.
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FIGURE 7.7
Re-expressing f/stop by squaring straightens
the plot.

10 Sometimes we can do a “reality check” on our choice of re-expression. In this case, a bit
of research reveals that f/stops are related to the diameter of the open shutter. Since the
amount of light that enters is determined by the area of the open shutter, which is re-
lated to the diameter by squaring, the square re-expression seems reasonable. Not all 
re-expressions have such nice explanations, but it’s a good idea to think about them.

When you halve the shutter speed, you cut down the light, so you have to
open the aperture one notch. We could experiment to find the best f/stop value
for each shutter speed. A table of recommended shutter speeds and f/stops for a
camera lists the relationship like this:

2.8 14 5.6 8 11 16 22 32

The correlation of these shutter speeds and f/stops is 0.979. That sounds
pretty high. You might assume that there must be a strong linear relationship. But
when we check the scatterplot (we always check the scatterplot), it shows that
something is not quite right:

f>stop:

1>81>151>301>601>1251>2501>5001>1000Shutter speed:

We can see that the f/stop is not linearly related to the shutter speed. Can we
find a transformation of f/stop that straightens out the line? What if we look at
the square of the f/stop against the shutter speed?

The second plot looks much more nearly straight. In fact, the correlation is
now 0.998, but the increase in correlation is not important. (The original value of
0.979 should please almost anyone who sought a large correlation.) What is im-
portant is that the form of the plot is now straight, so the correlation is now an ap-
propriate measure of association.10

We can often find transformations that straighten a scatterplot’s form. Here, we
found the square. Chapter 10 discusses simple ways to find a good re-expression.
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TI Tips Straightening a curve

Let’s straighten the f/stop scatterplot with your calculator.

• Enter the data in two lists, shutterspeed in L1 and f/stop in L2.
• Set up a STATPLOT to create a scatterplot with Xlist:L1 and Y1ist:L2.
• Hit ZoomStat. See the curve?

We want to find the squares of all the f/stops and save those re-expressed val-
ues in another datalist. That’s easy to do.

• Create the command to square all the values in L2 and STOre those results
in L3, then hit ENTER.

Now make the new scatterplot.

• Go back to STAT PLOT and change the setup. X1ist is still L1, but this
time specify Y1ist:L3.

• ZoomStat again.

You now see the straightened plot for these data. On deck: drawing the best
line through those points!

Did you know that there’s a
strong correlation between
playing an instrument and
drinking coffee? No? One
reason might be that the
statement doesn’t make
sense. Correlation is a
statistic that’s valid only for
quantitative variables.

WHAT CAN GO WRONG?
u Don’t say “correlation” when you mean “association.” How often have you heard the

word “correlation”? Chances are pretty good that when you’ve heard the term, it’s
been misused. When people want to sound scientific, they often say “correlation”
when talking about the relationship between two variables. It’s one of the most
widely misused Statistics terms, and given how often statistics are misused, that’s
saying a lot. One of the problems is that many people use the specific term correla-
tion when they really mean the more general term association. “Association” is a de-
liberately vague term describing the relationship between two variables.

“Correlation” is a precise term that measures the strength and direction of the
linear relationship between quantitative variables.

u Don’t correlate categorical variables. People who misuse the term “correlation” to mean
“association” often fail to notice whether the variables they discuss are quantitative.
Be sure to check the Quantitative Variables Condition.

u Don’t confuse correlation with causation. One of the most common mistakes people
make in interpreting statistics occurs when they observe a high correlation between
two variables and jump to the perhaps tempting conclusion that one thing must be
causing the other. Scatterplots and correlations never demonstrate causation. At best,
these statistical tools can only reveal an association between variables, and that’s a
far cry from establishing cause and effect. While it’s true that some associations may
be causal, the nature and direction of the causation can be very hard to establish, and
there’s always the risk of overlooking lurking variables.

u Make sure the association is linear. Not all associations between quantitative variables
are linear. Correlation can miss even a strong nonlinear association. A student proj-
ect evaluating the quality of brownies baked at different temperatures reports a cor-
relation of between judges’ scores and baking temperature. That seems to say
there is no relationship—until we look at the scatterplot:

-0.05
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What Can Go Wrong? 161

FIGURE 7.8
The relationship between brownie
taste Score and Baking Temperature
is strong, but not at all linear.
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There is a strong association, but the relationship is not linear. Don’t forget to check
the Straight Enough Condition.

u Don’t assume the relationship is linear just because the correlation coefficient is high. Recall
that the correlation of f/stops and shutter speeds is 0.979 and yet the relationship is
clearly not straight. Although the relationship must be straight for the correlation to
be an appropriate measure, a high correlation is no guarantee of straightness. Nor is
it safe to use correlation to judge the best re-expression. It’s always important to look
at the scatterplot.

FIGURE 7.9
A scatterplot of f/stop vs. Shutter Speed
shows a bent relationship even though
the correlation is r = 0.979.
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u Beware of outliers. You can’t interpret a correlation coefficient safely without a back-
ground check for outliers. Here’s a silly example:

The relationship between IQ and shoe size among comedians shows a surpris-
ingly strong positive correlation of 0.50. To check assumptions, we look at the
scatterplot:
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FIGURE 7.10
A scatterplot of IQ vs. Shoe Size. From this “study,”
what is the relationship between the two? The corre-
lation is 0.50. Who does that point (the green x) in
the upper right-hand corner belong to?

The outlier is Bozo the Clown, known for his large shoes, and widely acknowledged
to be a comic “genius.” Without Bozo, the correlation is near zero.

Even a single outlier can dominate the correlation value. That’s why you need to
check the Outlier Condition.
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CONNECTIONS
Scatterplots are the basic tool for examining the relationship between two quantitative variables.
We start with a picture when we want to understand the distribution of a single variable, and
we always make a scatterplot to begin to understand the relationship between two quantitative
variables.

We used z-scores as a way to measure the statistical distance of data values from their means.
Now we’ve seen the z-scores of x and y working together to build the correlation coefficient. Cor-
relation is a summary statistic like the mean and standard deviation—only it summarizes the
strength of a linear relationship. And we interpret it as we did z-scores, using the standard devia-
tions as our rulers in both x and y.

162 CHAPTER 7    Scatterplots, Association, and Correlation

WHAT HAVE WE LEARNED?

In recent chapters we learned how to listen to the story told by data from a single variable. Now
we’ve turned our attention to the more complicated (and more interesting) story we can discover in
the association between two quantitative variables.

We’ve learned to begin our investigation by looking at a scatterplot. We’re interested in the
direction of the association, the form it takes, and its strength.

We’ve learned that, although not every relationship is linear, when the scatterplot is straight
enough, the correlation coefficient is a useful numerical summary.

u The sign of the correlation tells us the direction of the association.
u The magnitude of the correlation tells us the strength of a linear association. Strong associations

have correlations near or and very weak associations near 0.
u Correlation has no units, so shifting or scaling the data, standardizing, or even swapping the vari-

ables has no effect on the numerical value.

Once again we’ve learned that doing Statistics right means we have to Think about whether our
choice of methods is appropriate.

u The correlation coefficient is appropriate only if the underlying relationship is linear.
u We’ll check the Straight Enough Condition by looking at a scatterplot.
u And, as always, we’ll watch out for outliers!

Finally, we’ve learned not to make the mistake of assuming that a high correlation or strong associ-
ation is evidence of a cause-and-effect relationship. Beware of lurking variables!

Terms
Scatterplots 147. A scatterplot shows the relationship between two quantitative variables measured on the same

cases.

Association u 147. Direction: A positive direction or association means that, in general, as one variable in-
creases, so does the other. When increases in one variable generally correspond to decreases in
the other, the association is negative.

u 147. Form: The form we care about most is straight, but you should certainly describe other
patterns you see in scatterplots.

u 148. Strength: A scatterplot is said to show a strong association if there is little scatter around
the underlying relationship.

Outlier 148. A point that does not fit the overall pattern seen in the scatterplot.

+1-1
Simulation: Correlation,

Center, and Scale. If you have
any lingering doubts that shifting
and rescaling the data won’t
change the correlation, watch
nothing happen right before your
eyes!
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Scatterplots and Correlation on the Computer 163

Response variable, 149. In a scatterplot, you must choose a role for each variable. Assign to the y-axis the response 
Explanatory variable, variable that you hope to predict or explain. Assign to the x-axis the explanatory or predictor variable 
x-variable, y-variable that accounts for, explains, predicts, or is otherwise responsible for the y-variable.

Correlation Coefficient 152. The correlation coefficient is a numerical measure of the direction and strength of a linear
association.

Lurking variable 157. A variable other than x and y that simultaneously affects both variables, accounting for the
correlation between the two.

Skills
u Recognize when interest in the pattern of a possible relationship between two quantitative vari-

ables suggests making a scatterplot.

u Know how to identify the roles of the variables and that you should place the response variable
on the y-axis and the explanatory variable on the x-axis.

u Know the conditions for correlation and how to check them.

u Know that correlations are between and and that each extreme indicates a perfect lin-
ear association.

u Understand how the magnitude of the correlation reflects the strength of a linear association as
viewed in a scatterplot.

u Know that correlation has no units.

u Know that the correlation coefficient is not changed by changing the center or scale of either
variable.

u Understand that causation cannot be demonstrated by a scatterplot or correlation.

u Know how to make a scatterplot by hand (for a small set of data) or with technology.

u Know how to compute the correlation of two variables.

u Know how to read a correlation table produced by a statistics program.

u Be able to describe the direction, form, and strength of a scatterplot.

u Be prepared to identify and describe points that deviate from the overall pattern.

u Be able to use correlation as part of the description of a scatterplot.

u Be alert to misinterpretations of correlation.

u Understand that finding a correlation between two variables does not indicate a causal relationship
between them. Beware the dangers of suggesting causal relationships when describing correlations.

+1,-1

r =

g  zxzy

n - 1
.

SCATTERPLOTS AND CORRELATION ON THE COMPUTER

Statistics packages generally make it easy to look at a scatterplot to check whether the correlation is
appropriate. Some packages make this easier than others.

Many packages allow you to modify or enhance a scatterplot, altering the axis labels, the axis numbering, the
plot symbols, or the colors used. Some options, such as color and symbol choice, can be used to display addi-
tional information on the scatterplot.
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164 CHAPTER 7    Scatterplots, Association, and Correlation

EXERCISES

1. Association. Suppose you were to collect data for
each pair of variables. You want to make a scatterplot.
Which variable would you use as the explanatory vari-
able and which as the response variable? Why? What
would you expect to see in the scatterplot? Discuss the
likely direction, form, and strength.
a) Apples: weight in grams, weight in ounces
b) Apples: circumference (inches), weight (ounces)
c) College freshmen: shoe size, grade point average
d) Gasoline: number of miles you drove since filling up,

gallons remaining in your tank

2. Association. Suppose you were to collect data for
each pair of variables. You want to make a scatterplot.
Which variable would you use as the explanatory vari-
able and which as the response variable? Why? What
would you expect to see in the scatterplot? Discuss the
likely direction, form, and strength.
a) T-shirts at a store: price each, number sold
b) Scuba diving: depth, water pressure
c) Scuba diving: depth, visibility
d) All elementary school students: weight, score on a

reading test

3. Association. Suppose you were to collect data for
each pair of variables. You want to make a scatterplot.
Which variable would you use as the explanatory vari-
able and which as the response variable? Why? What
would you expect to see in the scatterplot? Discuss the
likely direction, form, and strength.
a) When climbing mountains: altitude, temperature
b) For each week: ice cream cone sales, air-conditioner

sales
c) People: age, grip strength
d) Drivers: blood alcohol level, reaction time

4. Association. Suppose you were to collect data for each
pair of variables. You want to make a scatterplot. Which
variable would you use as the explanatory variable and
which as the response variable? Why? What would you
expect to see in the scatterplot? Discuss the likely direc-
tion, form, and strength.
a) Long-distance calls: time (minutes), cost
b) Lightning strikes: distance from lightning, time delay

of the thunder
c) A streetlight: its apparent brightness, your distance

from it
d) Cars: weight of car, age of owner

5. Scatterplots. Which of the scatterplots at the top of the
next column show
a) little or no association?
b) a negative association?
c) a linear association?
d) a moderately strong association?
e) a very strong association?

6. Scatterplots. Which of the scatterplots below show
a) little or no association?
b) a negative association?
c) a linear association?
d) a moderately strong association?
e) a very strong association?

(1) (2)

(3) (4)

(1) (2)

(3) (4)

7. Performance IQ scores vs. brain size. A study examined
brain size (measured as pixels counted in a digitized mag-
netic resonance image [MRI] of a cross section of the brain)
and IQ (4 Performance scales of the Weschler IQ test) for col-
lege students. The scatterplot shows the Performance IQ
scores vs. the brain size. Comment on the association be-
tween brain size and IQ as seen in the scatterplot on the next
page.

T
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8. Kentucky Derby 2006. The fastest horse in Kentucky
Derby history was Secretariat in 1973. The scatterplot shows
speed (in miles per hour) of the winning horses each year.

10. Coffee sales. Owners of a new coffee shop tracked
sales for the first 20 days and displayed the data in a scat-
terplot (by day).

Exercises 165
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What do you see? In most sporting events, performances
have improved and continue to improve, so surely we an-
ticipate a positive direction. But what of the form? Has
the performance increased at the same rate throughout
the last 130 years?

9. Firing pottery. A ceramics factory can fire eight large
batches of pottery a day. Sometimes a few of the pieces
break in the process. In order to understand the problem
better, the factory records the number of broken pieces in
each batch for 3 days and then creates the scatterplot
shown.

# 
of

 B
ro

ke
n 

Pi
ec

es

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8

Batch Number

a) Make a histogram showing the distribution of the
number of broken pieces in the 24 batches of pottery
examined.

b) Describe the distribution as shown in the histogram.
What feature of the problem is more apparent in the
histogram than in the scatterplot?

c) What aspect of the company’s problem is more appar-
ent in the scatterplot?
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a) Make a histogram of the daily sales since the shop has
been in business.

b) State one fact that is obvious from the scatterplot, but
not from the histogram.

c) State one fact that is obvious from the histogram, but
not from the scatterplot.

11. Matching. Here are several scatterplots. The calculated
correlations are and 0.777. Which is
which?

-0.923, -0.487, 0.006,

(a) (b)

(c) (d)

12. Matching. Here and on the next page are several scat-
terplots. The calculated correlations are ,
0.736, and 0.951. Which is which?

-0.977, -0.021

(a) (b)

T
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13. Politics. A candidate for office claims that “there is a
correlation between television watching and crime.” Crit-
icize this statement on statistical grounds.

14. Car thefts. The National Insurance Crime Bureau re-
ports that Honda Accords, Honda Civics, and Toyota
Camrys are the cars most frequently reported stolen,
while Ford Tauruses, Pontiac Vibes, and Buick LeSabres
are stolen least often. Is it reasonable to say that there’s a
correlation between the type of car you own and the risk
that it will be stolen?

15. Roller coasters. Roller coasters get all their speed by
dropping down a steep initial incline, so it makes sense
that the height of that drop might be related to the speed
of the coaster. Here’s a scatterplot of top Speed and largest
Drop for 75 roller coasters around the world.

a) Is it appropriate to calculate the correlation? Explain.
b) The correlation is 0.898. Explain what we have learned

about the results of these experiments.

17. Hard water. In a study of streams in the Adirondack
Mountains, the following relationship was found between
the water’s pH and its hardness (measured in grains):

166 CHAPTER 7    Scatterplots, Association, and Correlation
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a) Does the scatterplot indicate that it is appropriate to
calculate the correlation? Explain.

b) In fact, the correlation of Speed and Drop is 0.91. 
Describe the association.

16. Antidepressants. A study compared the effectiveness
of several antidepressants by examining the experiments
in which they had passed the FDA requirements. Each of
those experiments compared the active drug with a
placebo, an inert pill given to some of the subjects. In
each experiment some patients treated with the placebo
had improved, a phenomenon called the placebo effect.
Patients’ depression levels were evaluated on the Hamil-
ton Depression Rating Scale, where larger numbers indi-
cate greater improvement. (The Hamilton scale is a
widely accepted standard that was used in each of the in-
dependently run studies.) The scatterplot at the top of the
next column compares mean improvement levels for the
antidepressants and placebos for several experiments.
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Is it appropriate to summarize the strength of association
with a correlation? Explain.

18. Traffic headaches. A study of traffic delays in 68 U.S.
cities found the following relationship between total de-
lays (in total hours lost) and mean highway speed:
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Is it appropriate to summarize the strength of association
with a correlation? Explain.

19. Cold nights. Is there an association between time of
year and the nighttime temperature in North Dakota? 
A researcher assigned the numbers 1–365 to the days 
January 1–December 31 and recorded the temperature at
2:00 a.m. for each. What might you expect the correlation
between DayNumber and Temperature to be? Explain.

T

T

T
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20. Association. A researcher investigating the association
between two variables collected some data and was 
surprised when he calculated the correlation. He had 
expected to find a fairly strong association, yet the corre-
lation was near 0. Discouraged, he didn’t bother making
a scatterplot. Explain to him how the scatterplot could
still reveal the strong association he anticipated.

21. Prediction units. The errors in predicting hurricane
tracks (examined in this chapter) were given in nautical
miles. An ordinary mile is 0.86898 nautical miles. Most
people living on the Gulf Coast of the United States
would prefer to know the prediction errors in miles
rather than nautical miles. Explain why converting the 
errors to miles would not change the correlation between
Prediction Error and Year.

22. More predictions. Hurricane Katrina’s hurricane force
winds extended 120 miles from its center. Katrina was a
big storm, and that affects how we think about the pre-
diction errors. Suppose we add 120 miles to each error to
get an idea of how far from the predicted track we might
still find damaging winds. Explain what would happen
to the correlation between Prediction Error and Year, and
why.

23. Correlation errors. Your Economics instructor assigns
your class to investigate factors associated with the gross
domestic product (GDP) of nations. Each student exam-
ines a different factor (such as Life Expectancy, Literacy
Rate, etc.) for a few countries and reports to the class. 
Apparently, some of your classmates do not understand
Statistics very well because you know several of their
conclusions are incorrect. Explain the mistakes in their
statements below.
a) “My very low correlation of shows that there 

is almost no association between GDP and Infant 
Mortality Rate.”

b) “There was a correlation of 0.44 between GDP and
Continent.”

24. More correlation errors. Students in the Economics
class discussed in Exercise 23 also wrote these conclu-
sions. Explain the mistakes they made.
a) “There was a very strong correlation of 1.22 between

Life Expectancy and GDP.”
b) “The correlation between Literacy Rate and GDP was

0.83. This shows that countries wanting to increase
their standard of living should invest heavily in 
education.”

25. Height and reading. A researcher studies children in
elementary school and finds a strong positive linear asso-
ciation between height and reading scores.
a) Does this mean that taller children are generally better

readers?
b) What might explain the strong correlation?

26. Cellular telephones and life expectancy. A survey of
the world’s nations in 2004 shows a strong positive corre-
lation between percentage of the country using cell
phones and life expectancy in years at birth.
a) Does this mean that cell phones are good for your

health?
b) What might explain the strong correlation?

-0.772

27. Correlation conclusions I. The correlation between
Age and Income as measured on 100 people is 
Explain whether or not each of these possible conclusions
is justified:
a) When Age increases, Income increases as well.
b) The form of the relationship between Age and Income

is straight.
c) There are no outliers in the scatterplot of Income vs.

Age.
d) Whether we measure Age in years or months, the cor-

relation will still be 0.75.

28. Correlation conclusions II. The correlation between
Fuel Efficiency (as measured by miles per gallon) and Price
of 150 cars at a large dealership is Explain
whether or not each of these possible conclusions is 
justified:
a) The more you pay, the lower the fuel efficiency of

your car will be.
b) The form of the relationship between Fuel Efficiency

and Price is moderately straight.
c) There are several outliers that explain the low 

correlation.
d) If we measure Fuel Efficiency in kilometers per liter in-

stead of miles per gallon, the correlation will increase.

29. Baldness and heart disease. Medical researchers fol-
lowed 1435 middle-aged men for a period of 5 years, meas-
uring the amount of Baldness present (

) and presence of Heart
Disease ( ). They found a correlation of
0.089 between the two variables. Comment on their con-
clusion that this shows that baldness is not a possible
cause of heart disease.

30. Sample survey. A polling organization is checking its
database to see if the two data sources it used sampled
the same zip codes. The variable if the
data source is MetroMedia, 2 if the data source is
DataQwest, and 3 if it’s RollingPoll. The organization
finds that the correlation between five-digit zip code and
Datasource is . It concludes that the correlation is
low enough to state that there is no dependency between
Zip Code and Source of Data. Comment.

31. Income and housing. The Office of Federal Housing
Enterprise Oversight (www.ofheo.gov) collects data on
various aspects of housing costs around the United
States. Here is a scatterplot of the Housing Cost Index ver-
sus the Median Family Income for each of the 50 states. The
correlation is 0.65.

-0.0229

Datasource = 1

Yes = 1No = 0,
extreme = 5much = 4,some = 3,

none = 1, little = 2,

r = -0.34.

r = 0.75.
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a) Describe the relationship between the Housing Cost In-
dex and the Median Family Income by state.

b) If we standardized both variables, what would the
correlation coefficient between the standardized vari-
ables be?

c) If we had measured Median Family Income in thou-
sands of dollars instead of dollars, how would the
correlation change?

d) Washington, DC, has a Housing Cost Index of 548 and
a median income of about $45,000. If we were to in-
clude DC in the data set, how would that affect the
correlation coefficient?

e) Do these data provide proof that by raising the me-
dian income in a state, the Housing Cost Index will
rise as a result? Explain.

32. Interest rates and mortgages. Since 1980, average
mortgage interest rates have fluctuated from a low of un-
der 6% to a high of over 14%. Is there a relationship be-
tween the amount of money people borrow and the inter-
est rate that’s offered? Here is a scatterplot of Total
Mortgages in the United States (in millions of 2005 dollars)
versus Interest Rate at various times over the past 26
years. The correlation is -0.84.

a) Make a scatterplot for these data.
b) Describe the direction, form, and strength of the plot.
c) Find the correlation between horsepower and miles

per gallon.
d) Write a few sentences telling what the plot says about

fuel economy.

34. Drug abuse. A survey was conducted in the United
States and 10 countries of Western Europe to determine
the percentage of teenagers who had used marijuana and
other drugs. The results are summarized in the table.
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a) Describe the relationship between Total Mortgages and
Interest Rate.

b) If we standardized both variables, what would the
correlation coefficient between the standardized vari-
ables be?

c) If we were to measure Total Mortgages in thousands of
dollars instead of millions of dollars, how would the
correlation coefficient change?

d) Suppose in another year, interest rates were 11% and
mortgages totaled $250 million. How would includ-
ing that year with these data affect the correlation
coefficient?

e) Do these data provide proof that if mortgage rates 
are lowered, people will take out more mortgages? 
Explain.

33. Fuel economy 2007. Here are advertised horsepower
ratings and expected gas mileage for several 2007 vehi-
cles. (http://www.kbb.com/KBB/ReviewsAndRatings)

Vehicle Horsepower
Highway Gas 
Mileage (mpg)

Audi A4 200 32
BMW 328 230 30
Buick LaCrosse 200 30
Chevy Cobalt 148 32
Chevy TrailBlazer 291 22
Ford Expedition 300 20
GMC Yukon 295 21
Honda Civic 140 40
Honda Accord 166 34
Hyundai Elantra 138 36
Lexus IS 350 306 28
Lincoln Navigator 300 18
Mazda Tribute 212 25
Toyota Camry 158 34
Volkswagen Beetle 150 30

Percent Who Have Used

Country Marijuana Other Drugs
Czech Rep. 22 4
Denmark 17 3
England 40 21
Finland 5 1
Ireland 37 16
Italy 19 8
No. Ireland 23 14
Norway 6 3
Portugal 7 3
Scotland 53 31
USA 34 24

a) Create a scatterplot.
b) What is the correlation between the percent of teens

who have used marijuana and the percent who have
used other drugs?

c) Write a brief description of the association.
d) Do these results confirm that marijuana is a “gateway

drug,” that is, that marijuana use leads to the use of
other drugs? Explain.

T

T
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35. Burgers. Fast food is often considered unhealthy be-
cause much of it is high in both fat and sodium. But are
the two related? Here are the fat and sodium contents of
several brands of burgers. Analyze the association be-
tween fat content and sodium.

a) Do winning teams generally enjoy greater attendance
at their home games? Describe the association.

b) Is attendance more strongly associated with winning
or scoring runs? Explain.

c) How strongly is scoring more runs associated with
winning more games?

39. Thrills. People who responded to a July 2004 Discov-
ery Channel poll named the 10 best roller coasters in
the United States. The table below shows the length 
of the initial drop (in feet) and the duration of the ride
(in seconds). What do these data indicate about the
height of a roller coaster and the length of the ride you
can expect?

Exercises 169

Fat (g) 19 31 34 35 39 39 43

Sodium (mg) 920 1500 1310 860 1180 940 1260

Fat (g) 19 31 34 35 39 39 43

Calories 410 580 590 570 640 680 660

36. Burgers II. In the previous exercise you analyzed the
association between the amounts of fat and sodium in
fast food hamburgers. What about fat and calories? Here
are data for the same burgers:

37. Attendance 2006. American League baseball games
are played under the designated hitter rule, meaning that
pitchers, often weak hitters, do not come to bat. Baseball
owners believe that the designated hitter rule means
more runs scored, which in turn means higher atten-
dance. Is there evidence that more fans attend games if
the teams score more runs? Data collected from American
League games during the 2006 season indicate a correla-
tion of 0.667 between runs scored and the number of peo-
ple at the game. (http://mlb.mlb.com)
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a) Does the scatterplot indicate that it’s appropriate to
calculate a correlation? Explain.

b) Describe the association between attendance and runs
scored.

c) Does this association prove that the owners are right
that more fans will come to games if the teams score
more runs?

38. Second inning 2006. Perhaps fans are just more inter-
ested in teams that win. The displays below are based on
American League teams for the 2006 season. (http://
espn.go.com) Are the teams that win necessarily those
which score the most runs?

T

CORRELATION

Wins Runs Attend

Wins 1.000
Runs 0.605 1.000
Attend 0.697 0.667 1.000
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Roller Coaster State Drop (ft) Duration (sec)

Incredible Hulk FL 105 135
Millennium Force OH 300 105
Goliath CA 255 180
Nitro NJ 215 240
Magnum XL-2000 OH 195 120
The Beast OH 141 65
Son of Beast OH 214 140
Thunderbolt PA 95 90
Ghost Rider CA 108 160
Raven IN 86 90

40. Vehicle weights. The Minnesota Department of
Transportation hoped that they could measure the
weights of big trucks without actually stopping the ve-
hicles by using a newly developed “weight-in-motion”
scale. To see if the new device was accurate, they con-
ducted a calibration test. They weighed several
stopped trucks (static weight) and assumed that this
weight was correct. Then they weighed the trucks
again while they were moving to see how well the new
scale could estimate the actual weight. Their data are
given in the table on the next page.

T

T

T
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a) Make a scatterplot for these data.
b) Describe the direction, form, and strength of the plot.
c) Write a few sentences telling what the plot says about

the data. (Note: The sentences should be about weigh-
ing trucks, not about scatterplots.)

d) Find the correlation.
e) If the trucks were weighed in kilograms, how would

this change the correlation? (1 kilogram pounds)
f) Do any points deviate from the overall pattern? What

does the plot say about a possible recalibration of the
weight-in-motion scale?

41. Planets (more or less). On August 24, 2006, the Inter-
national Astronomical Union voted that Pluto is not a
planet. Some members of the public have been reluctant
to accept that decision. Let’s look at some of the data.
(We’ll see more in the next chapter.) Is there any pattern
to the locations of the planets? The table shows the aver-
age distance of each of the traditional nine planets from
the sun.

= 2.2

42. Flights. The number of flights by U.S. Airlines has
grown rapidly. Here are the number of flights flown in
each year from 1995 to 2005.
a) Find the correlation of Flights with Year.
b) Make a scatterplot and describe the trend.
c) Note two reasons that the correlation you found in 

(a) is not a suitable summary of the strength of the 
association. Can you account for these violations of
the conditions?

170 CHAPTER 7    Scatterplots, Association, and Correlation

WEIGHTS (1000S OF LBS)

Weight-in-Motion Static Weight

26.0 27.9
29.9 29.1
39.5 38.0
25.1 27.0
31.6 30.3
36.2 34.5
25.1 27.8
31.0 29.6
35.6 33.1
40.2 35.5

Planet
Position
Number

Distance from Sun 
(million miles)

Mercury 1 36
Venus 2 67
Earth 3 93
Mars 4 142
Jupiter 5 484
Saturn 6 887
Uranus 7 1784
Neptune 8 2796
Pluto 9 3666

a) Make a scatterplot and describe the association. 
(Remember: direction, form, and strength!)

b) Why would you not want to talk about the correlation
between a planet’s Position and Distance from the sun?

c) Make a scatterplot showing the logarithm of Distance
vs. Position. What is better about this scatterplot?

Year Flights

1995 5,327,435
1996 5,351,983
1997 5,411,843
1998 5,384,721
1999 5,527,884
2000 5,683,047
2001 5,967,780
2002 5,271,359
2003 6,488,539
2004 7,129,270
2005 7,140,596

JUST CHECKING
Answers

1. We know the scores are quantitative. We should
check to see if the Straight Enough Condition and
the Outlier Condition are satisfied by looking at a
scatterplot of the two scores.

2. It won’t change.

3. It won’t change.

4. They are likely to have done poorly. The positive
correlation means that low scores on Exam 1 are
associated with low scores on Exam 2 (and similarly
for high scores).

5. No. The general association is positive, but individual
performances may vary.
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The Whopper™ has been Burger King’s signature sandwich since 1957.
One Double Whopper with cheese provides 53 grams of protein—all the
protein you need in a day. It also supplies 1020 calories and 65 grams 
of fat. The Daily Value (based on a 2000-calorie diet) for fat is 65 grams.

So after a Double Whopper you’ll want the rest of your calories that day to be
fat-free.1

Of course, the Whopper isn’t the only item Burger King sells. How are fat
and protein related on the entire BK menu? The scatterplot of the Fat (in grams)
versus the Protein (in grams) for foods sold at Burger King shows a positive, mod-
erately strong, linear relationship.

171

CHAPTER

8
Linear 
Regression

WHO Items on the Burger
King menu

WHAT Protein content and
total fat content

UNITS Grams of protein
Grams of fat

HOW Supplied by BK on
request or at their 
Web site
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FIGURE 8.1
Total Fat versus Protein for 30 items on the
BK menu. The Double Whopper is in the 
upper right corner. It’s extreme, but is it 
out of line?Video: Manatees and

Motorboats. Are motorboats
killing more manatees in Florida?
Here’s the story on video.

If you want 25 grams of protein in your lunch, how much fat should you ex-
pect to consume at Burger King? The correlation between Fat and Protein is 0.83, a
sign that the linear association seen in the scatterplot is fairly strong. But strength
of the relationship is only part of the picture. The correlation says, “The linear as-
sociation between these two variables is fairly strong,” but it doesn’t tell us what
the line is.

1 Sorry about the fries.

Activity: Linear Equations.
For a quick review of linear
equations, view this activity and
play with the interactive tool.
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Now we can say more. We can model the relationship with a line and give its
equation. The equation will let us predict the fat content for any Burger King
food, given its amount of protein.

We met our first model in Chapter 6. We saw there that we can specify a Nor-
mal model with two parameters: its mean and standard deviation .

For the Burger King foods, we’d choose a linear model to describe the rela-
tionship between Protein and Fat. The linear model is just an equation of a
straight line through the data. Of course, no line can go through all the points, but
a linear model can summarize the general pattern with only a couple of parame-
ters. Like all models of the real world, the line will be wrong—wrong in the sense
that it can’t match reality exactly. But it can help us understand how the variables
are associated.

Residuals
Not only can’t we draw a line through all the points, the best line might not
even hit any of the points. Then how can it be the “best” line? We want to
find the line that somehow comes closer to all the points than any other line.
Some of the points will be above the line and some below. For example, the
line might suggest that a BK Broiler chicken sandwich with 30 grams of pro-
tein should have 36 grams of fat when, in fact, it actually has only 25 grams
of fat. We call the estimate made from a model the predicted value, and
write it as (called y-hat) to distinguish it from the true value y (called, uh, y).
The difference between the observed value and its associated predicted
value is called the residual. The residual value tells us how far off the
model’s prediction is at that point. The BK Broiler chicken residual would

be of fat.
To find the residuals, we always subtract the predicted

value from the observed one. The negative residual tells us
that the actual fat content of the BK Broiler chicken is about
11 grams less than the model predicts for a typical Burger
King menu item with 30 grams of protein.

Our challenge now is how to find the right line.

“Best Fit” Means Least Squares
When we draw a line through a scatterplot, some residuals are positive and
some negative. We can’t assess how well the line fits by adding up all the
residuals—the positive and negative ones would just cancel each other out. We
faced the same issue when we calculated a standard deviation to measure

spread. And we deal with it the same way here: by
squaring the residuals. Squaring makes them all
positive. Now we can add them up. Squaring also
emphasizes the large residuals. After all, points
near the line are consistent with the model, but
we’re more concerned about points far from the
line. When we add all the squared residuals to-
gether, that sum indicates how well the line we
drew fits the data—the smaller the sum, the better
the fit. A different line will produce a different sum,
maybe bigger, maybe smaller. The line of best fit is
the line for which the sum of the squared residuals
is smallest, the least squares line.

y - yN = 25 - 36 = -11 g

yN

1s21m2

Who’s on First
In 1805, Legendre was the first to publish the “least squares”
solution to the problem of fitting a line to data when the
points don’t all fall exactly on the line.The main challenge
was how to distribute the errors “fairly.” After considerable
thought, he decided to minimize the sum of the squares of
what we now call the residuals. When Legendre published
his paper, though, Gauss claimed he had been using the
method since 1795. Gauss later referred to the  “least
squares”solution as “our method” (principium nostrum), which
certainly didn’t help his relationship with Legendre.

Activity: The Least
Squares Criterion. Does your
sense of “best fit” look like the
least squares line?

“Statisticians, like artists, have
the bad habit of falling in love
with their models.”

—George Box, famous
statistician
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A negative residual means the predicted value is too
big—an overestimate. And a positive residual shows
that the model makes an underestimate.These may
seem backwards until you think about them.

residual = observed value - predicted value

Activity: Residuals.
Residuals are the basis for fitting
lines to scatterplots. See how
they work.
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Correlation and the Line 173

You might think that finding this line would be pretty hard. Surprisingly,
it’s not, although it was an exciting mathematical discovery when Legendre
published it in 1805 (see margin note on previous page).

Correlation and the Line
If you suspect that what we know about correlation can lead us to the equation of
the linear model, you’re headed in the right direction. It turns out that it’s not a
very big step. In Chapter 7 we learned a lot about how correlation worked by
looking at a scatterplot of the standardized variables. Here’s a scatterplot of 
(standardized Fat) vs. (standardized Protein).

What line would you choose to model the relationship of the standardized
values? Let’s start at the center of the scatterplot. How much protein and fat does
a typical Burger King food item provide? If it has average protein content, , what
about its fat content? If you guessed that its fat content should be about average,

, as well, then you’ve discovered the first property of the line we’re looking for.
The line must go through the point ( ). In the plot of z-scores, then, the line
passes through the origin (0, 0).

You might recall that the equation for a line that passes through the origin can
be written with just a slope and no intercept:

The coordinates of our standardized points aren’t written (x, y); their coordinates
are z-scores: ( ). We’ll need to change our equation to show that. And we’ll
need to indicate that the point on the line corresponding to a particular is ,
the model’s estimate of the actual value of So our equation becomes

Many lines with different slopes pass through the origin. Which one fits our
data the best? That is, which slope determines the line that minimizes the sum of
the squared residuals? It turns out that the best choice for m is the correlation co-
efficient itself, r! (You must really wonder where that stunning assertion comes
from. Check the Math Box.)

Wow! This line has an equation that’s about as simple as we could possibly
hope for:

Great. It’s simple, but what does it tell us? It says that in moving one standard
deviation from the mean in x, we can expect to move about r standard deviations
away from the mean in y. Now that we’re thinking about least squares lines, the
correlation is more than just a vague measure of strength of association. It’s a
great way to think about what the model tells us.

Let’s be more specific. For the sandwiches, the correlation is 0.83. If we stan-
dardize both protein and fat, we can write

This model tells us that for every standard deviation above (or below) the mean a
sandwich is in protein, we’ll predict that its fat content is 0.83 standard deviations
above (or below) the mean fat content. A double hamburger has 31 grams of pro-
tein, about 1 SD above the mean. Putting 1.0 in for 
value of 0.83. If you trust the model, you’d expect the fat content to be about 0.83
fat SDs above the mean fat level. Moving one standard deviation away from the
mean in x moves our estimate r standard deviations away from the mean in y.

If there’s no linear relationship. The line is horizontal, and no matter
how many standard deviations you move in x, the predicted value for y doesn’t

r = 0,

NProtein zFat

zN Fat = 0.83zProtein.

zN y = rzx.

zN y = mzx.

zy.
zN yzx

zx, zy

y = mx.

x, y
y

x

zx

zy

z Protein

z Fat

1

2

–1

–1
1 2

FIGURE 8.2
The Burger King scatterplot in 
z-scores.

NOTATION ALERT:
“Putting a hat on it” is
standard Statistics notation to
indicate that something has
been predicted by a model.
Whenever you see a hat over a
variable name or symbol, you
can assume it is the predicted
version of that variable or
symbol (and look around for
the model).

rsy

1sx

z Protein

z  Fat

1

2

–1

–1

1 2

FIGURE 8.3
Standardized fat vs. standardized pro-
tein with the regression line. Each one
standard deviation change in protein
results in a predicted change of r stan-
dard deviations in fat.

sum of areas of residual squares as
you drag a line across a scatterplot.
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change. On the other hand, if or there’s a perfect linear association.
In that case, moving any number of standard deviations in x moves exactly the
same number of standard deviations in y. In general, moving any number of stan-
dard deviations in x moves r times that number of standard deviations in y.

-1.0,r = 1.0

JUST CHECKING
A scatterplot of house Price (in thousands of dollars) vs. house Size (in thousands of square feet)

for houses sold recently in Saratoga, NY shows a relationship that is straight, with only moderate scat-
ter and no outliers. The correlation between house Price and house Size is 0.77.

1. You go to an open house and find that the house is 1 standard deviation above the mean in size.
What would you guess about its price?

2. You read an ad for a house priced 2 standard deviations below the mean. What would you guess
about its size?

3. A friend tells you about a house whose size in square meters (he’s European) is 1.5 standard devia-
tions above the mean. What would you guess about its size in square feet?

How Big Can Predicted Values Get?
Suppose you were told that a new male student was about to join the class, and
you were asked to guess his height in inches. What would be your guess? A safe
guess would be the mean height of male students. Now suppose you are also told
that this student has a grade point average (GPA) of 3.9—about 2 SDs above the
mean GPA. Would that change your guess? Probably not. The correlation between
GPA and height is near 0, so knowing the GPA value doesn’t tell you anything and
doesn’t move your guess. (And the equation tells us that as well, since it says that
we should move from the mean.)

On the other hand, suppose you were told that, measured in centimeters, the
student’s height was 2 SDs above the mean. There’s a perfect correlation between
height in inches and height in centimeters, so you’d know he’s 2 SDs above mean
height in inches as well. (The equation would tell us to move from the
mean.)

What if you’re told that the student is 2 SDs above the mean in shoe size?
Would you still guess that he’s of average height? You might guess that he’s taller

than average, since there’s a positive correlation between height
and shoe size. But would you guess that he’s 2 SDs above the
mean? When there was no correlation, we didn’t move away
from the mean at all. With a perfect correlation, we moved our
guess the full 2 SDs. Any correlation between these extremes
should lead us to move somewhere between 0 and 2 SDs above
the mean. (To be exact, the equation tells us to move stan-
dard deviations away from the mean.)

Notice that if x is 2 SDs above its mean, we won’t ever guess
more than 2 SDs away for , since r can’t be bigger than 1.0.2

So, each predicted y tends to be closer to its mean (in standard
deviations) than its corresponding x was. This property of the
linear model is called regression to the mean, and the line is
called the regression line.

y

r * 2

1.0 * 2 SDs

0 * 2 SDs

Sir Francis Galton was the first to speak
of “regression,” although others had fit
lines to data by the same method.

The First Regression
Sir Francis Galton related the heights of sons to
the heights of their fathers with a regression line.
The slope of his line was less than 1.That is, sons
of tall fathers were tall, but not as much above the
average height as their fathers had been above
their mean. Sons of short fathers were short, but
generally not as far from their mean as their
fathers. Galton interpreted the slope correctly 
as indicating a “regression” toward the mean
height—and “regression” stuck as a description
of the method he had used to find the line.

2 In the last chapter we asserted that correlations max out at 1, but we never actually proved
that. Here’s yet another reason to check out the Math Box on the next page.
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MATH BOX

Where does the equation of the line of best fit come from? To write the equation of any line, we
need to know a point on the line and the slope. The point is easy. Consider the BK menu exam-
ple. Since it is logical to predict that a sandwich with average protein will contain average fat,
the line passes through the point .3

To think about the slope, we look once again at the z-scores. We need to remember a few
things:

1. The mean of any set of z-scores is 0. This tells us that the line that best fits the z-scores passes
through the origin (0,0).

2. The standard deviation of a set of z-scores is 1, so the variance is also 1. This means that

a fact that will be important soon.

3. The correlation is also important soon.

Ready? Remember that our objective is to find the slope of the best fit line. Because it passes
through the origin, its equation will be of the form We want to find the value for m that
will minimize the sum of the squared residuals. Actually we’ll divide that sum by and
minimize this “mean squared residual,” or MSR. Here goes:

Minimize: 

Since 

Square the binomial:

Rewrite the summation:

4. Substitute from (2) and (3):

Wow! That simplified nicely! And as a bonus, the last expression is quadratic. Remember
parabolas from algebra class? A parabola in the form reaches its minimum at 

its turning point, which occurs when We can minimize the mean of squared residuals

by choosing 

Wow, again! The slope of the best fit line for z-scores is the correlation, r. This stunning fact
immediately leads us to two important additional results, listed below. As you read on in the
text, we explain them in the context of our continuing discussion of Burger King foods.

• A slope of r for z-scores means that for every increase of 1 standard deviation in there is 
an increase of r standard deviations in “Over one, up r,” as you probably said in algebra
class. Translate that back to the original x and y values: “Over one standard deviation in x, 
up r standard deviations in ”

That’s it! In x- and y-values, the slope of the regression line is b =

rsy

sx
.

yN .

zN y.
zx

m =

-1-2r2

2112
= r.

x =

-b
2a

.

y = ax2
+ bx + c

= 1 - 2mr + m2

=

a zy
2

n - 1 - 2m 
a zxzy

n - 1 + m2 
a zx

2

n - 1

=

a 1zy
2

- 2mzxzy + m2zx
22

n - 1

MSR =

a 1zy - mzx2
2

n - 1zny = mzx:

MSR =

a 1zy - ẑy2
2

n - 1

n - 1
zN y = mzx.

r =

a zxzy

n - 1
,

a 1zy - zy2
2

n - 1 =

a 1zy - 022

n - 1 =

a zy
2

n - 1 = 1,

1x, y2

3 It’s actually not hard to prove this too.
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The Regression Line in Real Units
When you read the Burger King menu, you probably don’t think in z-scores. But
you might want to know the fat content in grams for a specific amount of protein
in grams.

How much fat should we predict for a double hamburger with 31 grams of
protein? The mean protein content is near 17 grams and the standard deviation is
14, so that item is 1 SD above the mean. Since we predict the fat content
will be 0.83 SDs above the mean fat content. Great. How much fat is that? Well, the
mean fat content is 23.5 grams and the standard deviation of fat content is 16.4, so
we predict that the double hamburger will have grams
of fat.

We can always convert both x and y to z-scores, find the correlation, use
, and then convert back to its original units so that we can understand

the prediction. But can’t we do this more simply?
Yes. Let’s write the equation of the line for protein and fat—that is, the actual

x and y values rather than their z-scores. In Algebra class you may have once seen
lines written in the form . Statisticians do exactly the same thing, but
with different notation:

In this equation, is the y-intercept, the value of y where the line crosses the
y-axis, and is the slope.4

First we find the slope, using the formula we developed in the Math Box.5 Re-
member? We know that our model predicts that for each increase of one standard
deviation in protein we’ll see an increase of about 0.83 standard deviations in fat.

In other words, the slope of the line in original units is

Next, how do we find the y-intercept, ? Remember that the line has to go
through the mean-mean point ( ). In other words, the model predicts to be the
value that corresponds to . We can put the means into the equation and write

.
Solving for , we see that the intercept is just .b0 = y - b1xb0

y = b0 + b1x
x

yx, y
b0

b1 =

rsy

sx
=

0.83 * 16.4 g fat

14 g protein
= 0.97 grams of fat per gram of protein.

b1

b0

yN = b0 + b1x.

y = mx + b

zNyzNy = rzx

23.5 + 0.83 * 16.4 = 37.11

r = 0.83,

Protein Fat

r = 0.83

sy = 16.4 gsx = 14.0 g
y = 23.5 gx = 17.2 g

Why Is Correlation “r ”?
In his original paper on
correlation, Galton used r for
the “index of correlation”
that we now call the
correlation coefficient. He
calculated it from the
regression of y on x or of x on
y after standardizing the
variables, just as we have
done. It’s fairly clear from
the text that he used r to
stand for (standardized)
regression.
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• We know choosing minimizes the sum of the squared residuals, but how small does
that sum get? Equation (4) told us that the mean of the squared residuals is 
When This is the variability not explained by
the regression line. Since the variance in was 1 (Equation 2), the percentage of variability in
y that is explained by x is This important fact will help us assess the strength of our models.

And there’s still another bonus. Because is the percent of variability explained by our
model, is at most 100%. If then proving that correlations are always
between and (Told you so!)+1.-1

-1 … r … 1,r2
… 1,r2

r2

r2.
zy

1 - 2mr + m2
= 1 - 2r2

+ r2
= 1 - r2.m = r,

1 - 2mr + m2.
m = r

Simulation: Interpreting
Equations. This demonstrates
how to use and interpret linear
equations.

4 We changed from to for a reason—not just to be difficult. Eventually
we’ll want to add more x’s to the model to make it more realistic and we don’t want to use
up the entire alphabet. What would we use after m? The next letter is n, and that one’s 
already taken. o? See our point? Sometimes subscripts are the best approach.
5 Several important results popped up in that Math Box. Check it out!

b0 + b1xmx + b

Intercept
b0 = y - b1x

Slope

b1 =

rsy

sx
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A regression model for hurricanes

The Regression Line in Real Units 177

For the Burger King foods, that comes out to

Putting this back into the regression equation gives

What does this mean? The slope, 0.97, says that an additional gram of protein is
associated with an additional 0.97 grams of fat, on average. Less formally, we
might say that Burger King sandwiches pack about 0.97 grams of fat per gram
of protein. Slopes are always expressed in y-units per x-unit. They tell how the
y-variable changes (in its units) for a one-unit change in the x-variable. When you
see a phrase like “students per teacher” or “kilobytes per second” think slope.

Changing the units of the variables doesn’t change the correlation, but for the
slope, units do matter. We may know that age and height in children are positively
correlated, but the value of the slope depends on the units. If children grow an av-
erage of 3 inches per year, that’s the same as 0.21 millimeters per day. For the
slope, it matters whether you express age in days or years and whether you meas-
ure height in inches or millimeters. How you choose to express x and y—what
units you use—affects the slope directly. Why? We know changing units doesn’t
change the correlation, but does change the standard deviations. The slope intro-
duces the units into the equation by multiplying the correlation by the ratio of 
to The units of the slope are always the units of y per unit of x.

How about the intercept of the BK regression line, 6.8? Algebraically, that’s
the value the line takes when x is zero. Here, our model predicts that even a BK
item with no protein would have, on average, about 6.8 grams of fat. Is that rea-
sonable? Well, the apple pie, with 2 grams of protein, has 14 grams of fat, so it’s
not impossible. But often 0 is not a plausible value for x (the year 0, a baby born
weighing 0 grams, ...). Then the intercept serves only as a starting value for our
predictions and we don’t interpret it as a meaningful predicted value.

sx.
sy

fat = 6.8 + 0.97 protein.

b0 = 23.5 g fat - 0.97 
g fat

g protein
* 17.2 g protein = 6.8 g fat.

Units of y per unit of x
Get into the habit of
identifying the units by
writing down “y-units per 
x-unit,” with the unit names
put in place.You’ll find it’ll
really help you to Tell about
the line in context.
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FIGURE 8.4
Burger King menu items in their 
natural units with the regression line.

In Chapter 7 we looked at the relationship between the central pressure and maximum
wind speed of Atlantic hurricanes. We saw that the scatterplot was straight enough, and
then found a correlation of but we had no model to describe how these two
important variables are related or to allow us to predict wind speed from pressure.

fore, we can use technology to find the regression model. It looks like this:

intercept have a meaningful interpretation?

MaxWindSpeed increases. That makes sense from our general un-
derstanding of how hurricanes work: Low central pressure pulls in
moist air, driving the rotation and the resulting destructive winds.
The slope’s value says that, on average, the maximum wind speed in-
creases by about 0.897 knots for every 1-millibar drop in central pressure.

It’s not meaningful, however, to interpret the intercept as the wind speed predicted for a central pressure of 0—that
would be a vacuum. Instead, it is merely a starting value for the model.
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Since the conditions we need to check for regression are the same ones we checked be-

Question: Interpret this model. What does the slope mean in this context? Does the

The negative slope says that as CentralPressure falls,

MaxWindSpeed = 955.27 – 0.897CentralPressure



JUST CHECKING
Let’s look again at the relationship between house Price (in thousands of dollars) and house Size

(in thousands of square feet) in Saratoga. The regression model is

4. What does the slope of 94.454 mean?

5. What are the units of the slope?

6. Your house is 2000 sq ft bigger than your neighbor’s house. How much more do you expect it to be
worth?

7. Is the y-intercept of meaningful? Explain.-3.117

Price = -3.117 + 94.454 Size.
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With the estimated linear model, it’s easy to predict fat
content for any menu item we want. For example, for the BK Broiler chicken sand-
wich with 30 grams of protein, we can plug in 30 grams for the amount of protein and
see that the predicted fat content is grams of fat. Because the
BK Broiler chicken sandwich actually has 25 grams of fat, its residual is

To use a regression model, we should check the same conditions for re-
gressions as we did for correlation: the Quantitative Variables Condition, the
Straight Enough Condition, and the Outlier Condition.

fat - fat = 25 - 35.9 = -10.9 g.

6.8 + 0.971302 = 35.9

fat = 6.8 + 0.97 protein,

Calculating a Regression EquationSTEP-BY-STEP EXAMPLE

I want to know how the number of wildfires in the
continental United States has changed in the
past two decades.

I have data giving the number of wildfires for each
year (in thousands of fires) from 1982 to 2005.

Ç Quantitative Variables Condition: Both
the number of fires and the year are
quantitative.

Plan State the problem.

Variables Identify the variables and
report the W’s.

Wildfires are an ongoing source of concern shared by several government
agencies. In 2004, the Bureau of Land Management, Bureau of Indian Affairs,
Fish and Wildlife Service, National Park Service, and USDA Forest Service
spent a combined total of $890,233,000 on fire suppression, down from nearly
twice that much in 2002. These government agencies join together in the 
National Interagency Fire Center, whose Web site (www.nifc.gov) reports sta-
tistics about wildfires.

Question: Has the annual number of wildfires been changing, on average? If
so, how fast and in what way?
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Years since 1982

Year:

Fires:

Correlation:

= -3.4556 fires per year

b1 =

rsy

sx
=

-0.862(28.342)
7.07

r = -0.862

 sy = 28.342 fires
 y = 114.098 fires

 sx = 7.07 years
 x = 11.5 (representing 1993.5)

Mechanics Find the equation of the re-
gression line. Summary statistics give the
building blocks of the calculation.

(We generally report summary statistics
to one more digit of accuracy than the
data. We do the same for intercept and
predicted values, but for slopes we usu-
ally report an additional digit. Remember,
though, not to round off until you finish
computing an answer.)6

Find the slope, b1.

Ç Straight Enough Condition: The scatter-
plot shows a strong linear relationship
with a negative association.

Ç Outlier Condition: No outliers are evident
in the scatterplot.

Because these conditions are satisfied, it is OK
to model the relationship with a regression line.

Just as we did for correlation, check the
conditions for a regression by making a
picture. Never fit a regression without
looking at the scatterplot first.

Find the intercept, b0.

So the least squares line is

Fires = 153.837 - 3.4556 year

yN = 153.837 - 3.4556x, or

 = 153.837
 b0 = y - b1x = 114.098 - (-3.4556)11.5

Write the equation of the model, using
meaningful variable names.

6 We warned you in Chapter 6 that we’ll round in the intermediate steps of a calculation 
to show the steps more clearly. If you repeat these calculations yourself on a calculator or
statistics program, you may get somewhat different results. When calculated with more
precision, the intercept is 153,809 and the slope is -3.453.

Note: It’s common (and usually simpler)
not to use four-digit numbers to identify
years. Here we have chosen to number
the years beginning in 1982, so 1982 is
represented as year 0 and 2005 as year 23.
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Residuals Revisited
The linear model we are using assumes that the relationship between the two
variables is a perfect straight line. The residuals are the part of the data that hasn’t
been modeled. We can write

or, equivalently,

Or, in symbols,

When we want to know how well the model fits, we can ask instead what the
model missed. To see that, we look at the residuals.

e = y - yN .

Residual =  Data - Model.

Data = Model + Residual

During the period from 1982 to 2005, the 
annual number of fires declined at an average
rate of about 3,456 (3.456 thousand) fires
per year. For prediction, the model uses a base
estimation of 153,837 fires in 1982.

Conclusion Interpret what you have
found in the context of the question.
Discuss in terms of the variables and 
their units.

Activity: Find a
Regression Equation. Now that
we’ve done it by hand, try it with
technology using the statistics
package paired with your version
of ActivStats.

Katrina’s residualFOR EXAMPLE

Recap: The linear model relating hurricanes’ wind speeds to their central pressures was

Let’s use this model to make predictions and see how those predictions do.

Question: Hurricane Katrina had a central pressure measured at 920 millibars. What does our regres-
sion model predict for her maximum wind speed? How good is that prediction, given that Katrina’s ac-
tual wind speed was measured at 110 knots?

Substituting 920 for the central pressure in the regression model equation
gives

The regression model predicts a maximum wind speed of 130 knots for Hurricane
Katrina.
The residual for this prediction is the observed value minus the predicted value:

In the case of Hurricane Katrina, the model predicts a wind speed 20 knots higher than was actually observed.

110 - 130 = -20kts.

MaxWindSpeed = 955.27 - 0.89719202 = 130.03

Why e for “Residual”?
The flip answer is that r is
already taken, but the truth is
that e stands for  “error.” No,
that doesn’t mean it’s a
mistake. Statisticians often
refer to variability not
explained by a model as error.
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JUST CHECKING
Our linear model for Saratoga homes uses the Size (in thousands of square feet) to estimate the 

Price (in thousands of dollars): Size. Suppose you’re thinking of buying a 
home there.

8. Would you prefer to find a home with a negative or a positive residual? Explain.

9. You plan to look for a home of about 3000 square feet. How much should you expect to have to pay?

10. You find a nice home that size selling for $300,000. What’s the residual?

Price = -3.117 + 94.454

The Residual Standard Deviation 181

Residuals help us to see whether the model makes sense. When a
regression model is appropriate, it should model the underlying rela-
tionship. Nothing interesting should be left behind. So after we fit a re-
gression model, we usually plot the residuals in the hope of finding . . .
nothing.

A scatterplot of the residuals versus the x-values should be the
most boring scatterplot you’ve ever seen. It shouldn’t have any inter-
esting features, like a direction or shape. It should stretch horizontally,
with about the same amount of scatter throughout. It should show no
bends, and it should have no outliers. If you see any of these features,
find out what the regression model missed.

Most computer statistics packages plot the residuals against the
predicted values rather than against x. When the slope is negative,
the two versions are mirror images. When the slope is positive, they’re
virtually identical except for the axis labels. Since all we care about is
the patterns (or, better, lack of patterns) in the plot, it really doesn’t mat-
ter which way we plot the residuals.

yN ,
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FIGURE 8.5
The residuals for the BK menu regression look appropri-
ately boring.

The Residual Standard Deviation
If the residuals show no interesting pattern when we plot them against x, we can
look at how big they are. After all, we’re trying to make them as small as possible.
Since their mean is always zero, though, it’s only sensible to look at how much they
vary. The standard deviation of the residuals, gives us a measure of how much
the points spread around the regression line. Of course, for this summary to make
sense, the residuals should all share the same underlying spread, so we check to
make sure that the residual plot has about the same amount of scatter throughout.

This gives us a new assumption: the Equal Variance Assumption. The associ-
ated condition to check is the Does the Plot Thicken? Condition. We check to
make sure that the spread is about the same all along the line. We can check that
either in the original scatterplot of y against x or in the scatterplot of residuals.

We estimate the standard deviation of the residuals in almost the way you’d
expect:

We don’t need to subtract the mean because the mean of the residuals 
For the Burger King foods, the standard deviation of the residuals is 9.2 grams

of fat. That looks about right in the scatterplot of residuals. The residual for the
BK Broiler chicken was grams, just over one standard deviation.-11

e = 0.

se = A
©e2

n - 2

se,

Why rather than
We used for s

when we estimated the
mean. Now we’re estimating
both a slope and an
intercept. Looks like a
pattern—and it is. We
subtract one more for each
parameter we estimate.

n - 1n - 1?
n - 2
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It’s a good idea to make a histogram of the residuals. If we see a unimodal,
symmetric histogram, then we can apply the 68–95–99.7 Rule to see how well
the regression model describes the data. In particular, we know that 95% of the
residuals should be no larger in size than . The Burger King residuals look
like this:

2se
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5# 
of

 R
es

id
ua

ls

–9.2–27.6 –18.4 0.0 9.2 18.4 27.6
Residuals

Sure enough, almost all are less than 2(9.2), or 18.4, g of fat in size.

—The Variation Accounted For
The variation in the residuals is the key to assessing how well the model fits.
Let’s compare the variation of the response variable with the variation of the
residuals. The total Fat has a standard deviation of 16.4 grams. The standard de-
viation of the residuals is 9.2 grams. If the correlation were 1.0 and the model
predicted the Fat values perfectly, the residuals would all be zero and have no
variation. We couldn’t possibly do any better than that.

On the other hand, if the correlation were zero, the model would simply pre-
dict 23.5 grams of Fat (the mean) for all menu items. The residuals from that pre-
diction would just be the observed Fat values minus their mean. These residuals
would have the same variability as the original data because, as we know, just
subtracting the mean doesn’t change the spread.

How well does the BK regression model do? Look at the boxplots. The varia-
tion in the residuals is smaller than in the data, but certainly bigger than zero.
That’s nice to know, but how much of the variation is still left in the residuals? If
you had to put a number between 0% and 100% on the fraction of the variation
left in the residuals, what would you say?

All regression models fall somewhere between the two extremes of zero cor-
relation and perfect correlation. We’d like to gauge where our model falls. As we
showed in the Math Box,7 the squared correlation, , gives the fraction of the
data’s variation accounted for by the model, and is the fraction of the orig-
inal variation left in the residuals. For the Burger King model, 
and is 0.31, so 31% of the variability in total Fat has been left in the residu-
als. How close was that to your guess?

All regression analyses include this statistic, although by tradition, it is writ-
ten with a capital letter, and pronounced “R-squared.” An of 0 means that
none of the variance in the data is in the model; all of it is still in the residuals. It
would be hard to imagine using that model for anything.

R2R2,

1 - r2
r2

= 0.832
= 0.69,

1 - r2
r2

R 
2

–30

–15
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15

30

45

Fat Residuals

FIGURE 8.6
Compare the variability of total Fat with
the residuals from the regression. The
means have been subtracted to make it
easier to compare spreads. The varia-
tion left in the residuals is unaccounted
for by the model, but it’s less than the
variation in the original data.

7 Have you looked yet? Please do.

Understanding . Watch the
unexplained variability decrease
as you drag points closer to the
regression line.

R2
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Is a correlation of 0.80 twice
as strong as a correlation of
0.40? Not if you think in
terms of . A correlation 
of 0.80 means an of 

A correlation 
of 0.40 means an of 

—only a quarter
as much of the variability
accounted for. A correlation
of 0.80 gives an four times
as strong as a correlation of
0.40 and accounts for four
times as much of the
variability.

R2

0.402
= 16%

R2
0.802

= 64%.
R2

R2

How Big Should Be? 183R2

Because is a fraction of a whole, it is often given as a percentage.8 For the
Burger King data, is 69%. When interpreting a regression model, you need to Tell
what means. According to our linear model, 69% of the variability in the fat
content of Burger King sandwiches is accounted for by variation in the protein
content.

R2
R2

R2

How can we see that is really the fraction of variance accounted
for by the model? It’s a simple calculation. The variance of the fat content of the
Burger King foods is If we treat the residuals as data, the variance of
the residuals is 83.195.9 As a fraction, that’s or 31%. That’s
the fraction of the variance that is not accounted for by the model. The fraction that is
accounted for is just the value we got for R2.100% - 31% = 69%,

83.195>268.42 = 0.31,
16.42

= 268.42.

R 
2

Interpreting R2FOR EXAMPLE

Recap: Our regression model that predicts maximum wind speed in hurricanes based on the storm’s central pressure has

Question: What does that say about our regression model?

An of 77.3% indicates that 77.3% of the variation in maximum wind speed can be accounted for by
the hurricane’s central pressure. Other factors, such as temperature and whether the storm is over
water or land, may explain some of the remaining variation.

R2

How Big Should Be?
is always between 0% and 100%. But what’s a “good” value? The answer

depends on the kind of data you are analyzing and on what you want to do with
it. Just as with correlation, there is no value for that automatically determinesR2

R2R2

R 
2

JUST CHECKING
Back to our regression of house Price (in thousands of $) on house Size (in thousands of square

feet). The value is reported as 59.5%, and the standard deviation of the residualsis 53.79.

11. What does the value mean about the relationship of Price and Size?

12. Is the correlation of Price and Size positive or negative? How do you know?

13. If we measure house Size in square meters instead, would change? Would the slope of the line
change? Explain.

14. You find that your house in Saratoga is worth $100,000 more than the regression model predicts.
Should you be very surprised (as well as pleased)?

R2

R2

R2

8 By contrast, we usually give correlation coefficients as decimal values between and 1.0.
9 This isn’t quite the same as squaring the that we discussed on the previous page, but
it’s very close. We’ll deal with the distinction in Chapter 27.

se

-1.0
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that the regression is “good.” Data from scientific experiments often have in
the 80% to 90% range and even higher. Data from observational studies and sur-
veys, though, often show relatively weak associations because it’s so difficult to
measure responses reliably. An of 50% to 30% or even lower might be taken as
evidence of a useful regression. The standard deviation of the residuals can give
us more information about the usefulness of the regression by telling us how
much scatter there is around the line.

As we’ve seen, an of 100% is a perfect fit, with no scatter around the line.
The would be zero. All of the variance is accounted for by the model and none
is left in the residuals at all. This sounds great, but it’s too good to be true for real
data.10

Along with the slope and intercept for a regression, you should always report
so that readers can judge for themselves how successful the regression is at

fitting the data. Statistics is about variation, and measures the success of the
regression model in terms of the fraction of the variation of y accounted for by the
regression. is the first part of a regression that many people look at because,
along with the scatterplot, it tells whether the regression model is even worth
thinking about.

Regression Assumptions and Conditions
The linear regression model is perhaps the most widely used model in all of
Statistics. It has everything we could want in a model: two easily estimated pa-
rameters, a meaningful measure of how well the model fits the data, and the abil-
ity to predict new values. It even provides a self-check in plots of the residuals to
help us avoid silly mistakes.

Like all models, though, linear models don’t apply all the time, so we’d better
think about whether they’re reasonable. It makes no sense to make a scatterplot of
categorical variables, and even less to perform a regression on them. Always check
the Quantitative Variables Condition to be sure a regression is appropriate.

The linear model makes several assumptions. First, and foremost, is the
Linearity Assumption—that the relationship between the variables is, in fact, lin-
ear. You can’t verify an assumption, but you can check the associated condition. A
quick look at the scatterplot will help you check the Straight Enough Condition.
You don’t need a perfectly straight plot, but it must be straight enough for the lin-
ear model to make sense. If you try to model a curved relationship with a straight
line, you’ll usually get exactly what you deserve.

If the scatterplot is not straight enough, stop here. You can’t use a linear model
for any two variables, even if they are related. They must have a linear association,
or the model won’t mean a thing.

For the standard deviation of the residuals to summarize the scatter, all the
residuals should share the same spread, so we need the Equal Variance Assump-
tion. The Does the Plot Thicken? Condition checks for changing spread in the
scatterplot.

Check the Outlier Condition. Outlying points can dramatically change a re-
gression model. Outliers can even change the sign of the slope, misleading us
about the underlying relationship between the variables. We’ll see examples in
the next chapter.

Even though we’ve checked the conditions in the scatterplot of the data, a
scatterplot of the residuals can sometimes help us see any violations even more

R2

R2
R2

se

R2

R2

R2

Make a Picture
To use regression, first check
that

• the scatterplot is straight
enough.

After you’ve fit the
regression, make a residual
plot and check that there are
no obvious patterns. In
particular, check that

• there are no obvious
bends,

• the spread of the
residuals is about the
same throughout, and

• there are no obvious
outliers.

10 If you see an of 100%, it’s a good idea to figure out what happened. You may have dis-
covered a new law of Physics, but it’s much more likely that you accidentally regressed
two variables that measure the same thing.

R2

Some Extreme Tales
One major company
developed a method to
differentiate between
proteins.To do so, they had
to distinguish between
regressions with of 99.99%
and 99.98%. For this
application, 99.98% was not
high enough.

The president of a
financial services company
reports that although his
regressions give below 2%,
they are highly successful
because those used by his
competition are even lower.

R2

R2
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clearly. And examining the residuals is the best way to look for additional pat-
terns and interesting quirks in the data.

A Tale of Two Regressions
Regression slopes may not behave exactly the way you’d expect at first. Our re-
gression model for the Burger King sandwiches was protein. That
equation allowed us to estimate that a sandwich with 30 grams of protein would
have 35.9 grams of fat. Suppose, though, that we knew the fat content and wanted
to predict the amount of protein. It might seem natural to think that by solving
our equation for protein we’d get a model for predicting protein from fat. But that
doesn’t work.

Our original model is , but the new one needs to evaluate an 
based on a value of y. There’s no y in our original model, only , and that makes
all the difference. Our model doesn’t fit the BK data values perfectly, and the least
squares criterion focuses on the vertical errors the model makes in using to model
y—not on horizontal errors related to x.

A quick look at the equations reveals why. Simply solving our equation for x
would give a new line whose slope is the reciprocal of ours. To model y in terms 
of x, our slope is . To model x in terms of y, we’d need to use the slope

. Notice that it’s not the reciprocal of ours.
If we want to predict protein from fat, we need to create that model. The slope 

is grams of protein per gram of fat. The equation turns out 
to be , so we’d predict that a sandwich with 35.9 grams
of fat should have 26.0 grams of protein—not the 30 grams that we used in the
first equation.

Moral of the story: Think. (Where have you heard that before?) Decide which
variable you want to use (x) to predict values for the other (y). Then find the
model that does that. If, later, you want to make predictions in the other direction,
you’ll need to start over and create the other model from scratch.

protein = 0.55 + 0.709 fat

b1 =

10.832114.02
16.4 = 0.709

b1 =

rs
x

sy

b1 =

rs
y

sx

yN
xNyN = b0 + b1x

fat = 6.8 + 0.97

Protein Fat

r = 0.83

sy = 16.4 gsx = 14.0 g
y = 23.5 gx = 17.2 g

Even if you hit the fast food joints for lunch, you should have a good breakfast. Nutritionists, con-
cerned about “empty calories”in breakfast cereals, recorded facts about 77 cereals, including their
Calories per serving and Sugar content (in grams).

Question: How are calories and sugar content related in breakfast cereals?

RegressionSTEP-BY-STEP EXAMPLE

I am interested in the relationship between
sugar content and calories in cereals. I’ll use
Sugar to estimate Calories.

Ç Quantitative Variables Condition: I have
two quantitative variables, Calories and
Sugar content per serving, measured on 
77 breakfast cereals. The units of meas-
urement are calories and grams of sugar,
respectively.

Plan State the problem and determine
the role of the variables.

Variables Name the variables and
report the W’s.
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Ç Outlier Condition: There are no obvious
outliers or groups.

Ç The Straight Enough Condition is satisfied;
I will fit a regression model to these data.

Ç The Does the Plot Thicken? Condition is
satisfied. The spread around the line looks
about the same throughout.

Check the conditions for a regression by
making a picture. Never fit a regression
without looking at the scatterplot first.

Calories

Sugar

Correlation

So the least squares line is

Squaring the correlation gives

R2
= 0.5642

= 0.318 or 31.8%.

Calories = 89.5 + 2.50 Sugar.
yN = 89.5 + 2.50 x or

 b0 = y - b1x = 107 - 2.50(7) = 89.5 calories.

 = 2.50 calories per gram of sugar.

 b1 =

rsy

sx
=

0.564(19.5)
4.4

 r = 0.564

 sx = 4.4 grams
 x = 7.0 grams

 sy = 19.5 calories
 y = 107.0 calories

Mechanics If there are no clear viola-
tions of the conditions, fit a straight line
model of the form to the
data. Summary statistics give the build-
ing blocks of the calculation.

yN = b0 + b1x

60
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150

4 8 12
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Sugar (g)

Find the slope.

Find the intercept.

Write the equation, using meaningful
variable names.

State the value of .R2

The scatterplot shows a positive, linear rela-
tionship and no outliers. The slope of the least
squares regression line suggests that cereals
have about 2.50 Calories more per additional
gram of Sugar.

Conclusion Describe what the model
says in words and numbers. Be sure to use
the names of the variables and their units.

The key to interpreting a regression model
is to start with the phrase “ y-units per
x-unit,” substituting the estimated value
of the slope for and the names of theb1

b1
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The says that 31.8% of the variability in
Calories is accounted for by variation in Sugar
content.

calories. That’s smaller than the
original SD of 19.5, but still fairly large.
se = 16.2

R2gives the fraction of the variability of y
accounted for by the linear regression
model.

Find the standard deviation of the residu-
als, , and compare it to the original sy.se

R2

The residuals show a horizontal direction, a
shapeless form, and roughly equal scatter for
all predicted values. The linear model appears
to be appropriate.

Check Again Even though we looked at
the scatterplot before fitting a regression
model, a plot of the residuals is essential
to any regression analysis because it is the
best check for additional patterns and in-
teresting quirks in the data.
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TI Tips Regression lines and residuals plots

By now you will not be surprised to learn that your calculator can do it all: scat-
terplot, regression line, and residuals plot. Let’s try it using the Arizona State
tuition data from the last chapter. (TI Tips, p. 149) You should still have that
saved in lists named and . First, recreate the scatterplot.

1. Find the equation of the regression line.
Actually, you already found the line when you used the calculator to get the
correlation. But this time we’ll be a little fancier so that we can display the line
on our scatterplot. We want to tell the calculator to do the regression and save
the equation of the model as a graphing variable.

• Under choose .
• Specify that x and y are and , as before, but . . .
• Now add a comma and one more specification. Press , go to the 

menu, choose , and finally(!) choose .
• Hit .

There’s the equation. The calculator tells you that the regression line is
year. Can you explain what the slope and y-intercept mean?

2. Add the line to the plot.
When you entered this command, the calculator automatically saved the equa-
tion as . Just hit to see the line drawn across your scatterplot.

tuit = 6440 + 326

respective units. The intercept is then a
starting or base value.

The intercept predicts that sugar-free cereals
would average about 89.5 calories.

AGAIN

Residuals plots. See how the
residuals plot changes as you drag
points around in a scatterplot.
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Reality Check: Is the Regression Reasonable?
Statistics don’t come out of nowhere. They are based on data. The results of a statis-
tical analysis should reinforce your common sense, not fly in its face. If the results
are surprising, then either you’ve learned something new about the world or your
analysis is wrong.

Whenever you perform a regression, think about the coefficients and ask
whether they make sense. Is a slope of 2.5 calories per gram of sugar reasonable?
That’s hard to say right off. We know from the summary statistics that a typical
cereal has about 100 calories and 7 grams of sugar. A gram of sugar contributes
some calories (actually, 4, but you don’t need to know that), so calories should go
up with increasing sugar. The direction of the slope seems right.

To see if the size of the slope is reasonable, a useful trick is to consider its order
of magnitude. We’ll start by asking if deflating the slope by a factor of 10 seems
reasonable. Is 0.25 calories per gram of sugar enough? The 7 grams of sugar found
in the average cereal would contribute less than 2 calories. That seems too small.

Now let’s try inflating the slope by a factor of 10. Is 25 calories per gram rea-
sonable? Then the average cereal would have 175 calories from sugar alone. The
average cereal has only 100 calories per serving, though, so that slope seems too big.

We have tried inflating the slope by a factor of 10 and deflating it by 10 and
found both to be unreasonable. So, like Goldilocks, we’re left with the value in the
middle that’s just right. And an increase of 2.5 calories per gram of sugar is cer-
tainly plausible.

The small effort of asking yourself whether the regression equation is plausi-
ble is repaid whenever you catch errors or avoid saying something silly or absurd
about the data. It’s too easy to take something that comes out of a computer at
face value and assume that it makes sense.

Always be skeptical and ask yourself if the answer is reasonable.

3. Check the residuals.
Remember, you are not finished until you check to see if a linear model is ap-
propriate. That means you need to see if the residuals appear to be randomly
distributed. To do that, you need to look at the residuals plot.

This is made easy by the fact that the calculator has already placed the residu-
als in a list named . Want to see them? Go to and look
through the lists. (If is not already there, go to the first blank list and
import the name from your menu. The residuals should
appear.) Every time you have the calculator compute a regression analysis, it
will automatically save this list of residuals for you.

4. Now create the residuals plot.

• Set up as a scatterplot with and 
.

• Before you try to see the plot, go to the screen. By moving the cursor
around and hitting in the appropriate places you can turn off the re-
gression line and , and turn on .

• will now graph the residuals plot.

Uh-oh! See the curve? The residuals are high at both ends, low in the middle.
Looks like a linear model may not be appropriate after all. Notice that the residu-
als plot makes the curvature much clearer than the original scatterplot did.

Moral: Always check the residuals plot!

So a linear model might not be appropriate here. What now? The next two
chapters provide techniques for dealing with data like these.

Adjective, Noun, or Verb
You may see the term
regression used in different
ways.There are many ways
to fit a line to data, but the
term  “regression line” or
“regression” without any
other qualifiers always means
least squares. People also use
regression as a verb when
they speak of regressing a 
y-variable on an x-variable to
mean fitting a linear model.
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WHAT CAN GO WRONG?
There are many ways in which data that appear at first to be good candidates for regres-
sion analysis may be unsuitable. And there are ways that people use regression that can
lead them astray. Here’s an overview of the most common problems. We’ll discuss them
at length in the next chapter.

u Don’t fit a straight line to a nonlinear relationship. Linear regression is suited only to rela-
tionships that are, well, linear. Fortunately, we can often improve the linearity easily
by using re-expression. We’ll come back to that topic in Chapter 10.

u Beware of extraordinary points. Data points can be extraordinary in a regression in two
ways: They can have y-values that stand off from the linear pattern suggested by
the bulk of the data, or extreme x-values. Both kinds of extraordinary points require
attention.

u Don’t extrapolate beyond the data. A linear model will often do a reasonable job of sum-
marizing a relationship in the narrow range of observed x-values. Once we have a
working model for the relationship, it’s tempting to use it. But beware of predicting
y-values for x-values that lie outside the range of the original data. The model may
no longer hold there, so such extrapolations too far from the data are dangerous.

u Don’t infer that x causes y just because there is a good linear model for their relationship.
When two variables are strongly correlated, it is often tempting to assume a causal
relationship between them. Putting a regression line on a scatterplot tempts us even
further, but it doesn’t make the assumption of causation any more valid. For exam-
ple, our regression model predicting hurricane wind speeds from the central pres-
sure was reasonably successful, but the relationship is very complex. It is reasonable
to say that low central pressure at the eye is responsible for the high winds because
it draws moist, warm air into the center of the storm, where it swirls around, gener-
ating the winds. But as is often the case, things aren’t quite that simple. The winds
themselves also contribute to lowering the pressure at the center of the storm as it
becomes a hurricane. Understanding causation requires far more work than just
finding a correlation or modeling a relationship.

u Don’t choose a model based on alone. Although measures the strength of the linear
association, a high does not demonstrate the appropriateness of the regression. A
single outlier, or data that separate into two groups rather than a single cloud of
points, can make seem quite large when, in fact, the linear regression model is
simply inappropriate. Conversely, a low value may be due to a single outlier as
well. It may be that most of the data fall roughly along a straight line, with the ex-
ception of a single point. Always look at the scatterplot.

R2
R2

R2
R2R 2

CONNECTIONS
We’ve talked about the importance of models before, but have seen only the Normal model as an
example. The linear model is one of the most important models in Statistics. Chapter 7 talked about
the assignment of variables to the y- and x-axes. That didn’t matter to correlation, but it does matter
to regression because y is predicted by x in the regression model.

The connection of to correlation is obvious, although it may not be immediately clear that just
by squaring the correlation we can learn the fraction of the variability of y accounted for by a re-
gression on x. We’ll return to this in subsequent chapters.

We made a big fuss about knowing the units of your quantitative variables. We didn’t need units
for correlation, but without the units we can’t define the slope of a regression. A regression makes
no sense if you don’t know the Who, the What, and the Units of both your variables.

We’ve summed squared deviations before when we computed the standard deviation and vari-
ance. That’s not coincidental. They are closely connected to regression.

When we first talked about models, we noted that deviations away from a model were often in-
teresting. Now we have a formal definition of these deviations as residuals.

R2

does not mean that
protein accounts for 69% of
the fat in a BK food item. It is
the variation in fat content
that is accounted for by the
linear model.

R2
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190 CHAPTER 8    Linear Regression

WHAT HAVE WE LEARNED?

We’ve learned that when the relationship between quantitative variables is fairly straight, a linear
model can help summarize that relationship and give us insights about it:

u The regression (best fit) line doesn’t pass through all the points, but it is the best compromise in
the sense that the sum of squares of the residuals is the smallest possible.

We’ve learned several things the correlation, r, tells us about the regression:

u The slope of the line is based on the correlation, adjusted for the units of x and y:

We’ve learned to interpret that slope in context:

u For each SD of x that we are away from the x mean, we expect to be r SDs of y away from the 
y mean.

u Because r is always between each predicted y is fewer SDs away from its mean
than the corresponding x was, a phenomenon called regression to the mean.

u The square of the correlation coefficient, , gives us the fraction of the variation of the re-
sponse accounted for by the regression model. The remaining of the variation is left in
the residuals.

The residuals also reveal how well the model works:

u If a plot of residuals against predicted values shows a pattern, we should re-examine the data to
see why.

u The standard deviation of the residuals, quantifies the amount of scatter around the line.

Of course, the linear model makes no sense unless the Linearity Assumption is satisfied. We check
the Straight Enough Condition and Outlier Condition with a scatterplot, as we did for correlation,
and also with a plot of residuals against either the x or the predicted values. For the standard devia-
tion of the residuals to make sense as a summary, we have to make the Equal Variance Assumption.
We check it by looking at both the original scatterplot and the residual plot for the Does the Plot
Thicken? Condition.

Terms
Model 172. An equation or formula that simplifies and represents reality.

Linear model 172. A linear model is an equation of a line. To interpret a linear model, we need to know the vari-
ables (along with their W’s) and their units.

Predicted value 172. The value of found for a given x-value in the data. A predicted value is found by substituting
the x-value in the regression equation. The predicted values are the values on the fitted line; the
points all lie exactly on the fitted line.

Residuals 172. Residuals are the differences between data values and the corresponding values predicted by
the regression model—or, more generally, values predicted by any model.

1x, yN2

yN

se,

1 - R2
R2

-1 and +1,

b1 =

rsy

sx

Residual = observed value - predicted value = e = y - yN

Least squares 172. The least squares criterion specifies the unique line that minimizes the variance of the residu-
als or, equivalently, the sum of the squared residuals.

Regression to the mean 174. Because the correlation is always less than 1.0 in magnitude, each predicted tends to be
fewer standard deviations from its mean than its corresponding x was from its mean. This is called
regression to the mean.

Regression line 174. The particular linear equation

Line of best fit

that satisfies the least squares criterion is called the least squares regression line. Casually, we often
just call it the regression line, or the line of best fit.

yN = b0 + b1x

yN
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What Have We Learned? 191

Slope 176. The slope, gives a value in “y-units per x-unit.” Changes of one unit in x are associated
with changes of units in predicted values of y. The slope can be found by

Intercept 176. The intercept, gives a starting value in y-units. It’s the -value when x is 0. You can find it
from 

se 181. The standard deviation of the residuals is found by . When the assumptions and 

conditions are met, the residuals can be well described by using this standard deviation and the
68–95–99.7 Rule.

u 182. is the square of the correlation between y and x.
u gives the fraction of the variability of y accounted for by the least squares linear regression

on x.
u is an overall measure of how successful the regression is in linearly relating y to x.

Skills
u Be able to identify response (y) and explanatory (x) variables in context.

u Understand how a linear equation summarizes the relationship between two variables.

u Recognize when a regression should be used to summarize a linear relationship between two
quantitative variables.

u Be able to judge whether the slope of a regression makes sense.

u Know how to examine your data for violations of the Straight Enough Condition that would make
it inappropriate to compute a regression.

u Understand that the least squares slope is easily affected by extreme values.

u Know that residuals are the differences between the data values and the corresponding values
predicted by the line and that the least squares criterion finds the line that minimizes the sum
of the squared residuals.

u Know how to use a plot of residuals against predicted values to check the Straight Enough Con-
dition, the Does the Plot Thicken? Condition, and the Outlier Condition.

u Understand that the standard deviation of the residuals, , measures variability around the line.
A large means the points are widely scattered; a small means they lie close to the line.sese

se

R2

R2
R2R 2

se = A ©e2

n - 2

b0 = y - b1x.
yNb0,

b1 =

rsy

sx
.

b1

b1,

u Know how to find a regression equation from the summary statistics for each variable and the
correlation between the variables.

u Know how to find a regression equation using your statistics software and how to find the slope
and intercept values in the regression output table.

u Know how to use regression to predict a value of y for a given x.

u Know how to compute the residual for each data value and how to display the residuals.

u Be able to write a sentence explaining what a linear equation says about the relationship be-
tween y and x, basing it on the fact that the slope is given in y-units per x-unit.

u Understand how the correlation coefficient and the regression slope are related. Know how 
describes how much of the variation in y is accounted for by its linear relationship with x.

u Be able to describe a prediction made from a regression equation, relating the predicted value to
the specified x-value.

u Be able to write a sentence interpreting as representing typical errors in predictions—the
amounts by which actual y-values differ from the ’s estimated by the model.yN

se

R2
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192 CHAPTER 8    Linear Regression

REGRESSION ON THE COMPUTER

All statistics packages make a table of results for a regression. These tables may differ slightly from one
package to another, but all are essentially the same—and all include much more than we need to know for now.
Every computer regression table includes a section that looks something like this:

The slope and intercept coefficient are given in a table such as this one. Usually the slope is labeled with the
name of the x-variable, and the intercept is labeled “Intercept” or “Constant.” So the regression equation shown
here is

It is not unusual for statistics packages to give many more digits of the estimated slope and intercept than
could possibly be estimated from the data. (The original data were reported to the nearest gram.) Ordinarily, you
should round most of the reported numbers to one digit more than the precision of the data, and the slope to
two. We will learn about the other numbers in the regression table later in the book. For now, all you need to be
able to do is find the coefficients, the , and the value.R2se

Fat = 6.83077 + 0.97138Protein.

Dependent variable is: Total Fat
R squared = 69.0% 
s = 9.277

Variable
Intercept
Protein

Coefficient
6.83077
0.971381

SE(Coeff)
2.664
0.1209

t-ratio
2.56
8.04

P-value
 0.0158
#0.0001

Standard 
dev of 
residuals
(   )

The “independent,” predictor, or 
  -variablex

se

R squared

The slope

The intercept
We'll deal with all of
these later in the book.
You may ignore them 
for now.

y
The “dependent,” response, or
   -variable

Finding Least Squares
Lines. We almost always use
technology to find regressions.
Practice now—just in time for
the exercises.

EXERCISES

1. Cereals. For many people, breakfast cereal is an impor-
tant source of fiber in their diets. Cereals also contain
potassium, a mineral shown to be associated with main-
taining a healthy blood pressure. An analysis of the
amount of fiber (in grams) and the potassium content (in
milligrams) in servings of 77 breakfast cereals produced
the regression model . If your
cereal provides 9 grams of fiber per serving, how much
potassium does the model estimate you will get?

2. Horsepower. In Chapter 7’s Exercise 33 we examined
the relationship between the fuel economy (mpg) and
horsepower for 15 models of cars. Further analysis pro-
duces the regression model . If
the car you are thinking of buying has a 200-horsepower
engine, what does this model suggest your gas mileage
would be?

mpg = 46.87 - 0.084HP

Potassium = 38 + 27Fiber

3. More cereal. Exercise 1 describes a regression model
that estimates a cereal’s potassium content from the
amount of fiber it contains. In this context, what does it
mean to say that a cereal has a negative residual?

4. Horsepower, again. Exercise 2 describes a regression
model that uses a car’s horsepower to estimate its fuel
economy. In this context, what does it mean to say that a
certain car has a positive residual?

5. Another bowl. In Exercise 1, the regression model 
relates fiber (in grams) and

potassium content (in milligrams) in servings of breakfast
cereals. Explain what the slope means.

6. More horsepower. In Exercise 2, the regression model
relates cars’ horsepower to their

fuel economy (in mpg). Explain what the slope means.
mpg = 46.87 - 0.084HP

Potassium = 38 + 27Fiber
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REGRESSION ON THE COMPUTER

All statistics packages make a table of results for a regression. These tables may differ slightly from one
package to another, but all are essentially the same—and all include much more than we need to know for now.
Every computer regression table includes a section that looks something like this:

The slope and intercept coefficient are given in a table such as this one. Usually the slope is labeled with the
name of the x-variable, and the intercept is labeled “Intercept” or “Constant.” So the regression equation shown
here is

It is not unusual for statistics packages to give many more digits of the estimated slope and intercept than
could possibly be estimated from the data. (The original data were reported to the nearest gram.) Ordinarily, you
should round most of the reported numbers to one digit more than the precision of the data, and the slope to
two. We will learn about the other numbers in the regression table later in the book. For now, all you need to be
able to do is find the coefficients, the , and the value.R2se

Fat = 6.83077 + 0.97138Protein.

Dependent variable is: Total Fat
R squared = 69.0% 
s = 9.277
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Intercept
Protein

Coefficient
6.83077
0.971381

SE(Coeff)
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0.1209
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2.56
8.04

P-value
 0.0158
#0.0001
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dev of 
residuals
(   )

The “independent,” predictor, or 
  -variablex

se

R squared

The slope

The intercept
We'll deal with all of
these later in the book.
You may ignore them 
for now.
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The “dependent,” response, or
   -variable

Finding Least Squares
Lines. We almost always use
technology to find regressions.
Practice now—just in time for
the exercises.

EXERCISES

1. Cereals. For many people, breakfast cereal is an impor-
tant source of fiber in their diets. Cereals also contain
potassium, a mineral shown to be associated with main-
taining a healthy blood pressure. An analysis of the
amount of fiber (in grams) and the potassium content (in
milligrams) in servings of 77 breakfast cereals produced
the regression model . If your
cereal provides 9 grams of fiber per serving, how much
potassium does the model estimate you will get?

2. Horsepower. In Chapter 7’s Exercise 33 we examined
the relationship between the fuel economy (mpg) and
horsepower for 15 models of cars. Further analysis pro-
duces the regression model . If
the car you are thinking of buying has a 200-horsepower
engine, what does this model suggest your gas mileage
would be?

mpg = 46.87 - 0.084HP

Potassium = 38 + 27Fiber

3. More cereal. Exercise 1 describes a regression model
that estimates a cereal’s potassium content from the
amount of fiber it contains. In this context, what does it
mean to say that a cereal has a negative residual?

4. Horsepower, again. Exercise 2 describes a regression
model that uses a car’s horsepower to estimate its fuel
economy. In this context, what does it mean to say that a
certain car has a positive residual?

5. Another bowl. In Exercise 1, the regression model 
relates fiber (in grams) and

potassium content (in milligrams) in servings of breakfast
cereals. Explain what the slope means.

6. More horsepower. In Exercise 2, the regression model
relates cars’ horsepower to their

fuel economy (in mpg). Explain what the slope means.
mpg = 46.87 - 0.084HP

Potassium = 38 + 27Fiber
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7. Cereal again. The correlation between a cereal’s fiber
and potassium contents is What fraction of the
variability in potassium is accounted for by the amount
of fiber that servings contain?

8. Another car. The correlation between a car’s horse-
power and its fuel economy (in mpg) is What
fraction of the variability in fuel economy is accounted
for by the horsepower?

9. Last bowl! For Exercise 1’s regression model predicting
potassium content (in milligrams) from the amount of
fiber (in grams) in breakfast cereals, . Explain in
this context what that means.

10. Last tank! For Exercise 2’s regression model predicting
fuel economy (in mpg) from the car’s horsepower,

. Explain in this context what that means.

11. Residuals. Tell what each of the residual plots below
indicates about the appropriateness of the linear model
that was fit to the data.

se = 3.287

se = 30.77

r = -0.869.

r = 0.903.
17. Real estate again. The regression of Price on Size of

homes in Albuquerque had as described in
Exercise 15. Write a sentence (in context, of course) sum-
marizing what the says about this regression.

18. Coasters again. Exercise 16 examined the association
between the Duration of a roller coaster ride and the
height of its initial Drop, reporting that Write
a sentence (in context, of course) summarizing what the

says about this regression.

19. Real estate redux. The regression of Price on Size of
homes in Albuquerque had as described in
Exercise 15.
a) What is the correlation between Size and Price?

Explain why you chose the sign ( or ) you did.
b) What would you predict about the Price of a home 1

standard deviation above average in Size?
c) What would you predict about the Price of a home 2

standard deviations below average in Size?

20. Another ride. The regression of Duration of a roller
coaster ride on the height of its initial Drop, described in
Exercise 16, had 
a) What is the correlation between Drop and Duration?

Explain why you chose the sign ( or ) you did.
b) What would you predict about the Duration of the ride

on a coaster whose initial Drop was 1 standard devia-
tion below the mean Drop?

c) What would you predict about the Duration of the ride
on a coaster whose initial Drop was 3 standard devia-
tions above the mean Drop?

21. More real estate. Consider the Albuquerque home
sales from Exercise 15 again. The regression analysis
gives the model 
a) Explain what the slope of the line says about housing

prices and house size.
b) What price would you predict for a 3000-square-foot

house in this market?
c) A real estate agent shows a potential buyer a 1200-

square-foot home, saying that the asking price is $6000
less than what one would expect to pay for a house of
this size. What is the asking price, and what is the
$6000 called?

22. Last ride. Consider the roller coasters described in 
Exercise 16 again. The regression analysis gives the model

a) Explain what the slope of the line says about how long a
roller coaster ride may last and the height of the coaster.

b) A new roller coaster advertises an initial drop of 200
feet. How long would you predict the rides last?

c) Another coaster with a 150-foot initial drop advertises
a 2-minute ride. Is this longer or shorter than you’d
expect? By how much? What’s that called?

23. Misinterpretations. A Biology student who created a
regression model to use a bird’s Height when perched for
predicting its Wingspan made these two statements. As-
suming the calculations were done correctly, explain
what is wrong with each interpretation.
a) My of 93% shows that this linear model is 

appropriate.
b) A bird 10 inches tall will have a wingspan of 17 inches.

R2

Duration = 91.033 + 0.242 Drop.

Price = 47.82 + 0.061 Size.

-+

R2
= 12.4%.

-+

R2
= 71.4%,

R2

R2
= 12.4%.

R2

R2
= 71.4%,

Exercises 193

a) b) c)

0 0 0

12. Residuals. Tell what each of the residual plots below
indicates about the appropriateness of the linear model
that was fit to the data.

a) b) c)

0 0 0

13. What slope? If you create a regression model for predict-
ing the Weight of a car (in pounds) from its Length (in feet),
is the slope most likely to be 3, 30, 300, or 3000? Explain.

14. What slope? If you create a regression model for esti-
mating the Height of a pine tree (in feet) based on the
Circumference of its trunk (in inches), is the slope most
likely to be 0.1, 1, 10, or 100? Explain.

15. Real estate. A random sample of records of sales of
homes from Feb. 15 to Apr. 30, 1993, from the files main-
tained by the Albuquerque Board of Realtors gives the
Price and Size (in square feet) of 117 homes. A regression
to predict Price (in thousands of dollars) from Size has an
R-squared of 71.4%. The residuals plot indicated that a
linear model is appropriate.
a) What are the variables and units in this regression?
b) What units does the slope have?
c) Do you think the slope is positive or negative? Explain.

16. Roller coaster. People who responded to a July 2004
Discovery Channel poll named the 10 best roller coasters
in the United States. A table in the last chapter’s exercises
shows the length of the initial drop (in feet) and the dura-
tion of the ride (in seconds). A regression to predict
Duration from Drop has 
a) What are the variables and units in this regression?
b) What units does the slope have?
c) Do you think the slope is positive or negative? Explain.

R2
= 12.4%.

T

T

T

T
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24. More misinterpretations. A Sociology student inves-
tigated the association between a country’s Literacy Rate
and Life Expectancy, then drew the conclusions listed be-
low. Explain why each statement is incorrect. (Assume
that all the calculations were done properly.)
a) The Literacy Rate determines 64% of the Life Expectancy

for a country.
b) The slope of the line shows that an increase of 5% in

Literacy Rate will produce a 2-year improvement in
Life Expectancy.

25. ESP. People who claim to “have ESP” participate in a
screening test in which they have to guess which of sev-
eral images someone is thinking of. You and a friend both
took the test. You scored 2 standard deviations above the
mean, and your friend scored 1 standard deviation below
the mean. The researchers offer everyone the opportunity
to take a retest.
a) Should you choose to take this retest? Explain.
b) Now explain to your friend what his decision should

be and why.

26. SI jinx. Players in any sport who are having great sea-
sons, turning in performances that are much better than
anyone might have anticipated, often are pictured on the
cover of Sports Illustrated. Frequently, their performances
then falter somewhat, leading some athletes to believe in a
“Sports Illustrated jinx.” Similarly, it is common for phe-
nomenal rookies to have less stellar second seasons—the
so-called “sophomore slump.” While fans, athletes, and
analysts have proposed many theories about what leads
to such declines, a statistician might offer a simpler (statis-
tical) explanation. Explain.

27. Cigarettes. Is the nicotine content of a cigarette related
to the “tars”? A collection of data (in milligrams) on 29
cigarettes produced the scatterplot, residuals plot, and re-
gression analysis shown:

a) Do you think a linear model is appropriate here? 
Explain.

b) Explain the meaning of in this context.

28. Attendance 2006. In the previous chapter you looked at
the relationship between the number of wins by American
League baseball teams and the average attendance at their
home games for the 2006 season. Here are the scatterplot,
the residuals plot, and part of the regression analysis:

R2
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Dependent variable is: nicotine
R squared = 92.4%
Variable Coefficient
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Dependent variable is: Home Attendance
R squared = 48.5%
Variable Coefficient
Constant -14364.5
W ins 538.915

a) Do you think a linear model is appropriate here? 
Explain.

b) Interpret the meaning of in this context.
c) Do the residuals show any pattern worth remarking on?
d) The point in the upper right of the plots is the New

York Yankees. What can you say about the residual for
the Yankees?

R2

29. Another cigarette. Consider again the regression of
Nicotine content on Tar (both in milligrams) for the ciga-
rettes examined in Exercise 27.
a) What is the correlation between Tar and Nicotine?
b) What would you predict about the average Nicotine

content of cigarettes that are 2 standard deviations be-
low average in Tar content?

c) If a cigarette is 1 standard deviation above average in
Nicotine content, what do you suspect is true about its
Tar content?

30. Second inning 2006. Consider again the regression of
Average Attendance on Wins for the baseball teams exam-
ined in Exercise 28.

T

T

T

T
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a) What is the correlation between Wins and Average 
Attendance?

b) What would you predict about the Average Attendance
for a team that is 2 standard deviations above average
in Wins?

c) If a team is 1 standard deviation below average in at-
tendance, what would you predict about the number
of games the team has won?

31. Last cigarette. Take another look at the regression
analysis of tar and nicotine content of the cigarettes in 
Exercise 27.
a) Write the equation of the regression line.
b) Estimate the Nicotine content of cigarettes with 4 mil-

ligrams of Tar.
c) Interpret the meaning of the slope of the regression

line in this context.
d) What does the y-intercept mean?
e) If a new brand of cigarette contains 7 milligrams of tar

and a nicotine level whose residual is –0.5 mg, what is
the nicotine content?

32. Last inning 2006. Refer again to the regression analy-
sis for average attendance and games won by American
League baseball teams, seen in Exercise 28.
a) Write the equation of the regression line.
b) Estimate the Average Attendance for a team with 50

Wins.
c) Interpret the meaning of the slope of the regression

line in this context.
d) In general, what would a negative residual mean in

this context?
e) The St. Louis Cardinals, the 2006 World Champions,

are not included in these data because they are a 
National League team. During the 2006 regular sea-
son, the Cardinals won 83 games and averaged 42,588
fans at their home games. Calculate the residual for
this team, and explain what it means.

33. Income and housing revisited. In Chapter 7, 
Exercise 31, we learned that the Office of Federal Housing
Enterprise Oversight (OFHEO) collects data on various
aspects of housing costs around the United States. Here’s
a scatterplot (by state) of the Housing Cost Index (HCI)
versus the Median Family Income (MFI) for the 50 states.
The correlation is The mean HCI is 338.2, with a
standard deviation of 116.55. The mean MFI is $46,234,
with a standard deviation of $7072.47.

r = 0.65.

a) Is a regression analysis appropriate? Explain.
b) What is the equation that predicts Housing Cost Index

from median family income?
c) For a state with what would be the

predicted HCI?
d) Washington, DC, has an MFI of $44,993 and an HCI 

of 548.02. How far off is the prediction in b) from the
actual HCI?

e) If we standardized both variables, what would be the
regression equation that predicts standardized HCI
from standardized MFI?

f) If we standardized both variables, what would be the
regression equation that predicts standardized MFI
from standardized HCI?

34. Interest rates and mortgages again. In Chapter 7,
Exercise 32, we saw a plot of total mortgages in the
United States (in millions of 2005 dollars) versus the in-
terest rate at various times over the past 26 years. The
correlation is The mean mortgage amount is
$151.9 million and the mean interest rate is 8.88%. The
standard deviations are $23.86 million for mortgage
amounts and 2.58% for the interest rates.

r = -0.84.

MFI = $44,993,
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a) Is a regression model appropriate for predicting mort-
gage amount from interest rates? Explain.

b) What is the equation that predicts mortgage amount
from interest rates?

c) What would you predict the mortgage amount would
be if the interest rates climbed to 20%?

d) Do you have any reservations about your prediction
in part c?

e) If we standardized both variables, what would be the
regression equation that predicts standardized mort-
gage amount from standardized interest rates?

f) If we standardized both variables, what would be the
regression equation that predicts standardized interest
rates from standardized mortgage amount?

35. Online clothes. An online clothing retailer keeps
track of its customers’ purchases. For those customers
who signed up for the company’s credit card, the com-
pany also has information on the customer’s Age and
Income. A random sample of 500 of these customers
shows the following scatterplot of Total Yearly Purchases
by Age:

T

T

T
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The correlation between Total Yearly Purchases and Age is
Summary statistics for the two variables are:r = 0.037.

c) What is the predicted average Total Yearly Purchase for
someone with a yearly Income of $20,000? For some-
one with an annual Income of $80,000?

d) What percent of the variability in Total Yearly Purchases
is accounted for by this model?

e) Do you think the regression might be a useful one for
the company? Comment.

37. SAT scores. The SAT is a test often used as part of an
application to college. SAT scores are between 200 and
800, but have no units. Tests are given in both Math and
Verbal areas. Doing the SAT-Math problems also involves
the ability to read and understand the questions, but can
a person’s verbal score be used to predict the math score?
Verbal and math SAT scores of a high school graduating
class are displayed in the scatterplot, with the regression
line added.
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a) What is the linear regression equation for predicting
Total Yearly Purchase from Age?

b) Do the assumptions and conditions for regression 
appear to be met?

c) What is the predicted average Total Yearly Purchase for
an 18-year-old? For a 50-year-old?

d) What percent of the variability in Total Yearly Purchases
is accounted for by this model?

e) Do you think the regression might be a useful one for
the company? Explain.

36. Online clothes II. For the online clothing retailer dis-
cussed in the previous problem, the scatterplot of Total
Yearly Purchases by Income shows

Mean SD

Age 29.67 yrs 8.51 yrs
Total Yearly Purchase $572.52 $253.62
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The correlation between Total Yearly Purchases and Income
is 0.722. Summary statistics for the two variables are:

Mean SD

Income $50,343.40 $16,952.50
Total Yearly Purchase $572.52 $253.62

a) What is the linear regression equation for predicting
Total Yearly Purchase from Income?

b) Do the assumptions and conditions for regression 
appear to be met?

500

600

700

400

800

500 600 700400 800
Verbal SAT

M
at

h 
SA

T

a) Describe the relationship.
b) Are there any students whose scores do not seem to fit

the overall pattern?
c) For these data, r = 0.685. Interpret this statistic.
d) These verbal scores averaged 596.3, with a standard

deviation of 99.5, and the math scores averaged 612.2,
with a standard deviation of 96.1. Write the equation
of the regression line.

e) Interpret the slope of this line.
f) Predict the math score of a student with a verbal score

of 500.
g) Every year some student scores a perfect 1600. Based

on this model, what would be that student’s Math
score residual?

38. Success in college. Colleges use SAT scores in the ad-
missions process because they believe these scores pro-
vide some insight into how a high school student will
perform at the college level. Suppose the entering fresh-
men at a certain college have mean combined SAT Scores
of 1833, with a standard deviation of 123. In the first se-
mester these students attained a mean GPA of 2.66, with a
standard deviation of 0.56. A scatterplot showed the asso-
ciation to be reasonably linear, and the correlation be-
tween SAT score and GPA was 0.47.
a) Write the equation of the regression line.
b) Explain what the y-intercept of the regression line 

indicates.
c) Interpret the slope of the regression line.
d) Predict the GPA of a freshman who scored a combined

2100.

T
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e) Based upon these statistics, how effective do you think
SAT scores would be in predicting academic success
during the first semester of the freshman year at this
college? Explain.

f) As a student, would you rather have a positive or a
negative residual in this context? Explain.

39. SAT, take 2. Suppose we wanted to use SAT math
scores to estimate verbal scores based on the information
in Exercise 37.
a) What is the correlation?
b) Write the equation of the line of regression predicting

verbal scores from math scores.
c) In general, what would a positive residual mean in

this context?
d) A person tells you her math score was 500. Predict her

verbal score.
e) Using that predicted verbal score and the equation

you created in Exercise 37, predict her math score.
f) Why doesn’t the result in part e) come out to 500?

40. Success, part 2. Based on the statistics for college
freshmen given in Exercise 38, what SAT score might be
expected among freshmen who attained a first-semester
GPA of 3.0?

41. Used cars 2007. Classified ads in the Ithaca Journal
offered several used Toyota Corollas for sale. Listed 
below are the ages of the cars and the advertised 
prices.

percentage of teenagers who had used marijuana and
other drugs. Below is the scatterplot. Summary statistics
showed that the mean percent that had used marijuana
was 23.9%, with a standard deviation of 15.6%. An aver-
age of 11.6% of teens had used other drugs, with a stan-
dard deviation of 10.2%.
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Age (yr) Price Advertised ($)

1 13,990
1 13,495
3 12,999
4 9500
4 10,495
5 8995
5 9495
6 6999
7 6950
7 7850
8 6999
8 5995

10 4950
10 4495
13 2850

Year 1965 1970 1975 1980 1985 1990 1995 2000 2005
Rate 19.4 18.4 14.8 15.9 15.6 16.4 14.8 14.4 14.0

a) Make a scatterplot for these data.
b) Describe the association between Age and Price of a

used Corolla.
c) Do you think a linear model is appropriate?
d) Computer software says that What is the

correlation between Age and Price?
e) Explain the meaning of in this context.
f) Why doesn’t this model explain 100% of the variabil-

ity in the price of a used Corolla?

42. Drug abuse. In the exercises of the last chapter you ex-
amined results of a survey conducted in the United States
and 10 countries of Western Europe to determine the 

R2

R2
= 94.4%.

Marijuana (%)
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a) Do you think a linear model is appropriate? Explain.
b) For this regression, is 87.3%. Interpret this statistic

in this context.
c) Write the equation you would use to estimate the 

percentage of teens who use other drugs from the 
percentage who have used marijuana.

d) Explain in context what the slope of this line means.
e) Do these results confirm that marijuana is a “gateway

drug,” that is, that marijuana use leads to the use of
other drugs?

43. More used cars 2007. Use the advertised prices for
Toyota Corollas given in Exercise 41 to create a linear
model for the relationship between a car’s Age and its
Price.
a) Find the equation of the regression line.
b) Explain the meaning of the slope of the line.
c) Explain the meaning of the y-intercept of the line.
d) If you want to sell a 7-year-old Corolla, what price

seems appropriate?
e) You have a chance to buy one of two cars. They are

about the same age and appear to be in equally good
condition. Would you rather buy the one with a posi-
tive residual or the one with a negative residual?
Explain.

f) You see a “For Sale” sign on a 10-year-old Corolla stat-
ing the asking price as $3500. What is the residual?

g) Would this regression model be useful in establishing
a fair price for a 20-year-old car? Explain.

44. Birthrates 2005. The table shows the number of live
births per 1000 women aged 15–44 years in the United
States, starting in 1965. (National Center for Health Statis-
tics, www.cdc.gov/nchs/)

R2

a) Make a scatterplot and describe the general trend in
Birthrates. (Enter Year as years since 1900: 65, 70, 75, etc.)

b) Find the equation of the regression line.
c) Check to see if the line is an appropriate model. 

Explain.

T

T

T

T
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d) Interpret the slope of the line.
e) The table gives rates only at 5-year intervals. Estimate

what the rate was in 1978.
f) In 1978 the birthrate was actually 15.0. How close did

your model come?
g) Predict what the Birthrate will be in 2010. Comment on

your faith in this prediction.
h) Predict the Birthrate for 2025. Comment on your faith

in this prediction.

45. Burgers. In the last chapter, you examined the associa-
tion between the amounts of Fat and Calories in fast-food
hamburgers. Here are the data:

47. A second helping of burgers. In Exercise 45 you cre-
ated a model that can estimate the number of Calories in a
burger when the Fat content is known.
a) Explain why you cannot use that model to estimate

the fat content of a burger with 600 calories.
b) Using an appropriate model, estimate the fat content

of a burger with 600 calories.

48. A second helping of chicken. In Exercise 46 you cre-
ated a model to estimate the number of Calories in a
chicken sandwich when you know the Fat.
a) Explain why you cannot use that model to estimate

the fat content of a 400-calorie sandwich.
b) Make that estimate using an appropriate model.

49. Body fat. It is difficult to determine a person’s body fat
percentage accurately without immersing him or her in
water. Researchers hoping to find ways to make a good
estimate immersed 20 male subjects, then measured their
waists and recorded their weights.

198 CHAPTER 8    Linear Regression

Fat (g) 19 31 34 35 39 39 43
Calories 410 580 590 570 640 680 660

a) Create a scatterplot of Calories vs. Fat.
b) Interpret the value of in this context.
c) Write the equation of the line of regression.
d) Use the residuals plot to explain whether your linear

model is appropriate.
e) Explain the meaning of the y-intercept of the line.
f) Explain the meaning of the slope of the line.
g) A new burger containing 28 grams of fat is intro-

duced. According to this model, its residual for
calories is How many calories does the burger
have?

46. Chicken. Chicken sandwiches are often advertised as a
healthier alternative to beef because many are lower in
fat. Tests on 11 brands of fast-food chicken sandwiches
produced the following summary statistics and scatter-
plot from a graphing calculator:

Fat (g) Calories
Mean 20.6 472.7
St. Dev. 9.8 144.2
Correlation 0.947

+33.

R2

a) Do you think a linear model is appropriate in this 
situation?

b) Describe the strength of this association.
c) Write the equation of the regression line to estimate

calories from the fat content.
d) Explain the meaning of the slope.
e) Explain the meaning of the y-intercept.
f) What does it mean if a certain sandwich has a nega-

tive residual?

Waist Weight Body Waist Weight Body
(in.) (lb) Fat (%) (in.) (lb) Fat (%)

32 175 6 33 188 10
36 181 21 40 240 20
38 200 15 36 175 22
33 159 6 32 168 9
39 196 22 44 246 38
40 192 31 33 160 10
41 205 32 41 215 27
35 173 21 34 159 12
38 187 25 34 146 10
38 188 30 44 219 28

a) Create a model to predict %Body Fat from Weight.
b) Do you think a linear model is appropriate? Explain.
c) Interpret the slope of your model.
d) Is your model likely to make reliable estimates? 

Explain.
e) What is the residual for a person who weighs 

190 pounds and has 21% body fat?

50. Body fat again. Would a model that uses the person’s
Waist size be able to predict the %Body Fat more accu-
rately than one that uses Weight? Using the data in Exer-
cise 49, create and analyze that model.

51. Heptathlon 2004. We discussed the women’s 2004
Olympic heptathlon in Chapter 6. The table on the next
page shows the results from the high jump, 800-meter
run, and long jump for the 26 women who successfully
completed all three events in the 2004 Olympics.

T

T

T
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Let’s examine the association among these events. Per-
form a regression to predict high-jump performance from
the 800-meter results.
a) What is the regression equation? What does the slope

mean?
b) What percent of the variability in high jumps can be

accounted for by differences in 800-m times?
c) Do good high jumpers tend to be fast runners? (Be

careful—low times are good for running events and
high distances are good for jumps.)

d) What does the residuals plot reveal about the model?
e) Do you think this is a useful model? Would you use it

to predict high-jump performance? (Compare the
residual standard deviation to the standard deviation
of the high jumps.)

52. Heptathlon 2004 again. We saw the data for the
women’s 2004 Olympic heptathlon in Exercise 51. Are the
two jumping events associated? Perform a regression of
the long-jump results on the high-jump results.

a) What is the regression equation? What does the slope
mean?

b) What percentage of the variability in long jumps can
be accounted for by high-jump performances?

c) Do good high jumpers tend to be good long jumpers?
d) What does the residuals plot reveal about the model?
e) Do you think this is a useful model? Would you use it

to predict long-jump performance? (Compare the
residual standard deviation to the standard deviation
of the long jumps.)

53. Least squares. Consider the four points (10,10),
(20,50), (40,20), and (50,80). The least squares line is

Explain what “least squares” means, 
using these data as a specific example.

54. Least squares. Consider the four points (200,1950),
(400,1650), (600,1800), and (800,1600). The least squares
line is Explain what “least squares”
means, using these data as a specific example.

yN = 1975 - 0.45x.

yN = 7.0 + 1.1x.
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Name Country High Jump (m) 800-m (sec) Long Jump (m)

Carolina Klüft SWE 1.91 134.15 6.51
Austra Skujyté LIT 1.76 135.92 6.30
Kelly Sotherton GBR 1.85 132.27 6.51
Shelia Burrell USA 1.70 135.32 6.25
Yelena Prokhorova RUS 1.79 131.31 6.21
Sonja Kesselschlaeger GER 1.76 135.21 6.42
Marie Collonville FRA 1.85 133.62 6.19
Natalya Dobrynska UKR 1.82 137.01 6.23
Margaret Simpson GHA 1.79 137.72 6.02
Svetlana Sokolova RUS 1.70 133.23 5.84
J. J. Shobha IND 1.67 137.28 6.36
Claudia Tonn GER 1.82 130.77 6.35
Naide Gomes POR 1.85 140.05 6.10
Michelle Perry USA 1.70 133.69 6.02
Aryiro Strataki GRE 1.79 137.90 5.97
Karin Ruckstuhl NED 1.85 133.95 5.90
Karin Ertl GER 1.73 138.68 6.03
Kylie Wheeler AUS 1.79 137.65 6.36
Janice Josephs RSA 1.70 138.47 6.21
Tiffany Lott Hogan USA 1.67 145.10 6.15
Magdalena Szczepanska POL 1.76 133.08 5.98
Irina Naumenko KAZ 1.79 134.57 6.16
Yuliya Akulenko UKR 1.73 142.58 6.02
Soma Biswas IND 1.70 132.27 5.92
Marsha Mark-Baird TRI 1.70 141.21 6.22
Michaela Hejnova CZE 1.70 145.68 5.70

T
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JUST CHECKING
Answers

1. You should expect the price to be 0.77 standard devi-
ations above the mean.

2. You should expect the size to be stan-
dard deviations below the mean.

3. The home is 1.5 standard deviations above the mean
in size no matter how size is measured.

4. An increase in home size of 1000 square feet is associ-
ated with an increase in price of $94,454, on average.

5. Units are thousands of dollars per thousand square
feet.

6. About $188,908, on average

7. No. Even if it were positive, no one wants a house
with 0 square feet!

8. Negative; that indicates it’s priced lower than a 
typical home of its size.

9. $280,245

10. $19,755 (positive!)

11. Differences in the size of houses account for about
59.5% of the variation in the house prices.

12. It’s positive. The correlation and the slope have the
same sign.

13. would not change, but the slope would. Slope 
depends on the units used but correlation doesn’t.

14. No, the standard deviation of the residuals is 53.79
thousand dollars. We shouldn’t be surprised by any
residual smaller than 2 standard deviations, and a
residual of $100,000 is less than 2(53,790).

R2

210.772 = 1.54
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Regression may be the most widely used Statistics method. It is used every day
throughout the world to predict customer loyalty, numbers of admissions 
at hospitals, sales of automobiles, and many other things. Because regres-

sion is so widely used, it’s also widely abused and misinterpreted. This chapter
presents examples of regressions in which things are not quite as simple as they
may have seemed at first, and shows how you can still use regression to discover
what the data have to say.

Getting the “Bends”: When the Residuals 
Aren’t Straight

No regression analysis is complete without a display of the residuals to check that
the linear model is reasonable. Because the residuals are what is “left over” after
the model describes the relationship, they often reveal subtleties that were not
clear from a plot of the original data. Sometimes these are additional details that
help confirm or refine our understanding. Sometimes they reveal violations of the
regression conditions that require our attention.

The fundamental assumption in working with a linear model is that the rela-
tionship you are modeling is, in fact, linear. That sounds obvious, but when you
fit a regression, you can’t take it for granted. Often it’s hard to tell from the scat-
terplot you looked at before you fit the regression model. Sometimes you can’t see
a bend in the relationship until you plot the residuals.

Jessica Meir and Paul Ponganis study emperor penguins at the Scripps Insti-
tution of Oceanography’s Center for Marine Biotechnology and Biomedicine at
the University of California at San Diego. Says Jessica:

Emperor penguins are the most accomplished divers among birds, making routine dives
of 5–12 minutes, with the longest recorded dive over 27 minutes. These birds can also
dive to depths of over 500 meters! Since air-breathing animals like penguins must hold
their breath while submerged, the duration of any given dive depends on how much oxy-
gen is in the bird’s body at the beginning of the dive, how quickly that oxygen gets used,

201

CHAPTER

9
Regression 
Wisdom

Activity: Construct a Plot
with a Given Slope. How’s your
feel for regression lines? Can you
make a scatterplot that has a
specified slope?

We can’t know whether the
Linearity Assumption is true,
but we can see if it’s plausible
by checking the Straight
Enough Condition.
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and the lowest level of oxygen the bird can tolerate. The rate of oxygen
depletion is primarily determined by the penguin’s heart rate. Conse-
quently, studies of heart rates during dives can help us understand how
these animals regulate their oxygen consumption in order to make such
impressive dives.

The researchers equip emperor penguins with devices that
record their heart rates during dives. Here’s a scatterplot of the
Dive Heart Rate (beats per minute) and the Duration (minutes) of
dives by these high-tech penguins.

The scatterplot looks fairly linear with a moderately strong
negative association . The linear regression equation

says that for longer dives, the average Dive Heart Rate is lower by
about 5.47 beats per dive minute, starting from a value of 96.9
beats per minute.

The scatterplot of the residuals against Duration holds a sur-
prise. The Linearity Assumption says we should not see a pattern,
but instead there’s a bend, starting high on the left, dropping down
in the middle of the plot, and rising again at the right. Graphs of
residuals often reveal patterns such as this that were easy to miss
in the original scatterplot.

Now looking back at the original scatterplot, you may see that
the scatter of points isn’t really straight. There’s a slight bend to
that plot, but the bend is much easier to see in the residuals. Even
though it means rechecking the Straight Enough Condition after
you find the regression, it’s always a good idea to check your scat-
terplot of the residuals for bends that you might have overlooked
in the original scatterplot.

Sifting Residuals for Groups
In the Step-By-Step analysis in Chapter 8 to predict Calories from
Sugar content in breakfast cereals, we examined a scatterplot of the
residuals. Our first impression was that it had no particular structure—
a conclusion that supported using the regression model. But let’s
look again.

Here’s a histogram of the residuals. How would you describe its
shape? It looks like there might be small modes on both sides of the
central body of the data. One group of cereals seems to stand out as
having large negative residuals, with fewer calories than we might
have predicted, and another stands out with large positive residuals.
The calories in these cereals were underestimated by the model.
Whenever we suspect multiple modes, we ask whether they are
somehow different.

On the next page is the residual plot, with the points in those
modes marked. Now we can see that those two groups stand away
from the central pattern in the scatterplot. The high-residual cereals
are Just Right Fruit & Nut; Muesli Raisins, Dates & Almonds;
Peaches & Pecans; Mueslix Crispy Blend; and Nutri-Grain Almond

Raisin. Do these cereals seem to have something in common? They all present
themselves as “healthy.” This might be surprising, but in fact, “healthy” cereals

DiveHeartRate = 96.9 - 5.47 Duration

(R2
= 71.5%)

FIGURE 9.1
The scatterplot of Dive Heart Rate in beats per minute (bpm)
vs. Duration (minutes) shows a strong, roughly linear, nega-
tive association.
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FIGURE 9.2
Plotting the residuals against Duration reveals a bend. It was
also in the original scatterplot, but here it’s easier to see.
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FIGURE 9.3
A histogram of the regression residuals shows small
modes both above and below the central large mode.
These may be worth a second look.
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often contain more fat, and therefore more calories, than we might
expect from looking at their sugar content alone.

The low-residual cereals are Puffed Rice, Puffed Wheat, three bran
cereals, and Golden Crisps. You might not have grouped these cereals to-
gether before. What they have in common is a low calorie count relative to
their sugar content—even though their sugar contents are quite different.

These observations may not lead us to question the overall linear
model, but they do help us understand that other factors may be part of
the story. An examination of residuals often leads us to discover groups
of observations that are different from the rest.

When we discover that there is more than one group in a regres-
sion, we may decide to analyze the groups separately, using a different
model for each group. Or we can stick with the original model and sim-
ply note that there are groups that are a little different. Either way, the
model will be wrong, but useful, so it will improve our understanding
of the data.

Subsets
Cereal manufacturers aim cereals at different segments of the market. Supermar-
kets and cereal manufacturers try to attract different customers by placing differ-
ent types of cereals on certain shelves. Cereals for kids tend to be on the “kid’s
shelf,” at their eye level. Toddlers wouldn’t be likely to grab a box from this shelf
and beg, “Mom, can we please get this All-Bran with Extra Fiber?”

Should we take this extra information into account in our analysis? Figure 9.5
shows a scatterplot of Calories and Sugar, colored according to the shelf on which
the cereals were found and with a separate regression line fit for each. The top
shelf is clearly different. We might want to report two regressions, one for the top
shelf and one for the bottom two shelves.1

–40

–20

0

20

90 100 110 120
Predicted Values (calories)

R
es

id
ua

ls
 (c

al
or

ie
s)

FIGURE 9.4
A scatterplot of the residuals vs. predicted values for
the cereal regression. The green “x” points are cereals
whose calorie content is higher than the linear model
predicts. The red “–” points show cereals with fewer
calories than the model predicts. Is there something
special about these cereals?

Here’s an important
unstated condition for fitting
models: All the data must
come from the same
population.
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FIGURE 9.5
Calories and Sugar colored according
to the shelf on which the cereal was
found in a supermarket, with 
regression lines fit for each shelf 
individually. Do these data appear 
homogeneous? That is, do all the 
cereals seem to be from the same
population of cereals? Or are there 
different kinds of cereals that we 
might want to consider separately?

Extrapolation: Reaching Beyond the Data
Linear models give a predicted value for each case in the data. Put a new x-value
into the equation, and it gives a predicted value, , to go with it. But when the
new x-value lies far from the data we used to build the regression, how trustwor-
thy is the prediction?

yN

1 More complex models can take into account both sugar content and shelf information.
This kind of multiple regression model is a natural extension of the model we’re using here.
You can learn about such models in Chapter 29 on the DVD.
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The simple answer is that the farther the new x-value is from , the less trust
we should place in the predicted value. Once we venture into new x territory,
such a prediction is called an extrapolation. Extrapolations are dubious because
they require the very questionable assumption that nothing about the relationship
between x and y changes even at extreme values of x and beyond.

Extrapolations can get us into deep trouble. When the x-variable is Time, ex-
trapolation becomes an attempt to peer into the future. People have always wanted
to see into the future, and it doesn’t take a crystal ball to foresee that they always
will. In the past, seers, oracles, and wizards were called on to predict the future.
Today mediums, fortune-tellers, and Tarot card readers still find many customers.

x

“Prediction is difficult,
especially about the future.”

—Niels Bohr, 
Danish physicist

FOXTROT © 2002 Bill Amend. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

Those with a more scientific outlook may use a linear model as their digital
crystal ball. Linear models are based on the x-values of the data at hand and can-
not be trusted beyond that span. Some physical phenomena do exhibit a kind of
“inertia” that allows us to guess that current systematic behavior will continue,
but regularity can’t be counted on in phenomena such as stock prices, sales fig-
ures, hurricane tracks, or public opinion.

Extrapolating from current trends is so tempting that even professional fore-
casters make this mistake, and sometimes the errors are striking. In the mid-1970s,
oil prices surged and long lines at gas stations were common. In 1970, oil cost
about $17 a barrel (in 2005 dollars)—about what it had cost for 20 years or so. But
then, within just a few years, the price surged to over $40. In 1975, a survey of
15 top econometric forecasting models (built by groups that included Nobel
prize–winning economists) found predictions for 1985 oil prices that ranged from
$300 to over $700 a barrel (in 2005 dollars). How close were these forecasts?

Here’s a scatterplot of oil prices from 1972 to 1981 (in 2005 dollars).
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FIGURE 9.6
The scatterplot shows an average
increase in the price of a barrel of
oil of over $7 per year from 1971
to 1982.

When the Data Are Years. . .
... we usually don’t enter
them as four-digit numbers.
Here we used 0 for 1970, 10
for 1980, and so on. Or we
may simply enter two digits,
using 82 for 1982, for
instance. Rescaling years like
this often makes calculations
easier and equations
simpler. We recommend you
do it, too. But be careful: If
1982 is 82, then 2004 is 104
(not 4), right?

Case Study: Predicting
Manatee Kills. Can we use
regression to predict the number
of manatees that will be killed by
power boats this year?
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The regression model

says that prices had been going up 7.39 dollars per year, or
nearly $74 in 10 years. If you assume that they would keep going
up, it’s not hard to imagine almost any price you want.

So, how did the forecasters do? Well, in the period from 1982
to 1998 oil prices didn’t exactly continue that steady increase. In
fact, they went down so much that by 1998, prices (adjusted for
inflation) were the lowest they’d been since before World War II.

Not one of the experts’ models predicted that.
Of course, these decreases clearly couldn’t continue, or oil

would be free by now. The Energy Information Administration
offered two different 20-year forecasts for oil prices after 1998,
and both called for relatively modest increases in oil prices. So,
how accurate have these forecasts been? Here’s a timeplot of the
EIA’s predictions and the actual prices (in 2005 dollars).

Oops! They seemed to have missed the sharp run-up in oil
prices in the past few years.

Where do you think oil prices will go in the next decade?
Your guess may be as good as anyone’s!

Of course, knowing that extrapolation is dangerous doesn’t
stop people. The temptation to see into the future is hard to resist.
So our more realistic advice is this:

If you must extrapolate into the future, at least don’t believe that the
prediction will come true.

Outliers, Leverage, and Influence
The outcome of the 2000 U.S. presidential election was determined in Florida amid
much controversy. The main race was between George W. Bush and Al Gore, but
two minor candidates played a significant role. To the political right of the main
party candidates was Pat Buchanan, while to the political left was Ralph Nader. Gen-
erally, Nader earned more votes than Buchanan throughout the state. We would
expect counties with larger vote totals to give more votes to each candidate. Here’s a
regression relating Buchanan’s vote totals by county in the state of Florida to Nader’s:

Price = -0.85 + 7.39 Years since 1970
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FIGURE 9.7
This scatterplot of oil prices from 1981 to 1998 shows a fairly
constant decrease of about $3 per barrel per year.
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FIGURE 9.8
Here are the EIA forecasts with the actual prices from 1981 to
2008. Neither forecast predicted the sharp run-up in the past
few years.

Dependent variable is: Buchanan
R-squared 5 42.8%

Variable Coefficient

Intercept 50.3
Nader 0.14

The regression model,

says that, in each county, Buchanan received about 0.14 times (or 14% of) the vote
Nader received, starting from a base of 50.3 votes.

This seems like a reasonable regression, with an of almost 43%. But we’ve
violated all three Rules of Data Analysis by going straight to the regression table
without making a picture.

Here’s a scatterplot that shows the vote for Buchanan in each county of Florida
plotted against the vote for Nader. The striking outlier is Palm Beach County.

R2

Buchanan = 50.3 + 0.14 Nader,
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The so-called “butterfly ballot,” used only in Palm Beach County, was a
source of controversy. It has been claimed that the format of this ballot confused
voters so that some who intended to vote for the Democrat, Al Gore, punched the
wrong hole next to his name and, as a result, voted for Buchanan.

The scatterplot shows a strong, positive, linear
association, and one striking point. With Palm Beach
removed from the regression, the jumps from
42.8% to 82.1% and the slope of the line changes to
0.1, suggesting that Buchanan received only about
10% of the vote that Nader received. With more than
82% of the variability of the Buchanan vote accounted
for, the model when Palm Beach is omitted certainly
fits better. Palm Beach County now stands out, not as
a Buchanan stronghold, but rather as a clear violation
of the model that begs for explanation.

One of the great values of models is that, by estab-
lishing an idealized behavior, they help us to see when
and how data values are unusual. In regression, a
point can stand out in two different ways. First, a data
value can have a large residual, as Palm Beach County
does in this example. Because they seem to be different
from the other cases, points whose residuals are large
always deserve special attention.

A data point can also be unusual if its x-value is far from the mean of the 
x-values. Such a point is said to have high leverage. The physical image of a lever
is exactly right. We know the line must pass through , so you can picture that
point as the fulcrum of the lever. Just as sitting farther from the hinge on a see-saw
gives you more leverage to pull it your way, points with values far from pull
more strongly on the regression line.

A point with high leverage has the potential to change the regression line.
But it doesn’t always use that potential. If the point lines up with the pattern of
the other points, then including it doesn’t change our estimate of the line. By sitting
so far from , though, it may strengthen the relationship, inflating the correla-
tion and . How can you tell if a high-leverage point actually changes the
model? Just fit the linear model twice, both with and without the point in ques-
tion. We say that a point is influential if omitting it from the analysis gives a very
different model.2

Influence depends on both leverage and residual; a case with high leverage
whose y-value sits right on the line fit to the rest of the data is not influential.
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FIGURE 9.9
Votes received by Buchanan against votes
for Nader in all Florida counties in the
presidential election of 2000. The red “x”
point is Palm Beach County, home of the
“butterfly ballot.”

“Nature is nowhere accustomed
more openly to display her
secret mysteries than in cases
where she shows traces of her
workings apart from the beaten
path.”

—William Harvey
(1657)
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FIGURE 9.10
The red line shows the effect that one unusual point can have on a regression.

“Give me a place to stand and I
will move the Earth.”

—Archimedes 
(287–211 BCE)

Activity: Leverage. You
may be surprised to see how
sensitive to a single influential
point a regression line is.

2 Some textbooks use the term influential point for any observation that influences the slope,
intercept, or We’ll reserve the term for points that influence the slope.R2.
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Removing that case won’t change the slope, even if it does affect . A case with
modest leverage but a very large residual (such as Palm Beach County) can be
influential. Of course, if a point has enough leverage, it can pull the line right to
it. Then it’s highly influential, but its residual is small. The only way to be sure
is to fit both regressions.

Unusual points in a regression often tell us more about the data and the model
than any other points. We face a challenge: The best way to identify unusual points
is against the background of a model, but good models are free of the influence of
unusual points. (That insight’s at least 400 years old. See the sidebar.) Don’t give in
to the temptation to simply delete points that don’t fit the line. You can take points
out and discuss what the model looks like with and without them, but arbitrarily
deleting points can give a false sense of how well the model fits the data. Your goal
should be understanding the data, not making as big as you can.

In 2000, George W. Bush won Florida (and thus the presidency) by only a few
hundred votes, so Palm Beach County’s residual is big enough to be meaningful.
It’s the rare unusual point that determines a presidency, but all are worth examin-
ing and trying to understand.

A point with so much influence that it pulls the regression line close to it
can make its residual deceptively small. Influential points like that can have a
shocking effect on the regression. Here’s a plot of IQ against Shoe Size, again
from the fanciful study of intelligence and foot size in comedians we saw in
Chapter 7. The linear regression output shows

Dependent variable is: IQ
R-squared 5 24.8%

Variable Coefficient

Intercept 93.3265
Shoe size 2.08318

Although this is a silly example, it illustrates an important and common po-
tential problem: Almost all of the variance accounted for is due to
one point, namely, Bozo. Without Bozo, there is little correlation between Shoe
Size and IQ. Look what happens to the regression when we take him out:

Dependent variable is: IQ
R-squared 5 0.7%

Variable Coefficient

Intercept 105.458
Shoe size

The value is now 0.7%—a very weak linear relationship (as one might
expect!). One single point exhibits a great influence on the regression analysis.

What would have happened if Bozo hadn’t shown his comic genius on
IQ tests? Suppose his measured IQ had been only 50. The slope of the line
would then drop from 0.96 IQ points/shoe size to IQ points/shoe
size. No matter where Bozo’s IQ is, the line tends to follow it because his
Shoe Size, being so far from the mean Shoe Size, makes this a high-leverage
point.

Even though this example is far fetched, similar situations occur all the
time in real life. For example, a regression of sales against floor space for hard-
ware stores that looked primarily at small-town businesses could be domi-
nated in a similar way if The Home Depot were included.

-0.69

R2

-0.460194

(R2
= 24.8%)
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FIGURE 9.11
Bozo’s extraordinarily large shoes give his
data point high leverage in the regression.
Wherever Bozo’s IQ falls, the regression line
will follow.
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FIGURE 9.12
If Bozo’s IQ were low, the regression slope
would change from positive to negative. 
A single influential point can change a 
regression model drastically.

Warning: Influential points can hide in plots of residuals. Points with high leverage
pull the line close to them, so they often have small residuals. You’ll see influential
points more easily in scatterplots of the original data or by finding a regression model
with and without the points.

“For whoever knows the ways of
Nature will more easily notice
her deviations; and, on the
other hand, whoever knows her
deviations will more accurately
describe her ways.”

—Francis Bacon
(1561–1626)

Influential points. Try to make
the regression line’s slope change
dramatically by dragging a point
around in the scatterplot.

BOCK_C09_0321570448 pp3.qxd  12/1/08  4:33 PM  Page 207



208 CHAPTER 9    Regression Wisdom

4

6

8

10

12

y

2 4 86 10
x

5

0

10

15

20

25

50 10 15 20
x

y

20

15

10

5

0

–5

–10

–15

–20

y
151050 20

x

Lurking Variables and Causation
In Chapter 7, we tried to make it clear that no matter how strong the correlation is
between two variables, there’s no simple way to show that one variable causes the
other. Putting a regression line through a cloud of points just increases the tempta-
tion to think and to say that the x-variable causes the y-variable. Just to make sure,
let’s repeat the point again: No matter how strong the association, no matter how
large the value, no matter how straight the line, there is no way to conclude from
a regression alone that one variable causes the other. There’s always the possibility
that some third variable is driving both of the variables you have observed. With
observational data, as opposed to data from a designed experiment, there is no way
to be sure that a lurking variable is not the cause of any apparent association.

Here’s an example: The scatterplot shows the Life Expectancy (average of
men and women, in years) for each of 41 countries of the world, plotted
against the square root of the number of Doctors per person in the country.
(The square root is here to make the relationship satisfy the Straight Enough
Condition, as we saw back in Chapter 7.)

The strong positive association seems to confirm our expec-
tation that more Doctors per person improves healthcare, leading to longer
lifetimes and a greater Life Expectancy. The strength of the association would
seem to argue that we should send more doctors to developing countries to in-
crease life expectancy.

That conclusion is about the consequences of a change. Would sending
more doctors increase life expectancy? Specifically, do doctors cause greater
life expectancy? Perhaps, but these are observed data, so there may be another
explanation for the association.

On the next page, the similar-looking scatterplot’s x-variable is the square
root of the number of Televisions per person in each country. The positive associ-
ation in this scatterplot is even stronger than the association in the previous plot

1R2
= 62.4%2

R2

One common way to
interpret a regression slope
is to say that  “a change of 
1 unit in x results in a change
of units in y.” This way of
saying things encourages
causal thinking. Beware.

b1

JUST CHECKING
Each of these scatterplots shows an un-

usual point. For each, tell whether the point
is a high-leverage point, would have a large
residual, or is influential.
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FIGURE 9.13
The relationship between Life Expectancy
(years) and availability of Doctors (measured

as ) for countries of the 
world is strong, positive, and linear.

2doctors per person

1.

2. 3.

BOCK_C09_0321570448 pp3.qxd  12/1/08  4:34 PM  Page 208
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We can fit the linear model, and quite possibly use the num-
ber of TVs as a way to predict life expectancy. Should we conclude that in-
creasing the number of TVs actually extends lifetimes? If so, we should
send TVs instead of doctors to developing countries. Not only is the corre-
lation with life expectancy higher, but TVs are much cheaper than doctors.

What’s wrong with this reasoning? Maybe we were a bit hasty earlier
when we concluded that doctors cause longer lives. Maybe there’s a lurk-
ing variable here. Countries with higher standards of living have both
longer life expectancies and more doctors (and more TVs). Could higher
living standards cause changes in the other variables? If so, then improv-
ing living standards might be expected to prolong lives, increase the
number of doctors, and increase the number of TVs.

From this example, you can see how easy it is to fall into the trap of
mistakenly inferring causality from a regression. For all we know, doctors
(or TVs!) do increase life expectancy. But we can’t tell that from data like
these, no matter how much we’d like to. Resist the temptation to conclude
that x causes y from a regression, no matter how obvious that conclusion
seems to you.

Working with Summary Values
Scatterplots of statistics summarized over groups tend to show less variability
than we would see if we measured the same variable on individuals. This is 
because the summary statistics themselves vary less than the data on the individ-
uals do—a fact we will make more specific in coming chapters.

In Chapter 7 we looked at the heights and weights of individual students.
There we saw a correlation of 0.644, so is 41.5%.R2

(R2
= 72.3%).
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FIGURE 9.14
To increase life expectancy, don’t send doctors, send
TVs; they’re cheaper and more fun. Or maybe that’s
not the right interpretation of this scatterplot of life
expectancy against availability of TVs (as
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FIGURE 9.15
Weight (lb) against Height (in.) for a
sample of men. There’s a strong, 
positive, linear association.

Suppose, instead of data on individuals, we knew only the mean
weight for each height value. The scatterplot of mean weight by height
would show less scatter. And the would increase to 80.1%.

Scatterplots of summary statistics show less scatter than the baseline
data on individuals and can give a false impression of how well a line
summarizes the data. There’s no simple correction for this phenomenon.
Once we’re given summary data, there’s no simple way to get the original
values back.

In the life expectancy and TVs example, we have no good measure 
of exposure to doctors or to TV on an individual basis. But if we did, we
should expect the scatterplot to show more variability and the correspond-
ing to be smaller. The bottom line is that you should be a bit suspicious
of conclusions based on regressions of summary data. They may look better
than they really are.
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FIGURE 9.16
Mean Weight (lb) shows a stronger linear associa-
tion with Height than do the weights of individuals.
Means vary less than individual values.
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Using several of these methods togetherFOR EXAMPLE

Motorcycles designed to run off-road, often known as dirt bikes, are specialized vehicles.
We have data on 104 dirt bikes available for sale in 2005. Some cost as little as $3000,

while others are substantially more expensive. Let’s investigate how the size and type of engine
contribute to the cost of a dirt bike. As always, we start with a scatterplot.

Here’s a scatterplot of the manufacturer’s suggested retail price (MSRP) in dollars against
the engine Displacement, along with a regression analysis:
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Dependent variable is: MSRP

Variable Coefficient

Intercept 2273.67

Displacement 10.0297

R-squared = 49.9% s = 1737

Question: What do you see in the scatterplot?

There is a strong positive association between the engine displacement of dirt bikes and the manufacturer’s
suggested retail price. One of the dirt bikes is an outlier; its price is more than double that of any other bike.
The outlier is the Husqvarna TE 510 Centennial. Most of its components are handmade exclusively for this model, including extensive use of carbon fiber
throughout. That may explain its $19,500 price tag! Clearly, the TE 510 is not like the other bikes. We’ll set it aside for now and look at the data for the
remaining dirt bikes.

Question: What effect will removing this outlier have on the regression? Describe how the slope, , and will change.

The TE 510 was an influential point, tilting the regression line upward. With that point removed, the regression slope
will get smaller. With that dirt bike omitted, the pattern becomes more consistent, so the value of should get
larger and the standard deviation of the residuals, , should get smaller.

With the outlier omitted, here’s the new regression and a scatterplot of the residuals:
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Dependent variable is: MSRP

Variable Coefficient

Intercept 2411.02

Displacement 9.05450

R-squared = 61.3% s = 1237

Question: What do you see in the residuals plot?

The points at the far right don’t fit well with the other dirt bikes. Overall, there appears to be a bend in the relation-
ship, so a linear model may not be appropriate.

Let’s try a re-expression. Here’s a scatterplot showing MSRP against the cube root of Displacement to make the relationship closer to straight. (Since dis-
placement is measured in cubic centimeters, its cube root has the simple units of centimeters.) In addition, we’ve colored the plot according to the cooling
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method used in the bike’s engine: liquid or air. Each group is shown with its own
regression line, as we did for the cereals on different shelves.

Question: What does this plot say about dirt bikes?

There appears to be a positive, linear relationship between
MSRP and the cube root of Displacement. In general, the larger
the engine a bike has, the higher the suggested price. Liquid-
cooled dirt bikes, however, typically cost more than air-cooled
bikes with comparable displacement. A few liquid-cooled bikes
appear to be much less expensive than we might expect, given
their engine displacements.

[Jiang Lu, Joseph B. Kadane, and Peter Boatwright, “The Dirt on Bikes: An
Illustration of CART Models for Brand Differentiation,” provides data on 2005-
model bikes.]

WHAT CAN GO WRONG?
This entire chapter has held warnings about things that can go wrong in a regression
analysis. So let’s just recap. When you make a linear model:

u Make sure the relationship is straight. Check the Straight Enough Condition. Always
examine the residuals for evidence that the Linearity Assumption has failed. It’s
often easier to see deviations from a straight line in the residuals plot than in the
scatterplot of the original data. Pay special attention to the most extreme residuals
because they may have something to add to the story told by the linear model.

u Be on guard for different groups in your regression. Check for evidence that the data con-
sist of separate subsets. If you find subsets that behave differently, consider fitting a
different linear model to each subset.

u Beware of extrapolating. Beware of extrapolation beyond the x-values that were used
to fit the model. Although it’s common to use linear models to extrapolate, the prac-
tice is dangerous.

u Beware especially of extrapolating into the future! Be especially cautious about extrapo-
lating into the future with linear models. To predict the future, you must assume
that future changes will continue at the same rate you’ve observed in the past. Pre-
dicting the future is particularly tempting and particularly dangerous.

u Look for unusual points. Unusual points always deserve attention and may well re-
veal more about your data than the rest of the points combined. Always look for
them and try to understand why they stand apart. A scatterplot of the data is a good
way to see high-leverage and influential points. A scatterplot of the residuals against
the predicted values is a good tool for finding points with large residuals.

u Beware of high-leverage points and especially of those that are influential. Influential points
can alter the regression model a great deal. The resulting model may say more about
one or two points than about the overall relationship.

u Consider comparing two regressions. To see the impact of outliers on a regression, it’s
often wise to run two regressions, one with and one without the extraordinary
points, and then to discuss the differences.

u Treat unusual points honestly. If you remove enough carefully selected points, you can
always get a regression with a high eventually. But it won’t give you much un-
derstanding. Some variables are not related in a way that’s simple enough for a lin-
ear model to fit very well. When that happens, report the failure and stop.

R2
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u Beware of lurking variables. Think about lurking variables before interpreting a linear
model. It’s particularly tempting to explain a strong regression by thinking that the
x-variable causes the y-variable. A linear model alone can never demonstrate such
causation, in part because it cannot eliminate the chance that a lurking variable has
caused the variation in both x and y.

u Watch out when dealing with data that are summaries. Be cautious in working with data
values that are themselves summaries, such as means or medians. Such statistics are
less variable than the data on which they are based, so they tend to inflate the im-
pression of the strength of a relationship.

WHAT HAVE WE LEARNED?

We’ve learned that there are many ways in which a data set may be unsuitable for a regression
analysis.

u Watch out for more than one group hiding in your regression analysis. If you find subsets of the
data that behave differently, consider fitting a different regression model to each subset.

u The Straight Enough Condition says that the relationship should be reasonably straight to fit a
regression. Somewhat paradoxically, sometimes it’s easier to see that the relationship is not
straight after fitting the regression by examining the residuals. The same is true of outliers.

u The Outlier Condition actually means two things: Points with large residuals or high leverage 
(especially both) can influence the regression model significantly. It’s a good idea to perform the
regression analysis with and without such points to see their impact.

And we’ve learned that even a good regression doesn’t mean we should believe that the model says
more than it really does.

u Extrapolation far from can lead to silly and useless predictions.
u Even an near 100% doesn’t indicate that x causes y (or the other way around). Watch out for

lurking variables that may affect both x and y.
u Be careful when you interpret regressions based on summaries of the data sets. These regres-

sions tend to look stronger than the regression based on all the individual data.

Terms
Extrapolation 203. Although linear models provide an easy way to predict values of y for a given value of x, it

is unsafe to predict for values of x far from the ones used to find the linear model equation. Such
extrapolation may pretend to see into the future, but the predictions should not be trusted.

R2
x

CONNECTIONS
We are always alert to things that can go wrong if we use statistics without thinking carefully. Regres-
sion opens new vistas of potential problems. But each one relates to issues we’ve thought about before.

It is always important that our data be from a single homogeneous group and not made up of
disparate groups. We looked for multiple modes in single variables. Now we check scatterplots for
evidence of subgroups in our data. As with modes, it’s often best to split the data and analyze the
groups separately.

Our concern with unusual points and their potential influence also harks back to our earlier con-
cern with outliers in histograms and boxplots—and for many of the same reasons. As we’ve seen
here, regression offers such points new scope for mischief.

The risks of interpreting linear models as causal or predictive arose in Chapters 7 and 8. And
they’re important enough to mention again in later chapters.
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Outlier 205. Any data point that stands away from the others can be called an outlier. In regression, out-
liers can be extraordinary in two ways: by having a large residual or by having high leverage.

Leverage 206. Data points whose x-values are far from the mean of x are said to exert leverage on a linear
model. High-leverage points pull the line close to them, and so they can have a large effect on the
line, sometimes completely determining the slope and intercept. With high enough leverage, their
residuals can be deceptively small.

Influential point 206. If omitting a point from the data results in a very different regression model, then that point is
called an influential point.

Lurking variable 208. A variable that is not explicitly part of a model but affects the way the variables in the model
appear to be related is called a lurking variable. Because we can never be certain that observational
data are not hiding a lurking variable that influences both x and y, it is never safe to conclude that a
linear model demonstrates a causal relationship, no matter how strong the linear association.

Skills
u Understand that we cannot fit linear models or use linear regression if the underlying relation-

ship between the variables is not itself linear.

u Understand that data used to find a model must be homogeneous. Look for subgroups in data
before you find a regression, and analyze each separately.

u Know the danger of extrapolating beyond the range of the x-values used to find the linear model,
especially when the extrapolation tries to predict into the future.

u Understand that points can be unusual by having a large residual or by having high leverage.

u Understand that an influential point can change the slope and intercept of the regression line.

u Look for lurking variables whenever you consider the association between two variables. Under-
stand that a strong association does not mean that the variables are causally related.

u Know how to display residuals from a linear model by making a scatterplot of residuals against
predicted values or against the x-variable, and know what patterns to look for in the picture.

u Know how to look for high-leverage and influential points by examining a scatterplot of the data
and how to look for points with large residuals by examining a scatterplot of the residuals against
the predicted values or against the x-variable. Understand how fitting a regression line with and
without influential points can add to your understanding of the regression model.

u Know how to look for high-leverage points by examining the distribution of the x-values or by
recognizing them in a scatterplot of the data, and understand how they can affect a linear model.

u Include diagnostic information such as plots of residuals and leverages as part of your report of a
regression.

u Report any high-leverage points.

u Report any outliers. Consider reporting analyses with and without outliers, to assess their influ-
ence on the regression.

u Include appropriate cautions about extrapolation when reporting predictions from a linear model.

u Discuss possible lurking variables.

REGRESSION DIAGNOSIS ON THE COMPUTER

Most statistics technology offers simple ways to check whether your data satisfy the conditions for regression.
We have already seen that these programs can make a simple scatterplot. They can also help us check the
conditions by plotting residuals.
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EXERCISES

1. Marriage age 2003. Is there evidence that the age at
which women get married has changed over the past
100 years? The scatterplot shows the trend in age at first
marriage for American women (www.census.gov).

a) Is there a clear pattern? Describe the trend.
b) Is the association strong?
c) Is the correlation high? Explain.
d) Is a linear model appropriate? Explain.

2. Smoking 2004. The Centers for Disease Control and
Prevention track cigarette smoking in the United States.
How has the percentage of people who smoke changed
since the danger became clear during the last half of the
20th century? The scatterplot shows percentages of smok-
ers among men 18–24 years of age, as estimated by sur-
veys, from 1965 through 2004 (www.cdc.gov/nchs/).

a) Is there a clear pattern? Describe the trend.
b) Is the association strong?
c) Is a linear model appropriate? Explain.

3. Human Development Index. The United Nations
Development Programme (UNDP) uses the Human
Development Index (HDI) in an attempt to summarize
in one number the progress in health, education, and eco-
nomics of a country. In 2006, the HDI was as high as 0.965
for Norway and as low as 0.331 for Niger. The gross do-
mestic product per capita (GDPPC), by contrast, is often
used to summarize the overall economic strength of a
country. Is the HDI related to the GDPPC? Here is a scat-
terplot of HDI against GDPPC.
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a) Explain why fitting a linear model to these data might
be misleading.

b) If you fit a linear model to the data, what do you think
a scatterplot of residuals versus predicted HDI will
look like?

c) There is an outlier (Luxembourg) with a GDPPC of
around $70,000. Will setting this point aside improve
the model substantially? Explain.

4. HDI Revisited. The United Nations Development Pro-
gramme (UNDP) uses the Human Development Index
(HDI) in an attempt to summarize in one number the
progress in health, education, and economics of a coun-
try. The number of cell phone subscribers per 1000 people
is positively associated with economic progress in a coun-
try. Can the number of cell phone subscribers be used to
predict the HDI? Here is a scatterplot of HDI against cell
phone subscribers:
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a) Explain why fitting a linear model to these data might
be misleading.

b) If you fit a linear model to the data, what do you think
a scatterplot of residuals versus predicted HDI will
look like?

5. Good model? In justifying his choice of a model, a stu-
dent wrote, “I know this is the correct model because

”
a) Is this reasoning correct? Explain.
b) Does this model allow the student to make accurate

predictions? Explain.

R2
= 99.4%.

T
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6. Bad model? A student who has created a linear model is
disappointed to find that her value is a very low 13%.
a) Does this mean that a linear model is not appropriate?

Explain.
b) Does this model allow the student to make accurate

predictions? Explain.

7. Movie Dramas. Here’s a scatterplot of the production
budgets (in millions of dollars) vs. the running time (in
minutes) for major release movies in 2005. Dramas are plot-
ted in red and all other genres are plotted in black. A sepa-
rate least squares regression line has been fitted to each
group. For the following questions, just examine the plot:
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a) What are the units for the slopes of these lines?
b) In what way are dramas and other movies similar

with respect to this relationship?
c) In what way are dramas different from other genres of

movies with respect to this relationship?

8. Movie Ratings. Does the cost of making a movie de-
pend on its audience? Here’s a scatterplot of the same
data we examined in Exercise 7. Movies with an R rating
are colored purple, those with a PG-13 rating are red, and
those with a PG rating are green. Regression lines have
been found for each group. (The black points are G-rated,
but there were too few to fit a line reliably.)

c) The film King Kong, with a run time of 187 minutes, is
the red point sitting at the lower right. If it were omit-
ted from this analysis, how might that change your
conclusions about PG-13 movies?

9. Oakland passengers. The scatterplot below shows 
the number of passengers departing from Oakland (CA) 
airport month by month since the start of 1997. Time 
is shown as years since 1990, with fractional years 
used to represent each month. (Thus, June of 1997 
is 7.5—halfway through the 7th year after 1990.) 
www.oaklandairport.com
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Here’s a regression and the residuals plot:

Dependent variable is: Passengers

Variable Coefficient
Constant 282584
Year -1990 59704.4

s = 104330R-squared = 71.1 %
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a) Interpret the slope and intercept of the model.
b) What does the value of say about the model?
c) Interpret in this context.
d) Would you use this model to predict the numbers of

passengers in 2010 Explain.
e) There’s a point near the middle of this time span

with a large negative residual. Can you explain this
outlier?

10. Tracking hurricanes. In a previous chapter, we 
saw data on the errors (in nautical miles) made by the 
National Hurricane Center in predicting the path 
of hurricanes. The scatterplot on the next page shows
the trend in the 24-hour tracking errors since 1970
(www.nhc.noaa.gov).

1YearsSince1990 = 202?

se

R2

T

a) In what ways is the relationship between run times
and budgets similar for the three ratings groups?

b) How do the costs of R-rated movies differ from those
of PG-13 and PG rated movies? Discuss both the
slopes and the intercepts.

T
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Dependent variable is: Error

Variable Coefficient
Intercept 292.089
Years-1970 

a) Interpret the slope and intercept of the model.
b) Interpret in this context.
c) The Center had a stated goal of achieving an average

tracking error of 125 nautical miles in 2009. Will they
make it? Why do you think so?

d) What if their goal were an average tracking error of 
90 nautical miles?

e) What cautions would you state about your conclusion?

11. Unusual points. Each of the four scatterplots that fol-
low shows a cluster of points and one “stray” point. For
each, answer these questions:
1) In what way is the point unusual? Does it have high

leverage, a large residual, or both?
2) Do you think that point is an influential point?
3) If that point were removed, would the correlation be-

come stronger or weaker? Explain.
4) If that point were removed, would the slope of the re-

gression line increase or decrease? Explain.

a) b)

se

-5.22924

s = 42.87R-squared = 63.0 %

12. More unusual points. Each of the following scatter-
plots shows a cluster of points and one “stray” point. For
each, answer these questions:
1) In what way is the point unusual? Does it have high

leverage, a large residual, or both?
2) Do you think that point is an influential point?
3) If that point were removed, would the correlation be-

come stronger or weaker? Explain.
4) If that point were removed, would the slope of the re-

gression line increase or decrease? Explain.

a) b)

b

dc

a

e

14. The extra point revisited. The original five points in
Exercise 13 produce a regression line with slope 0. Match
each of the green points (a–e) with the slope of the line af-
ter that one point is added:
1) 4) 0.05
2) 5) 0.85
3) 0.00

15. What’s the cause? Suppose a researcher studying
health issues measures blood pressure and the percentage
of body fat for several adult males and finds a strong pos-
itive association. Describe three different possible cause-
and-effect relationships that might be present.

16. What’s the effect? A researcher studying violent behav-
ior in elementary school children asks the children’s par-
ents how much time each child spends playing computer
games and has their teachers rate each child on the level of
aggressiveness they display while playing with other 
children. Suppose that the researcher finds a moderately
strong positive correlation. Describe three different possi-
ble cause-and-effect explanations for this relationship.

17. Reading. To measure progress in reading ability, stu-
dents at an elementary school take a reading comprehen-
sion test every year. Scores are measured in “grade-level”
units; that is, a score of 4.2 means that a student is read-
ing at slightly above the expected level for a fourth
grader. The school principal prepares a report to parents
that includes a graph showing the mean reading score for
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c) d)

c) d)

13. The extra point. The scatterplot shows five blue data
points at the left. Not surprisingly, the correlation for
these points is . Suppose one additional data point is
added at one of the five positions suggested below in
green. Match each point (a–e) with the correct new corre-
lation from the list given.
1) 4) 0.05
2) 5) 0.75
3) 0.00

-0.40
-0.90

r = 0
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19. Heating. After keeping track of his heating expenses
for several winters, a homeowner believes he can esti-
mate the monthly cost from the average daily Fahrenheit
temperature by using the model Temp.
Here is the residuals plot for his data:

Cost = 133 - 2.13
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a) Interpret the slope of the line in this context.
b) Interpret the y-intercept of the line in this context.
c) During months when the temperature stays around

freezing, would you expect cost predictions based
on this model to be accurate, too low, or too high?
Explain.

d) What heating cost does the model predict for a month
that averages ?

e) During one of the months on which the model was
based, the temperature did average . What were
the actual heating costs for that month?

f) Should the homeowner use this model? Explain.
g) Would this model be more successful if the tempera-

ture were expressed in degrees Celsius? Explain.

20. Speed. How does the speed at which you drive affect
your fuel economy? To find out, researchers drove a
compact car for 200 miles at speeds ranging from 35 to
75 miles per hour. From their data, they created the
model Speed and created
this residual plot:

Fuel Efficiency = 32 - 0.1
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a) Interpret the slope of this line in context.
b) Explain why it’s silly to attach any meaning to the 

y-intercept.
c) When this model predicts high Fuel Efficiency, what

can you say about those predictions?
d) What Fuel Efficiency does the model predict when the

car is driven at 50 mph?
e) What was the actual Fuel Efficiency when the car was

driven at 45 mph?
f) Do you think there appears to be a strong association

between Speed and Fuel Efficiency? Explain.
g) Do you think this is the appropriate model for that as-

sociation? Explain.

each grade. In his comments he points out that the strong
positive trend demonstrates the success of the school’s
reading program.

a) Does this graph indicate that students are making sat-
isfactory progress in reading? Explain.

b) What would you estimate the correlation between
Grade and Average Reading Level to be?

c) If, instead of this plot showing average reading levels,
the principal had produced a scatterplot of the read-
ing levels of all the individual students, would you
expect the correlation to be the same, higher, or lower?
Explain.

d) Although the principal did not do a regression analy-
sis, someone as statistically astute as you might do
that. (But don’t bother.) What value of the slope of
that line would you view as demonstrating acceptable
progress in reading comprehension? Explain.

18. Grades. A college admissions officer, defending the col-
lege’s use of SAT scores in the admissions process, pro-
duced the graph below. It shows the mean GPAs for last
year’s freshmen, grouped by SAT scores. How strong is
the evidence that SAT Score is a good predictor of GPA?
What concerns you about the graph, the statistical
methodology or the conclusions reached?
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21. Interest rates. Here’s a plot showing the federal rate
on 3-month Treasury bills from 1950 to 1980, and a regres-
sion model fit to the relationship between the Rate (in %)
and Years since 1950 (www.gpoaccess.gov/eop/).
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Dependent variable is: Rate

Variable Coefficient
Intercept 0.640282
Year � 1950 0.247637

a) What is the correlation between Rate and Year?
b) Interpret the slope and intercept.
c) What does this model predict for the interest rate in

the year 2000?
d) Would you expect this prediction to have been accu-

rate? Explain.

22. Ages of couples 2003. The graph shows the ages of
both men and women at first marriage (www.census.gov).

s = 1.239R-squared = 77.4 % 
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Clearly, the pattern for men is similar to the pattern for
women. But are the two lines getting closer together?

Here’s a timeplot showing the difference in average age
(men’s age women’s age) at first marriage, the regres-
sion analysis, and the associated residuals plot.
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Dependent variable is: Age Dif ference

Variable Coefficient
Constant 35.0617
Year

a) What is the correlation between Age Difference and
Year?

b) Interpret the slope of this line.
c) Predict the average age difference in 2015.
d) Describe reasons why you might not place much faith

in that prediction.

23. Interest rates revisited. In Exercise 21 you investi-
gated the federal rate on 3-month Treasury bills between
1950 and 1980. The scatterplot below shows that the trend
changed dramatically after 1980. 
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Here’s a regression model for the data since 1980.

Dependent variable is: Rate

Variable Coefficient
Intercept 21.0688
Year � 1950

a) How does this model compare to the one in Exercise 21?
b) What does this model estimate the interest rate to

have been in 2000? How does this compare to the rate
you predicted in Exercise 21?

c) Do you trust this newer predicted value? Explain.
d) Given these two models, what would you predict the

interest rate on 3-month Treasury bills will be in 2020?

24. Ages of couples, again. Has the trend of decreasing
difference in age at first marriage seen in Exercise 22 got-
ten stronger recently? The scatterplot and residual plot
for the data from 1975 through 2003, along with a regres-
sion for just those years, are on the next page.

-0.356578

s = 1.630R-squared = 74.5 % 
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Dependent variable is: Men Women

Variable Coefficient
Intercept 4.88424
Year

a) Why is higher for the first model (in Exercise 22)?
b) Is this linear model appropriate for the post-1975

data? Explain.
c) What does the slope say about marriage ages?
d) Explain why it’s not reasonable to interpret the 

y-intercept.

25. Gestation. For women, pregnancy lasts about 
9 months. In other species of animals, the length of time
from conception to birth varies. Is there any evidence that
the gestation period is related to the animal’s lifespan?
The first scatterplot shows Gestation Period (in days) vs.
Life Expectancy (in years) for 18 species of mammals. The
highlighted point at the far right represents humans.
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a) For these data, , not a very strong relation-
ship. Do you think the association would be stronger
or weaker if humans were removed? Explain.

b) Is there reasonable justification for removing humans
from the data set? Explain.

r = 0.54

c) Here are the scatterplot and regression analysis for the
17 nonhuman species. Comment on the strength of the
association.
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Dependent variable is: Gestation

Variable Coefficient
Constant 
Lif Exp 15.4980

d) Interpret the slope of the line.
e) Some species of monkeys have a life expectancy of

about 20 years. Estimate the expected gestation period
of one of these monkeys.

26. Swim the lake 2006. People swam across Lake Ontario
42 times between 1974 and 2006 (www.soloswims.com).
We might be interested in whether they are getting any
faster or slower. Here are the regression of the crossing
Times (minutes) against the Year of the crossing and 
the residuals plot:

Dependent variable is: T ime

Variable Coefficient
Intercept
Year 5.14171

-8950 .40

s = 443.8R-Squared = 1.3 %
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a) What does the mean for this regression?
b) Are the swimmers getting faster or slower? Explain.
c) The outlier seen in the residuals plot is a crossing by

Vicki Keith in 1987 in which she swam a round trip,
north to south, and then back again. Clearly, this swim
doesn’t belong with the others. Would removing it
change the model a lot? Explain.

27. Elephants and hippos. We removed humans from the
scatterplot in Exercise 25 because our species was an out-
lier in life expectancy. The resulting scatterplot (next page)
shows two points that now may be of concern. The point in
the upper right corner of this scatterplot is for elephants,
and the other point at the far right is for hippos.

R2
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a) By removing one of these points, we could make the
association appear to be stronger. Which point? 
Explain.

b) Would the slope of the line increase or decrease?
c) Should we just keep removing animals to increase the

strength of the model? Explain.
d) If we remove elephants from the scatterplot, the slope

of the regression line becomes 11.6 days per year. Do
you think elephants were an influential point? Explain.

a) Create a scatterplot relating these two variables, and
describe the association.

b) Are there any countries that do not seem to fit the
overall pattern?

c) Find the correlation, and interpret the value of .
d) Find the equation of the regression line.
e) Is the line an appropriate model? Describe what you

see in the residuals plot.
f ) Interpret the slope and the y-intercept of the line.
g) If government leaders wanted to increase life ex-

pectancy in their country, should they encourage
women to have fewer children? Explain.

32. Tour de France 2007. We met the Tour de France data
set in Chapter 2 (in Just Checking). One hundred years
ago, the fastest rider finished the course at an average
speed of about 25.3 kph (around 15.8 mph). In 2005,
Lance Armstrong averaged 41.65 kph (25.88 mph) for the
fastest average winning speed in history.
a) Make a scatterplot of Avg Speed against Year. Describe

the relationship of Avg Speed by Year, being careful to
point out any unusual features in the plot.

b) Find the regression equation of Avg Speed on Year.
c) Are the conditions for regression met? Comment.

33. Inflation 2006. The Consumer Price Index (CPI) tracks
the prices of consumer goods in the United States, as
shown in the table on the next page (ftp://ftp.bis.gov). It

R2

1900–1950 (10-yr intervals): 21.9, 21.6, 21.2, 21.3, 21.5, 20.3
1955–2000 (5-yr intervals): 20.2, 20.2, 20.6, 20.8, 21.1, 22.0,

23.3, 23.9, 24.5, 25.1

28. Another swim 2006. In Exercise 26 we saw that Vicki
Keith’s round-trip swim of Lake Ontario was an obvious
outlier among the other one-way times. Here is the new
regression after this unusual point is removed:

Dependent variable is: T ime

Variable Coefficient
Intercept
Year 6.17091

a) In this new model, the value of is much smaller.
Explain what that means in this context.

b) Now would you be willing to say that the Lake
Ontario swimmers are getting faster (or slower)?

29. Marriage age 2003 revisited. Suppose you wanted to
predict the trend in marriage age for American women
into the early part of this century.
a) How could you use the data graphed in Exercise 1 

to get a good prediction? Marriage ages in selected
years starting in 1900 are listed below. Use all or part
of these data to create an appropriate model for pre-
dicting the average age at which women will first
marry in 2010.

se

-11048.7

s = 292.6R-Squared = 4.1 %

Year 1980 1985 1990 1991 1992 1993 1994 1995 1996 1997 1998
% 18.4 22.0 28.0 29.5 30.1 31.0 32.6 32.2 32.4 32.4 32.8

Country
Births/

Woman
Life 
Exp. Country

Births/
Woman

Life
Exp.

Argentina 2.3 74.6 Guatemala 4.4 67.6
Bahamas 2.3 70.5 Honduras 3.6 68.2
Barbados 1.7 75.4 Jamaica 2.4 70.8
Belize 3.0 71.9 Mexico 2.2 75.1
Bolivia 3.7 64.5 Nicaragua 3.2 70.1
Brazil 2.3 70.9 Panama 2.6 75.1
Canada 1.5 79.8 Paraguay 3.7 71.2
Chile 2.0 78.0 Peru 2.8 70.4
Colombia 2.4 72.6 Puerto Rico 1.9 77.5
Costa Rica 24.9 78.7 United States 2.0 77.4
Dominican 

Republic 2.8 67.8
Uruguay
Venezuela

2.1
2.7

75.2
73.7

Ecuador 2.7 74.5 Virgin 
El Salvador 2.8 71.1 Islands 2.2 78.6

b) How much faith do you place in this prediction?
Explain.

c) Do you think your model would produce an accurate
prediction about your grandchildren, say, 50 years
from now? Explain.

30. Unwed births. The National Center for Health Statis-
tics reported the data below, showing the percentage of
all births that are to unmarried women for selected years

Life Expectancy (yr)
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T

T

between 1980 and 1998. Create a model that describes this
trend. Justify decisions you make about how to best use
these data.

31. Life Expectancy 2004. Data from the World Bank for
26 Western Hemisphere countries can be used to examine
the association between female Life Expectancy and the 
average Number of Children women give birth to
(http://devdata.worldbank.org/data-query/).

T

T

T
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indicates, for example, that the average item costing
$17.70 in 1926 cost $201.60 in the year 2006.

T

Year CPI Year CPI

1914 10.0 1962 30.2
1918 15.1 1966 32.4
1922 16.8 1970 38.8
1926 17.7 1974 49.3
1930 16.7 1978 65.2
1934 13.4 1982 96.5
1938 14.1 1986 109.6
1942 16.3 1990 130.7
1946 19.5 1994 148.2
1950 24.1 1998 163.0
1954 26.9 2002 179.9
1958 28.9 2006 201.6

JUST CHECKING
Answers

1. Not high leverage, not influential, large residual

2. High leverage, not influential, small residual

3. High leverage, influential, not large residual

34. Second stage 2007. Look once more at the data from
the Tour de France. In Exercise 32 we looked at the whole
history of the race, but now let’s consider just the post–
World War II era.
a) Find the regression of Avg Speed by Year only for years

from 1947 to the present. Are the conditions for regres-
sion met?

b) Interpret the slope.
c) In 1979 Bernard Hinault averaged 39.8 kph, while in

2005 Lance Armstrong averaged 41.65 kph. Which
was the more remarkable performance and why?

a) Make a scatterplot showing the trend in consumer
prices. Describe what you see.

b) Be an economic forecaster: Project increases in the cost
of living over the next decade. Justify decisions you
make in creating your model.
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CHAPTER

10
Re-expressing Data:
Get It Straight!

How fast can you go on a bicycle? If you measure your speed, you
probably do it in miles per hour or kilometers per hour. In a 12-mile-
long time trial in the 2005 Tour de France, Dave Zabriskie averaged
nearly 35 mph (54.7 kph), beating Lance Armstrong by 2 seconds.

You probably realize that’s a tough act to follow. It’s fast. You can tell that at 
a glance because you have no trouble thinking in terms of distance covered 
per time.

OK, then, if you averaged 12.5 mph (20.1 kph) for a mile run, would that be fast?
Would it be fast for a 100-m dash? Even if you run the mile often, you probably
have to stop and calculate. Running a mile in under 5 minutes (12 mph) is fast. A
mile at 16 mph would be a world record (that’s a 3-minute, 45-second mile). There’s
no single natural way to measure speed. Sometimes we use time over distance;
other times we use the reciprocal, distance over time. Neither one is correct. We’re
just used to thinking that way in each case.

So, how does this insight help us understand data? All quantitative data come
to us measured in some way, with units specified. But maybe those units aren’t
the best choice. It’s not that meters are better (or worse) than fathoms or leagues.
What we’re talking about is re-expressing the data another way by applying a
function, such as a square root, log, or reciprocal. You already use some of them,
even though you may not know it. For example, the Richter scale of earthquake
strength (logs), the decibel scale for sound intensity (logs), the f/stop scale for
camera aperture openings (squares), and the gauges of shotguns (square roots) all
include simple functions of this sort.

Why bother? As with speeds, some expressions of the data may be easier to
think about. And some may be much easier to analyze with statistical methods.
We’ve seen that symmetric distributions are easier to summarize and straight
scatterplots are easier to model with regressions. We often look to re-express our
data if doing so makes them more suitable for our methods.

Straight to the Point
We know from common sense and from physics that heavier cars need more
fuel, but exactly how does a car’s weight affect its fuel efficiency? Here are the

Activity: Re-expressing
Data. Should you re-express
data? Actually, you already do.

Scan through any Physics
book. Most equations have
powers, reciprocals, or logs.
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FIGURE 10.1
Fuel Efficiency (mpg) vs. Weight for
38 cars as reported by Consumer 
Reports. The scatterplot shows a nega-
tive direction, roughly linear shape,
and strong relationship. However, the
residuals from a regression of Fuel Effi-
ciency on Weight reveal a bent shape
when plotted against the predicted val-
ues. Looking back at the original scat-
terplot, you may be able to see the
bend.

scatterplot of Weight (in pounds) and Fuel Efficiency (in miles per gallon) for 38
cars, and the residuals plot:

Hmm . . . . Even though is 81.6%, the residuals don’t show the random scatter
we were hoping for. The shape is clearly bent. Looking back at the first scatterplot,
you can probably see the slight bending. Think about the regression line through the
points. How heavy would a car have to be to have a predicted gas mileage of 0? It
looks like the Fuel Efficiency would go negative at about 6000 pounds. A Hummer H2
weighs about 6400 pounds. The H2 is hardly known for fuel efficiency, but it does get
more than the minus 5 mpg this regression predicts. Extrapolation is always danger-
ous, but it’s more dangerous the more the model is wrong, because wrong models
tend to do even worse the farther you get from the middle of the data.

The bend in the relationship between Fuel Efficiency and Weight is the kind of
failure to satisfy the conditions for an analysis that we can repair by re-expressing
the data. Instead of looking at miles per gallon, we could take the reciprocal and
work with gallons per hundred miles.1

R2

1 Multiplying by 100 to get gallons per 100 miles simply makes the numbers easier to think
about: You might have a good idea of how many gallons your car needs to drive 100 miles,
but probably a much poorer sense of how much gas you need to go just 1 mile.

“Gallons per hundred miles—what an absurd way to measure fuel effi-
ciency! Who would ever do it that way?” Not all re-expressions are easy to
understand, but in this case the answer is “Everyone except U.S. drivers.” Most of the
world measures fuel efficiency in liters per 100 kilometers (L /100 km). This is the
same reciprocal form (fuel amount per distance driven) and differs from gallons per
100 miles only by a constant multiple of about 2.38. It has been suggested that most
of the world says, “I’ve got to go 100 km; how much gas do I need?” But Americans
say, “I’ve got 10 gallons in the tank. How far can I drive?” In much the same way, re-
expressions “think” about the data differently but don’t change what they mean.
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FIGURE 10.3
The reciprocal (1/y) is measured in
gallons per mile. Gallons per 100
miles gives more meaningful numbers.
The reciprocal is more nearly linear
against Weight than the original vari-
able, but the re-expression changes
the direction of the relationship. The
residuals from the regression of Fuel
Consumption (gal/100 mi) on Weight
show less of a pattern than before.
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FIGURE 10.2
Extrapolating the regression line gives
an absurd answer for vehicles that
weigh as little as 6000 pounds.
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WHO 77 large companies

WHAT Assets, sales, and
market sector

UNITS $100,000

HOW Public records

WHEN 1986

WHY By Forbes magazine 
in reporting on the
Forbes 500 for that 
year

224 CHAPTER 10    Re-expressing Data: Get It Straight!

The direction of the association is positive now, since we’re measuring gas
consumption and heavier cars consume more gas per mile. The relationship is
much straighter, as we can see from a scatterplot of the regression residuals.

This is more the kind of boring residuals plot (no direction, no particular
shape, no outliers, no bends) that we hope to see, so we have reason to think that
the Straight Enough Condition is now satisfied. Now here’s the payoff: What does
the reciprocal model say about the Hummer? The regression line fit to Fuel Con-
sumption vs. Weight predicts somewhere near 9.7 for a car weighing 6400 pounds.
What does this mean? It means the car is predicted to use 9.7 gallons for every 100
miles, or in other words,

That’s a much more reasonable prediction and very close to the reported
value of 11.0 miles per gallon (of course, your mileage may vary . . . ).

Goals of Re-expression
We re-express data for several reasons. Each of these goals helps make the data
more suitable for analysis by our methods.

Goal 1
Make the distribution of a variable (as seen in its histogram, for example) more
symmetric. It’s easier to summarize the center of a symmetric distribution, and
for nearly symmetric distributions, we can use the mean and standard deviation.
If the distribution is unimodal, then the resulting distribution may be closer to the
Normal model, allowing us to use the Rule.

Here are a histogram, quite skewed, showing the Assets of 77 companies se-
lected from the Forbes 500 list (in $100,000) and the more symmetric histogram af-
ter taking logs.

68-95-99.7

100 miles

9.7 gallons
= 10.3 mpg.

FIGURE 10.4
The distribution of the Assets of large companies is skewed to the right. Data on wealth often look like this.
Taking logs makes the distribution more nearly symmetric.
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Goal 2
Make the spread of several groups (as seen in side-by-side boxplots) more alike,
even if their centers differ. Groups that share a common spread are easier to com-
pare. We’ll see methods later in the book that can be applied only to groups with

Simulation: Re-expression
in Action. Slide the re-expression
power and watch the histogram
change.
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a common standard deviation. We saw an example of re-expression for compar-
ing groups with boxplots in Chapter 5.

Here are the Assets of these companies by Market Sector:
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FIGURE 10.5
Assets of large companies by Market
Sector. It’s hard to compare centers or
spreads, and there seem to be a num-
ber of high outliers.

Taking logs makes the individual boxplots more symmetric and gives them
spreads that are more nearly equal.
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FIGURE 10.6
After re-expressing by logs, it’s much
easier to compare across market sec-
tors. The boxplots are more nearly
symmetric, most have similar spreads,
and the companies that seemed to be
outliers before are no longer extraordi-
nary. Two new outliers have appeared
in the finance sector. They are the only
companies in that sector that are not
banks. Perhaps they don’t belong
there.

Doing this makes it easier to compare assets across market sectors. It can also re-
veal problems in the data. Some companies that looked like outliers on the high end
turned out to be more typical. But two companies in the finance sector now stick out.
Unlike the rest of the companies in that sector, they are not banks. They may have
been placed in the wrong sector, but we couldn’t see that in the original data.

Goal 3
Make the form of a scatterplot more nearly linear. Linear scatterplots are easier to
model. We saw an example of scatterplot straightening in Chapter 7. The greater
value of re-expression to straighten a relationship is that we can fit a linear model
once the relationship is straight.

Here are Assets of the companies plotted against the logarithm of Sales,
clearly bent. Taking logs makes things much more linear.

12,500

25,000

37,500

50,000

2.25 3.00 3.75 4.50

As
se

ts
 ($

10
0,

00
0)

Log Sales

3.00

3.75

4.50

2.25 3.00 3.75 4.50

Lo
g 

As
se

ts

Log Sales

FIGURE 10.7
Assets vs. log Sales shows a positive
association (bigger sales go with bigger
assets) but a bent shape. Note also
that the points go from tightly bunched
at the left to widely scattered at the
right; the plot “thickens.” In the sec-
ond plot, log Assets vs. log Sales shows
a clean, positive, linear association.
And the variability at each value of x is
about the same.
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226 CHAPTER 10    Re-expressing Data: Get It Straight!

Goal 4
Make the scatter in a scatterplot spread out evenly rather than thickening at one
end. Having an even scatter is a condition of many methods of Statistics, as we’ll
see in later chapters. This goal is closely related to Goal 2, but it often comes along
with Goal 3. Indeed, a glance back at the scatterplot (Figure 10.7) shows that the
plot for Assets is much more spread out on the right than on the left, while the plot
for log Assets has roughly the same variation in log Assets for any x-value.

Recognizing when a re-expression can helpFOR EXAMPLE

In Chapter 9, we saw the awesome ability of 
emperor penguins to slow their heart rates while
diving. Here are three displays relating to the 
diving heart rates:

(The boxplots show the diving heart rates for
each of the 9 penguins whose dives were
tracked. The names are those given by the 
researchers; )

Question: What features of each of these 
displays suggest that a re-expression might be
helpful?

EP = emperor penguin.
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The scatterplot shows a curved relationship, concave upward, between the duration of the dives and penguins’ heart
rates. Re-expressing either variable may help to straighten the pattern.
The histogram of heart rates is skewed to the high end. Re-expression often helps to make skewed distributions more
nearly symmetric.
The boxplots each show skewness to the high end as well. The medians are low in the boxes, and several show high 
outliers.

The Ladder of Powers
How can we pick a re-expression to use? Some kinds of data favor certain re-
expressions. But even starting from a suggested one, it’s always a good idea to
look around a bit. Fortunately, the re-expressions line up in order, so it’s easy to
slide up and down to find the best one. The trick is to choose our re-expressions
from a simple family that includes the most common ways to re-express data.
More important, the members of the family line up in order, so that the farther
you move away from the original data (the “1” position), the greater is the effect
on the data. This fact lets you search systematically for a re-expression that

Activity: Re-expression in
Action Here’s the animated
version of the Ladder of Powers.
Slide the power and watch the
change.
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The Ladder of Powers 227

works, stepping a bit farther from “1” or taking a step back toward “1” as you
see the results.

Where to start? It turns out that certain kinds of data are more likely to 
be helped by particular re-expressions. Knowing that gives you a good place to
start your search for a re-expression. We call this collection of re-expressions the
Ladder of Powers.

Power Name Comment

2 The square of the data values, y 2. Try this for unimodal distributions that are skewed to the left.
1 The raw data—no change at all. This is 

“home base.” The farther you step from here 
up or down the ladder, the greater the effect.

Data that can take on both positive and negative values 
with no bounds are less likely to benefit from re-expression.

1/2 The square root of the data values, 1y. Counts often benefit from a square root re-expression. For
counted data, start here.

“0” Although mathematicians define the “0-th” 
power differently,2 for us the place is held by 
the logarithm. You may feel uneasy about 
logarithms. Don’t worry; the computer or 
calculator does the work.3

Measurements that cannot be negative, and especially val-
ues that grow by percentage increases such as salaries or
populations, often benefit from a log re-expression. When in
doubt, start here. If your data have zeros, try adding a small
constant to all values before finding the logs.

-1/2 The (negative) reciprocal square root, -1>1y. An uncommon re-expression, but sometimes useful. 
Changing the sign to take the negative of the reciprocal 
square root preserves the direction of relationships, making
things a bit simpler.

-1 The (negative) reciprocal, -1>y. Ratios of two quantities (miles per hour, for example) often
benefit from a reciprocal. (You have about a 50–50 chance 
that the original ratio was taken in the “wrong” order for
simple statistical analysis and would benefit from re-
expression.) Often, the reciprocal will have simple units
(hours per mile). Change the sign if you want to preserve 
the direction of relationships. If your data have zeros, try
adding a small constant to all values before finding the
reciprocal.

2 You may remember that for any nonzero number This is not a very exciting
transformation for data; every data value would be the same. We use the logarithm in 
its place.
3 Your calculator or software package probably gives you a choice between “base 10” loga-
rithms and “natural (base e)” logarithms. Don’t worry about that. It doesn’t matter at all
which you use; they have exactly the same effect on the data. If you want to choose, base
10 logarithms can be a bit easier to interpret.

y, y0
= 1.

JUST CHECKING
1. You want to model the relationship between the number of birds counted at a nesting site and the

temperature (in degrees Celsius). The scatterplot of counts vs. temperature shows an upwardly
curving pattern, with more birds spotted at higher temperatures. What transformation (if any) of
the bird counts might you start with?

2. You want to model the relationship between prices for various items in Paris and in Hong Kong. The
scatterplot of Hong Kong prices vs. Parisian prices shows a generally straight pattern with a small
amount of scatter. What transformation (if any) of the Hong Kong prices might you start with?

3. You want to model the population growth of the United States over the past 200 years. The scatter-
plot shows a strongly upwardly curved pattern. What transformation (if any) of the population
might you start with?

Re-expression. See a curved 
relationship become straighter with
each step on the Ladder of Powers.
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228 CHAPTER 10    Re-expressing Data: Get It Straight!

The Ladder of Powers orders the effects that the re-expressions have on data. If
you try, say, taking the square roots of all the values in a variable and it helps, but not
enough, then move farther down the ladder to the logarithm or reciprocal root. Those
re-expressions will have a similar, but even stronger, effect on your data. If you go too
far, you can always back up. But don’t forget—when you take a negative power, the
direction of the relationship will change. That’s OK. You can always change the sign
of the response variable if you want to keep the same direction. With modern tech-
nology, finding a suitable re-expression is no harder than the push of a button.

Scientific laws often include
simple re-expressions. For
example, in Psychology,
Fechner’s Law states that
sensation increases as the
logarithm of stimulus
intensity (S = k log R) .

FOR EXAMPLE

Recap: We’ve seen curvature in the
relationship between emperor penguins’ diving
heart rates and the duration of the dive. Let’s
start the process of finding a good re-expression.
Heart rate is in beats per minute; maybe heart
“speed” in minutes per beat would be a better
choice. Here are the corresponding displays for
this reciprocal re-expression (as we often do,
we’ve changed the sign to preserve the order of
the data values):

Question: Were the re-expressions successful?
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The scatterplot bends less than before, but now may be slightly concave downward. The histogram is now slightly skewed
to the low end. Most of the boxplots have no outliers. These boxplots seem better than the ones for the raw heart rates.
Overall, it looks like I may have moved a bit “too far” on the ladder of powers. Halfway between “1” (the original data)
and “ ” (the reciprocal) is “0”, which represents the logarithm. I’d try that for comparison.- 1

Standard (monofilament) fishing line comes in a range of strengths, usually expressed as “test
pounds.” Five-pound test line, for example, can be expected to withstand a pull of up to five
pounds without breaking. The convention in selling fishing line is that the price of a spool doesn’t
vary with strength. Instead, the length of line on the spool varies. Higher test pound line is thicker,
though, so spools of fishing line hold about the same amount of material. Some spools hold line
that is thinner and longer, some fatter and shorter. Let’s look at the Length and Strength of spools of
monofilament line manufactured by the same company and sold for the same price at one store.

Re-expressing to Straighten a ScatterplotSTEP-BY-STEP EXAMPLE
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I want to fit a linear model for the length and
strength of monofilament fishing line.

I have the length and “pound test” strength of
monofilament fishing line sold by a single ven-
dor at a particular store. Each case is a
different strength of line, but all spools of line
sell for the same price.

Let Length length (in yards) of fishing line on
the spool

Strength the test strength (in pounds).=

=

Plan State the problem.

Variables Identify the variables and 
report the W’s.

Plot Check that even if there is a curve,
the overall pattern does not reach a mini-
mum or maximum and then turn around
and go back. An up-and-down curve
can’t be fixed by re-expression.

The plot shows a negative direction and an as-
sociation that has little scatter but is not
straight.
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Here’s a plot of the square root of Length
against Strength:

Mechanics Try a re-expression.

The lesson of the Ladder of Powers is that
if we’re moving in the right direction but
have not had sufficient effect, we should
go farther along the ladder. This example
shows improvement, but is still not
straight.

(Because Length is an amount of some-
thing and cannot be negative, we
probably should have started with logs.
This plot is here in part to illustrate how
the Ladder of Powers works.) Strength 
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The plot is less bent, but still not straight.

Questions: How are the Length on the spool and the Strength related? And what re-expression
will straighten the relationship?
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230 CHAPTER 10    Re-expressing Data: Get It Straight!

The scatterplot of the logarithm of Length
against Strength is even less bent:

Stepping from the power to the “0”
power, we try the logarithm of Length
against Strength.
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Maybe now I moved too far along the ladder.

A half-step back is the power: the recipro-
cal square root.

- 1/2

This is much better, but still not straight, so 
I’ll take another step to the “ ” power, or
reciprocal.

- 1
The straightness is improving, so we
know we’re moving in the right direction.
But since the plot of the logarithms is not
yet straight, we know we haven’t gone
far enough. To keep the direction consis-
tent, change the sign and re-express to
-1/Length .

Strength

–0.012

–0.009

–0.006

–0.003

–0.000

75 150 225 300

–1
/L

en
gt

h

We may have to choose between two ad-
jacent re-expressions. For most data
analyses, it really doesn’t matter which
we choose.

Strength

–0.100

–0.075

–0.050

–0.025

75 150 225 300

–1
/  

 L
en

gt
h

It’s hard to choose between the last two alter-
natives. Either of the last two choices is good
enough. I’ll choose the power.- 1>2

Conclusion Specify your choice of 
re-expression. If there’s some natural in-
terpretation (as for gallons per 100 miles),
give that.
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The Ladder of Powers 231

Now that the re-expressed data satisfy the Straight Enough Condition, we can fit a linear model by least
squares. We find that

We can use this model to predict the length of a spool of, say, 35-pound test line:

We could leave the result in these units . Sometimes the new units may be as meaningful as
the original, but here we want to transform the predicted value back into yards. Fortunately, each of the re-
expressions in the Ladder of Powers can be reversed.

To reverse the process, we first take the reciprocal: Then squaring gets
us back to the original units:

This may be the most painful part of the re-expression. Getting back to the original units can sometimes be
a little work. Nevertheless, it’s worth the effort to always consider re-expression. Re-expressions extend the
reach of all of your Statistics tools by helping more data to satisfy the conditions they require. Just think how
much more useful this course just became!

Length = 27.7782
= 771.6 yards.

=  27.778.3Length = -1/(-0.036)

(-1>1yards )

-1

3Length
= -0.023 - 0.000373 * 35 = -0.036

-1

3Length
= -0.023 - 0.000373 Strength.

Comparing re-expressionsFOR EXAMPLE

2.0

1.8

1.6

1.4

EP19 EP22 EP31(05) EP32(05)

Penguin ID

EP35(05) EP36(05) EP39(01) EP39(05) EP43(2001)

Lo
g 

(D
H

R
)

Recap: We’ve concluded that in trying to straighten
the relationship between Diving Heart Rate and Dive
Duration for emperor penguins, using the reciprocal
re-expression goes a bit “too far” on the ladder of
powers. Now we try the logarithm. Here are the
resulting displays:

Questions: Comment on these displays. Now 
that we’ve looked at the original data (rung 1 on the
Ladder), the reciprocal (rung -1), and the logarithm
(rung 0), which re-expression of Diving Heart Rate
would you choose?

2.0

1.8

1.6

1.4
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)

4 8 1612
Dive Duration (min)

30

20

10# 
of

 D
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s

1.3 1.7 2.1
Log (DHR)

The scatterplot is now more linear and the histogram is symmetric. The boxplots are still a bit skewed to the high end,
but less so than for the original Diving Heart Rate values. We don’t expect real data to cooperate perfectly, and the
logarithm seems like the best compromise re-expression, improving several different aspects of the data. 
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232 CHAPTER 10    Re-expressing Data: Get It Straight!

TI Tips Re-expressing data to achieve linearity

Let’s revisit the Arizona State tuition data. Recall that back in Chapter 8 when
we tried to fit a linear model to the yearly tuition costs, the residuals plot
showed a distinct curve. Residuals are high (positive) at the left, low in the
middle of the decade, and high again at the right.

This curved pattern indicates that data re-expression may be in order. If you have
no clue what re-expression to try, the Ladder of Powers may help. We just used
that approach in the fishing line example. Here, though, we can play a hunch. It
is reasonable to suspect that tuition increases at a relatively consistent percent-
age year by year. This suggests that using the logarithm of tuition may help.

• Tell the calculator to find the logs of the tuitions, and store them as a new
list. Remember that you must import the name TUIT from the LIST
NAMESmenu. The command is log(LTUIT) STO L1.

• Check the scatterplot for the re-expressed data by changing your
STATPLOT specifications to Xlist:YR and Ylist:L1. (Don’t forget to
use 9: ZoomStat to resize the window properly.)

The new scatterplot looks quite linear, but it’s really the residuals plot that will
tell the story. Remember that the TI automatically finds and stores the residu-
als whenever you ask it to calculate a regression.

• Perform the regression for the logarithm of tuition vs. year with the com-
mand LinReg(a+bx)LYR,L1,Y1. That both creates the residuals and
reports details about the model (storing the equation for later use).

• Now that the residuals are stored in RESID, set up a new scatterplot, this
time specifying Xlist:YR and Ylist:RESID.

While the residuals for the second and fifth years are comparatively large, the
curvature we saw above is gone. The pattern in these residuals seem essentially
horizontal and random. This re-expressed model is probably more useful than
the original linear model.

Do you know what the model’s equation is? Remember, it involves a log re-
expression. The calculator does not indicate that; be sure to Think when you
write your model!

And you have to Think some more when you make an estimate using the cal-
culator’s equation. Notice that this model does not actually predict tuition;
rather, it predicts the logarithm of the tuition.

For example, to estimate the 2001 tuition we must first remember that in enter-
ing our data we designated 1990 as year 0. That means we’ll use 11 for the year
2001 and evaluate Y1(11).

No, we’re not predicting the tuition to be $4! That’s the log of the estimated tu-
ition. Since logarithms are exponents, log( ) 5 4 means 5 104, or about
$10,000. When you are working with models that involve re-expressions, you’ll
often need to “backsolve” like this to find the correct predictions.

tuittuit

log tuit = 3.816 + 0.018 yr
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Plan B: Attack of the Logarithms 233

Plan B: Attack of the Logarithms
The Ladder of Powers is often successful at finding an effective re-expression.
Sometimes, though, the curvature is more stubborn, and we’re not satisfied with
the residual plots. What then?

When none of the data values is zero or negative, logarithms can be a help-
ful ally in the search for a useful model. Try taking the logs of both the x- and 
y-variables. Then re-express the data using some combination of x or log(x) vs. y
or log(y). You may find that one of these works pretty well.

Model Name x -axis y -axis Comment

Exponential x log(y) This model is the “0” power in the ladder approach, useful for values that grow by  
percentage increases.

Logarithmic log(x) y A wide range of x-values, or a scatterplot descending rapidly at the left but leveling 
off toward the right, may benefit from trying this model.

Power log(x) log(y ) The Goldilocks model: When one of the ladder’s powers is too big and the next is 
too small, this one may be just right.

When we tried to model the relationship between the length of fishing line
and its strength, we were torn between the “ ” power and the “ ”
power. The first showed slight upward curvature, and the second down-
ward. Maybe there’s a better power between those values.

The scatterplot shows what happens when we graph the logarithm of
Length against the logarithm of Strength. Technology reveals that the equa-
tion of our log–log model is

It’s interesting that the slope of this line is a power4 we didn’t
try. After all, the ladder can’t have every imaginable rung.

A warning, though! Don’t expect to be able to straighten every
curved scatterplot you find. It may be that there just isn’t a very effective
re-expression to be had. You’ll certainly encounter situations when noth-
ing seems to work the way you wish it would. Don’t set your sights too
high—you won’t find a perfect model. Keep in mind: We seek a useful
model, not perfection (or even “the best”).

(-1.08)

log(Length) = 4.49 - 1.08 log(Strength).

-1>2-1
3.00
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2.25
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log (Strength)
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FIGURE 10.8
Plotting log (Length) against log (Strength) gives a
straighter shape.

4 For logarithms, -1.08 log (Strength) = log(Strength-1.08).

TI Tips Using logarithmic re-expressions

In Chapter 7 we looked at data showing the relationship between the stop of
a camera’s lens and its shutter speed. Let’s use the attack of the logarithms to
model this situation.

Shutter speed:

2.8 4 5.6 8 11 16 22 32

• Enter these data into your calculator, shutter speed in L1 and stop in L2 .
• Create the scatterplot with Xlist:L1 and Ylist:L2. See the curve?

f/

f /stop:

1>81>151>301>601>1251>2501>5001>1000

f/
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234 CHAPTER 10    Re-expressing Data: Get It Straight!

Why Not Just Use a Curve?
When a clearly curved pattern shows up in the scatterplot, why not just fit a curve
to the data? We saw earlier that the association between the Weight of a car and its
Fuel Efficiency was not a straight line. Instead of trying to find a way to straighten
the plot, why not find a curve that seems to describe the pattern well?

We can find “curves of best fit” using essentially the same approach
that led us to linear models. You won’t be surprised, though, to learn that
the mathematics and the calculations are considerably more difficult for
curved models. Many calculators and computer packages do have the
ability to fit curves to data, but this approach has many drawbacks.

Straight lines are easy to understand. We know how to think about the
slope and the y-intercept, for example. We often want some of the other
benefits mentioned earlier, such as making the spread around the model
more nearly the same everywhere. In later chapters you will learn more
advanced statistical methods for analyzing linear associations.

We give all of that up when we fit a model that is not linear. For many
reasons, then, it is usually better to re-express the data to straighten the plot.
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TI Tips Some shortcuts to avoid

Your calculator offers many regression options in the STAT CALCmenu. There
are three that automate fitting simple re-expressions of y or x:

• 9:LnReg—fits a logarithmic model ( yN = a + blnx)

5 See the slope, 0.497? Just about 0.5. That’s because the actual relationship involves the
square root of shutter speeds. Technically the f/stop listed as 2.8 should be .
Rounding off to 2.8 makes sense for photographers, but it’s what led to the minor errors
you saw in the residuals plot.

212 L 2.8284

• Find the logarithms of each variable’s values. Keep track of where you store
everything so you don’t get confused! We put log(speed) in L3 and 
log( stop) in L4.

• Make three scatterplots:
• stop vs. log(speed) using Xlist:L3 and Ylist:L2
• log( stop) vs. speed using Xlist:L1 and Ylist:L4
• log( stop) vs. log(speed) using Xlist:L3 and Ylist:L4

• Pick your favorite. We liked log( stop) vs. log(speed) a lot! It appears to be
very straight. (Don’t be misled—this is a situation governed by the laws of
Physics. Real data are not so cooperative. Don’t expect to achieve this level
of perfection often!)

• Remember that before you check the residuals plot, you first have to calcu-
late the regression. In this situation all the errors in the residuals are just
round-off errors in the original stops. 

• Use your regression to write the equation of the model. Remember: The cal-
culator does not know there were logarithms involved. You have to Think
about that to be sure you write your model correctly.5

log(f/stop) = 1.94 + 0.497log(speed)

f/

f/
f/
f/

f/

f/
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• 0:ExpReg—fits an exponential model 
• A:PwrReg—fits a power model 

In addition, the calculator offers two other functions:

• 5:QuadReg—fits a quadratic model 
• 6:CubicReg—fits a cubic model 

These two models have a form we haven’t seen, with several x-terms. Because
x, , and are likely to be highly correlated with each other, the quadratic and
cubic models are almost sure to be unreliable to fit, difficult to understand, and
dangerous to use for predictions even slightly outside the range of the data. We
recommend that you be very wary of models of this type.

Let’s try out one of the calculator shortcuts; we’ll use the Arizona State tuition
data. (For the last time, we promise!) This time, instead of re-expressing tuition
to straighten the scatterplot, we’ll have the calculator do more of the work.

Which model should you use? You could always just play hit-and-miss, but
knowing something about the data can save a lot of time. If tuition increases by
a consistent percentage each year, then the growth is exponential.

• Choose the exponential model, and specify your variables by importing 
YR and TUIT from the list names menu. And, because you’ll want to graph
the curve later, save its equation by adding Y1 (from VARS, Y-VARS, 
Function) to create the command ExpReg LYR, LTUIT, Y1.

• Set up the scatterplot. ZoomStat should show you the curve too.
• Graph the residuals plot.

This all looks very good. is high, the curve appears to fit the points quite
well, and the residuals plot is acceptably random.

The equation of the model is 

Notice that this is the same residuals plot we saw when we re-expressed the
data and fit a line to the logarithm of tuition. That’s because what the calculator
just did is mathematically the very same thing. This new equation may look
different, but it is equivalent to our earlier model 

Not easy to see that, is it? Here’s how it works:

Initially we used a logarithmic re-expression 
to create a linear model:

Rewrite that equation in exponential form:

Simplify, using the laws of exponents:

Let and (different a and b!)

See? Your linear model created by logarithmic re-expression is the same as the
calculator model created by ExpReg.

Three of the special TI functions correspond to a simple regression model in-
volving re-expression. The calculator presents the results in an equation of a
different form, but it doesn’t actually fit that equation. Instead it is just doing
the re-expression for you automatically.

10b
= b10a

= a

log tuit = 3.816 + 0.018 year.

tuit = 6539.46(1.041year).

R2

x3x2

( yN = ax3
+ bx2

+ cx + d)
( yN = ax2

+ bx + c)

(yN = axb)
( yN = abx)

Why Not Just Use a Curve? 235

yN = abx

yN = 10a(10b)x

yN = 10a+bx

log yN = a + bx
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236 CHAPTER 10    Re-expressing Data: Get It Straight!

Type of Model
Re-expression 

Equation

Calculator’s Curve

Command Equation

Logarithmic yN = a + blogx LnReg yN = a + blnx
Exponential log  yN = a + bx ExpReg yN = abx

Power log yN = a + blog x PwrReg yN = axb

Be careful. It may look like the calculator is fitting these equations to the data
by minimizing the sum of squared residuals, but it isn’t really doing that. It
handles the residuals differently, and the difference matters. If you use a statis-
tics program to fit an “exponential model,” it will probably fit the exponential
form of the equation and give you a different answer. So think of these TI func-
tions as just shortcuts for fitting linear regressions to re-expressed versions of
your data.

You’ve seen two ways to handle bent relationships:

• straighten the data, then fit a line, or
• use the calculator shortcut to create a curve.

Note that the calculator does not have a shortcut for every model you might
want to use—models involving square roots or reciprocals, for instance. And
remember: The calculator may be quick, but there are real advantages to find-
ing linear models by actually re-expressing the data. That’s the approach we
strongly recommend you use.

Occam’s Razor
If you think that simpler
explanations and simpler
models are more likely to
give a true picture of the way
things work, then you should
look for opportunities to 
re-express your data and
simplify your analyses.

The general principle
that simpler explanations are
likely to be the better ones 
is known as Occam’s Razor,
after the English philosopher
and theologian William of
Occam (1284–1347).

Here are the equivalent models for the two approaches.

WHAT CAN GO WRONG?
u Don’t expect your model to be perfect. In Chapter 6 we quoted statistician George Box:

“All models are wrong, but some are useful.” Be aware that the real world is a messy
place and data can be uncooperative. Don’t expect to find one elusive re-expression
that magically irons out every kink in your scatterplot and produces perfect residu-
als. You aren’t looking for the Right Model, because that mythical creature doesn’t
exist. Find a useful model and use it wisely.

u Don’t stray too far from the ladder. It’s wise not to stray too far from the powers that we
suggest in the Ladder of Powers. Taking the y-values to an extremely high power
may artificially inflate , but it won’t give a useful or meaningful model, so it doesn’t
really simplify anything. It’s better to stick to powers between 2 and Even in that
range, you should prefer the simpler powers in the ladder to those in the cracks. A
square root is easier to understand than the 0.413 power. That simplicity may com-
pensate for a slightly less straight relationship.

u Don’t choose a model based on R2 alone. You’ve tried re-expressing your data to straighten
a curved relationship and found a model with a high . Beware: That doesn’t mean
the pattern is straight now. On the next page is a plot of a relationship with an 
of 98.3%.

The is about as high as we could ask for, but if you look closely, you’ll see that
there’s a consistent bend. Plotting the residuals from the least squares line makes the
bend much easier to see.

R2

R2
R2

-2.
R2

BOCK_C10_0321570448 pp3.qxd  12/1/08  7:28 PM  Page 236



What Can Go Wrong? 237

Remember the basic rule of data analysis: Make a picture. Before you fit a line,
always look at the pattern in the scatterplot. After you fit the line, check for linearity
again by plotting the residuals.

u Beware of multiple modes. Re- expression can often make a skewed unimodal histogram
more nearly symmetric, but it cannot pull separate modes together. A suitable re-
expression may, however, make the separation of the modes clearer, simplifying
their interpretation and making it easier to separate them to analyze individually.

u Watch out for scatterplots that turn around. Re-expression can straighten many bent
relationships but not those that go up and then down or down and then up. You
should refuse to analyze such data with methods that require a linear form.

FIGURE 10.9
The shape of the scatterplot of Birth
Rates (births per 100,000 women) in
the United States shows an oscillation
that cannot be straightened by re-
expressing the data.
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u Watch out for negative data values. It’s impossible to re-express negative values by any
power that is not a whole number on the Ladder of Powers or to re-express values
that are zero for negative powers. Most statistics programs will just mark the result
of trying to re-express such values “missing” if they can’t be re-expressed. But that
might mean that when you try a re-expression, you inadvertently lose a bunch of
data values. The effect of that loss may be surprising and may substantially change
your analysis. Because you are likely to be working with a computer package or cal-
culator, take special care that you do not lose otherwise good data values when you
choose a re-expression.

One possible cure for zeros and small negative values is to add a constant ( and 
are often used) to bring all the data values above zero.

u Watch for data far from 1. Data values that are all very far from 1 may not be much
affected by re-expression unless the range is very large. Re-expressing numbers
between 1 and 100 will have a much greater effect than re-expressing numbers
between 100,001 and 100,100. When all your data values are large (for example,
working with years), consider subtracting a constant to bring them back near 1. (For
example, consider “years since 1950” as an alternative variable for re-expression. Un-
less your data start at 1950, then avoid creating a zero by using “years since 1949.”)
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CONNECTIONS
We have seen several ways to model or summarize data. Each requires that the data have a particu-
lar simple structure. We seek symmetry for summaries of center and spread and to use a Normal
model. We seek equal variation across groups when we compare groups with boxplots or want to
compare their centers. We seek linear shape in a scatterplot so that we can use correlation to sum-
marize the scatter and regression to fit a linear model.

Data do often satisfy the requirements to use Statistics methods. But often they do not. Our
choice is to stop with just displays, to use much more complex methods, or to re-express the data 
so that we can use the simpler methods we have developed.

In this fundamental sense, this chapter connects to everything we have done thus far and to all
of the methods we will introduce throughout the rest of the book. Re-expression greatly extends the
reach and applicability of all of these methods.

WHAT HAVE WE LEARNED?

We’ve learned that when the conditions for regression are not met, a simple re-expression of the
data may help. There are several reasons to consider a re-expression:

u To make the distribution of a variable more symmetric (as we saw in Chapter 5)
u To make the spread across different groups more similar
u To make the form of a scatterplot straighter
u To make the scatter around the line in a scatterplot more consistent

We’ve learned that when seeking a useful re-expression, taking logs is often a good, simple starting
point. To search further, the Ladder of Powers or the log–log approach can help us find a good re-
expression.

We’ve come to understand that our models won’t be perfect, but that re-expression can lead
us to a useful model.

Terms
Re-expression 224. We re-express data by taking the logarithm, the square root, the reciprocal, or some other

mathematical operation on all values of a variable.

Ladder of Powers 226. The Ladder of Powers places in order the effects that many re-expressions have on the data.

Skills
u Recognize when a well-chosen re-expression may help you improve and simplify your analysis.

u Understand the value of re-expressing data to improve symmetry, to make the scatter around a
line more constant, or to make a scatterplot more linear.

u Recognize when the pattern of the data indicates that no re-expression can improve the struc-
ture of the data.

u Know how to re-express data with powers and how to find an effective re-expression for your
data using your statistics software or calculator.

u Be able to reverse any of the common re-expressions to put a predicted value or residual back
into the original units.

u Be able to describe a summary or display of a re-expressed variable, making clear how it was re-
expressed and giving its re-expressed units.

u Be able to describe a regression model fit to re-expressed data in terms of the re-expressed vari-
ables.
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RE-EXPRESSION ON THE COMPUTER

Computers and calculators make it easy to re-express data. Most statistics packages offer a way to re-express
and compute with variables. Some packages permit you to specify the power of a re-expression with a slider or
other moveable control, possibly while watching the consequences of the re-expression on a plot or analysis. This,
of course, is a very effective way to find a good re-expression.

EXERCISES

1. Residuals. Suppose you have fit a linear model to
some data and now take a look at the residuals. For each
of the following possible residuals plots, tell whether you
would try a re-expression and, if so, why. 

a) Describe the pattern you see here.
b) Should we try re-expressing either variable to make

this plot straighter? Explain.

5. Models. For each of the models listed below, predict y
when
a) d)
b) e)

c)

6. More models. For each of the models listed below,
predict y when 
a) d)

b) e)
c)

7. Gas mileage. As the example in the chapter indicates,
one of the important factors determining a car’s Fuel
Efficiency is its Weight. Let’s examine this relationship
again, for 11 cars.
a) Describe the association between these variables

shown in the scatterplot on the next page.

ln yN = 1.2 + 0.8 ln x

1

2yN
= 1.2 + 0.8xlog yN = 1.2 + 0.8x

yN2
= 1.2 + 0.8x yN = 1.2 + 0.8 log x

x = 2.

1
yN

= 1.2 + 0.8x

log yN = 1.2 + 0.8 log x2yN = 1.2 + 0.8x

yN = 1.2 + 0.8 ln xln yN = 1.2 + 0.8x
x = 2.

a) b) c)

2. Residuals. Suppose you have fit a linear model to
some data and now take a look at the residuals. For each
of the following possible residuals plots, tell whether you
would try a re-expression and, if so, why.

a) b) c)

3. Airline passengers revisited. In Chapter 9, Exercise 9,
we created a linear model describing the trend in the
number of passengers departing from the Oakland (CA)
airport each month since the start of 1997. Here’s the
residual plot, but with lines added to show the order of
the values in time:
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a) Can you account for the pattern shown here?
b) Would a re-expression help us deal with this pattern?

Explain.
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4. Hopkins winds, revisited. In Chapter 5, we examined
the wind speeds in the Hopkins forest over the course of a
year. Here’s the scatterplot we saw then:

T

T
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RE-EXPRESSION ON THE COMPUTER

Computers and calculators make it easy to re-express data. Most statistics packages offer a way to re-express
and compute with variables. Some packages permit you to specify the power of a re-expression with a slider or
other moveable control, possibly while watching the consequences of the re-expression on a plot or analysis. This,
of course, is a very effective way to find a good re-expression.

EXERCISES

1. Residuals. Suppose you have fit a linear model to
some data and now take a look at the residuals. For each
of the following possible residuals plots, tell whether you
would try a re-expression and, if so, why. 

a) Describe the pattern you see here.
b) Should we try re-expressing either variable to make

this plot straighter? Explain.

5. Models. For each of the models listed below, predict y
when
a) d)
b) e)

c)

6. More models. For each of the models listed below,
predict y when 
a) d)

b) e)
c)

7. Gas mileage. As the example in the chapter indicates,
one of the important factors determining a car’s Fuel
Efficiency is its Weight. Let’s examine this relationship
again, for 11 cars.
a) Describe the association between these variables

shown in the scatterplot on the next page.

ln yN = 1.2 + 0.8 ln x

1

2yN
= 1.2 + 0.8xlog yN = 1.2 + 0.8x

yN2
= 1.2 + 0.8x yN = 1.2 + 0.8 log x
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yN

= 1.2 + 0.8x

log yN = 1.2 + 0.8 log x2yN = 1.2 + 0.8x

yN = 1.2 + 0.8 ln xln yN = 1.2 + 0.8x
x = 2.
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2. Residuals. Suppose you have fit a linear model to
some data and now take a look at the residuals. For each
of the following possible residuals plots, tell whether you
would try a re-expression and, if so, why.

a) b) c)

3. Airline passengers revisited. In Chapter 9, Exercise 9,
we created a linear model describing the trend in the
number of passengers departing from the Oakland (CA)
airport each month since the start of 1997. Here’s the
residual plot, but with lines added to show the order of
the values in time:
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8.0 10.0 16.014.012.0
Years since 1990

a) Can you account for the pattern shown here?
b) Would a re-expression help us deal with this pattern?

Explain.
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Day #

4. Hopkins winds, revisited. In Chapter 5, we examined
the wind speeds in the Hopkins forest over the course of a
year. Here’s the scatterplot we saw then:

T

T
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b) Here is the regression analysis for the linear model.
What does the slope of the line say about this
relationship?

Dependent variable is: Fuel Ef ficiency
R-squared = 85.9%

Variable Coefficient

Intercept 47.9636
Weight

c) Do you think this linear model is appropriate? Use the
residuals plot to explain your decision.

-7.65184

b) What re-expression of GDP would you try as a start-
ing point?

9. Gas mileage revisited. Let’s try the re-expressed vari-
able Fuel Consumption (gal/100 mi) to examine the fuel ef-
ficiency of the 11 cars in Exercise 7. Here are the revised
regression analysis and residuals plot:

Dependent variable is: Fuel Consumption
R-squared = 89.2%

Variable Coefficient

Intercept 0.624932
Weight 1.17791
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Weight (1000 lb)
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3.0

1.5

0.0

–1.5

20 24 28 32

8. Crowdedness. In a Chance magazine article (Summer
2005), Danielle Vasilescu and Howard Wainer used data
from the United Nations Center for Human Settlements
to investigate aspects of living conditions for several
countries. Among the variables they looked at were the
country’s per capita gross domestic product (GDP, in $)
and Crowdedness, defined as the average number of per-
sons per room living in homes there. This scatterplot dis-
plays these data for 56 countries:

37,500

25,000

12,500

0

50,000

1.0 1.5 2.0 2.5 3.00.5
Crowdedness

G
D
P

a) Explain why you should re-express these data before
trying to fit a model.

Predicted

R
es

id
ua

ls
 

0.2

0.0

–0.2

–0.4

3.00 3.75 4.50 5.25

a) Explain why this model appears to be better than the
linear model.

b) Using the regression analysis above, write an equation
of this model.

c) Interpret the slope of this line.
d) Based on this model, how many miles per gallon

would you expect a 3500-pound car to get?

10. Crowdedness again. In Exercise 8 we looked at United
Nations data about a country’s GDP and the average
number of people per room (Crowdedness) in housing
there. For a re-expression, a student tried the reciprocal

representing the number of people per
$10,000 of gross domestic product. Here are the results,
plotted against Crowdedness:

-10000/GDP,

–40

–30

–20

–10

1.0 1.5 2.0 2.5 3.00.5
Crowdedness

–10,000
GDP

a) Is this a useful re-expression? Explain.
b) What re-expression would you suggest this student

try next?

T
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A linear model fit to the relationship looks like this:

Dependent variable is: GDP
R-squared = 97.2% s = 406.6

Variable Coefficient

Intercept 240.171
Year -1950 177.689

a) Does the value 97.2% suggest that this is a good
model? Explain.

b) Here’s a scatterplot of the residuals. Now do you
think this is a good model for these data? Explain?

14. Pressure. Scientist Robert Boyle examined the relation-
ship between the volume in which a gas is contained and
the pressure in its container. He used a cylindrical con-
tainer with a moveable top that could be raised or low-
ered to change the volume. He measured the Height in
inches by counting equally spaced marks on the cylinder,
and measured the Pressure in inches of mercury (as in a
barometer). Some of his data are listed in the table. Create
an appropriate model.

Exercises 241

Speed (mph) Stopping Distances (ft)

20 64, 62, 59
30 114, 118, 105
40 153, 171, 165
50 231, 203, 238
60 317, 321, 276
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12. Treasury Bills. The 3-month Treasury bill interest rate
is watched by investors and economists. Here’s a scatter-
plot of the 3-month Treasury bill rate since 1950:

Clearly, the relationship is not linear. Can it be made
nearly linear with a re-expression? If so, which one would
you suggest? If not, why not?

13. Better GDP model? Consider again the post-1950
trend in U.S. GDP we examined in Exercise 11. Here are a
regression and residual plot when we use the log of GDP
in the model. Is this a better model for GDP? Explain.

Height 48 44 40 36 32 28
Pressure 29.1 31.9 35.3 39.3 44.2 50.3

Height 24 20 18 16 14 12
Pressure 58.8 70.7 77.9 87.9 100.4 117.6

15. Brakes. The table below shows stopping distances in
feet for a car tested 3 times at each of 5 speeds. We hope
to create a model that predicts Stopping Distance from the
Speed of the car.

a) Explain why a linear model is not appropriate.
b) Re-express the data to straighten the scatterplot.
c) Create an appropriate model.
d) Estimate the stopping distance for a car traveling

55 mph.
e) Estimate the stopping distance for a car traveling 

70 mph.
f) How much confidence do you place in these predic-

tions? Why?

16. Pendulum. A student experimenting with a pendulum
counted the number of full swings the pendulum made
in 20 seconds for various lengths of string. Her data are
shown on the next page.

T

T

T

T

11. GDP. The scatterplot shows the gross domestic product
(GDP) of the United States in billions of dollars plotted
against years since 1950.

Dependent variable is: LogGDP
R-squared =  99.4% s = 0.0150

Variable Coefficient

Intercept 3.29092
Year -1950 0.013881
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a) Explain why a linear model is not appropriate for us-
ing the Length of a pendulum to predict the Number of
Swings in 20 seconds.

b) Re-express the data to straighten the scatterplot.
c) Create an appropriate model.
d) Estimate the number of swings for a pendulum with a

4-inch string.
e) Estimate the number of swings for a pendulum with a

48-inch string.
f) How much confidence do you place in these predic-

tions? Why?

17. Baseball salaries 2005. Ballplayers have been signing
ever larger contracts. The highest salaries (in millions of
dollars per season) for some notable players are given in
the following table.

a) Plot the Length of the year against the Distance from
the sun. Describe the shape of your plot.

b) Re-express one or both variables to straighten the plot.
Use the re-expressed data to create a model describing
the length of a planet’s year based on its distance from
the sun.

c) Comment on how well your model fits the data.

19. Planet distances and order 2006. Let’s look again at
the pattern in the locations of the planets in our solar sys-
tem seen in the table in Exercise 18.
a) Re-express the distances to create a model for the

Distance from the sun based on the planet’s Position.
b) Based on this model, would you agree with the Inter-

national Astronomical Union that Pluto is not a
planet? Explain.

20. Planets 2006, part 3. The asteroid belt between Mars
and Jupiter may be the remnants of a failed planet. If so,
then Jupiter is really in position 6, Saturn is in 7, and so
on. Repeat Exercise 19, using this revised method of num-
bering the positions. Which method seems to work better?

21. Eris: Planets 2006, part 4. In July 2005, astronomers
Mike Brown, Chad Trujillo, and David Rabinowitz an-
nounced the discovery of a sun-orbiting object, since
named Eris,6 that is 5% larger than Pluto. Eris orbits the
sun once every 560 earth years at an average distance of
about 6300 million miles from the sun. Based on its
Position, how does Eris’s Distance from the sun (re-
expressed to logs) compare with the prediction made by
your model of Exercise 19?

22. Models and laws: Planets 2006 part 5. The model
you found in Exercise 18 is a relationship noted in the
17th century by Kepler as his Third Law of Planetary
Motion. It was subsequently explained as a conse-
quence of Newton’s Law of Gravitation. The models 
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Planet
Position 
Number

Distance from Sun 
(million miles)

Length of Year 
(Earth years)

Mercury 1 36 0.24
Venus 2 67 0.61
Earth 3 93 1.00
Mars 4 142 1.88
Jupiter 5 484 11.86
Saturn 6 887 29.46
Uranus 7 1784 84.07
Neptune 8 2796 164.82
Pluto 9 3707 247.68

6 Eris is the Greek goddess of warfare and strife who caused a
quarrel among the other goddesses that led to the Trojan war.
In the astronomical world, Eris stirred up trouble when the
question of its proper designation led to the raucous meeting
of the IAU in Prague where IAU members voted to demote
Pluto and Eris to dwarf-planet status—http://www.gps.
caltech.edu/~mbrown/planetlila/#paper.

T

Player Year Salary (million $)

Nolan Ryan 1980 1.0
George Foster 1982 2.0
Kirby Puckett 1990 3.0
Jose Canseco 1990 4.7
Roger Clemens 1991 5.3
Ken Griffey, Jr. 1996 8.5
Albert Belle 1997 11.0
Pedro Martinez 1998 12.5
Mike Piazza 1999 12.5
Mo Vaughn 1999 13.3
Kevin Brown 1999 15.0
Carlos Delgado 2001 17.0
Alex Rodriguez 2001 22.0
Manny Ramirez 2004 22.5
Alex Rodriguez 2005 26.0

a) Examine a scatterplot of the data. Does it look
straight?

b) Find the regression of Salary vs. Year and plot the
residuals. Do they look straight?

c) Re-express the data, if necessary, to straighten the
relationship.

d) What model would you report for the trend in
salaries?

18. Planet distances and years 2006. At a meeting of the
International Astronomical Union (IAU) in Prague in
2006, Pluto was determined not to be a planet, but rather
the largest member of the Kuiper belt of icy objects. Let’s
examine some facts. Here is a table of the 9 sun-orbiting
objects formerly known as planets:

T

T

T

T

T

Length (in.) 6.5 9 11.5 14.5 18 21 24 27 30 37.5

Number of 
Swings

22 20 17 16 14 13 13 12 11 10
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for Exercises 19–21 relate to what is sometimes called the
Titius-Bode “law,” a pattern noticed in the 18th century
but lacking any scientific explanation.

Compare how well the re-expressed data are described
by their respective linear models. What aspect of the
model of Exercise 18 suggests that we have found a phys-
ical law? In the future, we may learn enough about a
planetary system around another star to tell whether the
Titius-Bode pattern applies there. If you discovered that
another planetary system followed the same pattern, how
would it change your opinion about whether this is a real
natural “law”? What would you think if the next system
we find does not follow this pattern?

23. Logs (not logarithms). The value of a log is based on
the number of board feet of lumber the log may contain.
(A board foot is the equivalent of a piece of wood 1 inch
thick, 12 inches wide, and 1 foot long. For example, a

piece that is 12 feet long contains 8 board feet.)
To estimate the amount of lumber in a log, buyers meas-
ure the diameter inside the bark at the smaller end. Then
they look in a table based on the Doyle Log Scale. The
table below shows the estimates for logs 16 feet long.

2– * 4–

to 1920, etc.). Create a model to predict future increases in
life expectancy. (National Vital Statistics Report)

Exercises 243

Diameter of Log 8” 12” 16” 20” 24” 28”
Board Feet 16 64 144 256 400 576

Weight 
Class (kg)

Winner 
(country)

Weight 
Lifted (kg)

56 Halil Mutlu (Turkey) 295.0
62 Zhiyong Shi (China) 325.0
69 Guozheng Zhang (China) 347.5
77 Taner Sagir (Turkey) 375.0
85 George Asanidze (Georgia) 382.5
94 Milen Dobrev (Bulgaria) 407.5

105 Dmitry Berestov (Russia) 425.0

a) What model does this scale use?
b) How much lumber would you estimate that a log

10 inches in diameter contains?
c) What does this model suggest about logs 36 inches in

diameter?

24. Weightlifting 2004. Listed below are the gold medal-
winning men’s weight-lifting performances at the 2004
Olympics.

a) Create a linear model for the Weight Lifted in each
Weight Class.

b) Check the residuals plot. Is your linear model
appropriate?

c) Create a better model.
d) Explain why you think your new model is better.
e) Based on your model, which of the medalists turned

in the most surprising performance? Explain.

25. Life expectancy. The data in the next column list the
Life Expectancy for white males in the United States every
decade during the last century (1 = 1900 to 1910, 2 = 1911

T

T

Speed (mph) 35 40 45 50 55 60 65 70 75
Fuel Eff. (mpg) 25.9 27.7 28.5 29.5 29.2 27.4 26.4 24.2 22.8

Decade 1 2 3 4 5 6 7 8 9 10
Life exp. 48.6 54.4 59.7 62.1 66.5 67.4 68.0 70.7 72.7 74.9

26. Lifting more weight 2004. In Exercise 24 you exam-
ined the winning weight-lifting performances for the
2004 Olympics. One of the competitors turned in a per-
formance that appears not to fit the model you created.
a) Consider that competitor to be an outlier. Eliminate

that data point and re-create your model.
b) Using this revised model, how much would you have

expected the outlier competitor to lift?
c) Explain the meaning of the residual from your new

model for that competitor.

27. Slower is cheaper? Researchers studying how a car’s
Fuel Efficiency varies with its Speed drove a compact car
200 miles at various speeds on a test track. Their data are
shown in the table.

T

T

Create a linear model for this relationship and report any
concerns you may have about the model.

28. Orange production. The table below shows that as the
number of oranges on a tree increases, the fruit tends to
get smaller. Create a model for this relationship, and ex-
press any concerns you may have.

Number of 
Oranges/Tree

Average 
Weight/Fruit (lb)

50 0.60
100 0.58
150 0.56
200 0.55
250 0.53
300 0.52
350 0.50
400 0.49
450 0.48
500 0.46
600 0.44
700 0.42
800 0.40
900 0.38

T

T 29. Years to live 2003. Insurance companies and other or-
ganizations use actuarial tables to estimate the remaining
lifespans of their customers. On the next page are the esti-
mated additional years of life for black males in the
United States, according to a 2003 National Vital Statistics
Report. (www.cdc.gov/nchs/deaths.htm)

BOCK_C10_0321570448 pp3.qxd  12/1/08  7:29 PM  Page 243



Exploring Relationships Between Variables
Quick Review
You have now survived your second major unit of Statistics.
Here’s a brief summary of the key concepts and skills:

u We treat data two ways: as categorical and as quantitative.

u To explore relationships in categorical data, check out
Chapter 3.

u To explore relationships in quantitative data:
• Make a picture. Use a scatterplot. Put the explanatory vari-

able on the x-axis and the response variable on the y-axis.
• Describe the association between two quantitative vari-

ables in terms of direction, form, and strength.
• The amount of scatter determines the strength of the

association.
• If, as one variable increases so does the other, the associ-

ation is positive. If one increases as the other decreases,
it’s negative.

• If the form of the association is linear, calculate a corre-
lation to measure its strength numerically, and do a
regression analysis to model it.

• Correlations closer to or indicate stronger linear
associations. Correlations near 0 indicate weak linear re-
lationships, but other forms of association may still be
present.

• The line of best fit is also called the least squares regression
line because it minimizes the sum of the squared residuals.

• The regression line predicts values of the response vari-
able from values of the explanatory variable.

+1-1

• A residual is the difference between the true value of
the response variable and the value predicted by the
regression model.

• The slope of the line is a rate of change, best described
in “y-units” per “x-unit.”

• gives the fraction of the variation in the response
variable that is accounted for by the model.

• The standard deviation of the residuals measures the
amount of scatter around the line.

• Outliers and influential points can distort any of our
models.

• If you see a pattern (a curve) in the residuals plot, your
chosen model is not appropriate; use a different model.
You may, for example, straighten the relationship by re-
expressing one of the variables.

• To straighten bent relationships, re-express the data
using logarithms or a power (squares, square roots,
reciprocals, etc.).

• Always remember that an association is not necessarily
an indication that one of the variables causes the other.

Need more help with some of this? Try rereading some sec-
tions of Chapters 7 through 10. And go on to the next page for
more opportunities to review these concepts and skills.

“One must learn by doing the thing; though you
think you know it, you have no certainty until
you try.”
—Sophocles (495–406 BCE)

R2

II
PA R T

REVIEW OF PART II

a) Find a re-expression to create an appropriate model.
b) Predict the lifespan of an 18-year-old black man.
c) Are you satisfied that your model has accounted for

the relationship between Years Left and Age? Explain.

30. Tree growth. A 1996 study examined the growth of
grapefruit trees in Texas, determining the average trunk
Diameter (in inches) for trees of varying Ages:
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Age (yr) 2 4 6 8 10 12 14 16 18 20
Diameter (in.) 2.1 3.9 5.2 6.2 6.9 7.6 8.3 9.1 10.0 11.4

Age 10 20 30 40 50 60 70 80 90 100
Years Left 60.3 50.7 41.8 32.9 24.8 17.9 12.1 7.9 5.0 3.0

a) Fit a linear model to these data. What concerns do you
have about the model?

b) If data had been given for individual trees instead of
averages, would you expect the fit to be stronger, less
strong, or about the same? Explain.

JUST CHECKING
Answers

1. Counts are often best transformed by using the
square root.

2. None. The relationship is already straight.

3. Even though, technically, the population values are
counts, you should probably try a stronger transfor-
mation like log(population) because populations
grow in proportion to their size.

T
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Exploring Relationships Between Variables
Quick Review
You have now survived your second major unit of Statistics.
Here’s a brief summary of the key concepts and skills:

u We treat data two ways: as categorical and as quantitative.

u To explore relationships in categorical data, check out
Chapter 3.

u To explore relationships in quantitative data:
• Make a picture. Use a scatterplot. Put the explanatory vari-

able on the x-axis and the response variable on the y-axis.
• Describe the association between two quantitative vari-

ables in terms of direction, form, and strength.
• The amount of scatter determines the strength of the

association.
• If, as one variable increases so does the other, the associ-

ation is positive. If one increases as the other decreases,
it’s negative.

• If the form of the association is linear, calculate a corre-
lation to measure its strength numerically, and do a
regression analysis to model it.

• Correlations closer to or indicate stronger linear
associations. Correlations near 0 indicate weak linear re-
lationships, but other forms of association may still be
present.

• The line of best fit is also called the least squares regression
line because it minimizes the sum of the squared residuals.

• The regression line predicts values of the response vari-
able from values of the explanatory variable.

+1-1

• A residual is the difference between the true value of
the response variable and the value predicted by the
regression model.

• The slope of the line is a rate of change, best described
in “y-units” per “x-unit.”

• gives the fraction of the variation in the response
variable that is accounted for by the model.

• The standard deviation of the residuals measures the
amount of scatter around the line.

• Outliers and influential points can distort any of our
models.

• If you see a pattern (a curve) in the residuals plot, your
chosen model is not appropriate; use a different model.
You may, for example, straighten the relationship by re-
expressing one of the variables.

• To straighten bent relationships, re-express the data
using logarithms or a power (squares, square roots,
reciprocals, etc.).

• Always remember that an association is not necessarily
an indication that one of the variables causes the other.

Need more help with some of this? Try rereading some sec-
tions of Chapters 7 through 10. And go on to the next page for
more opportunities to review these concepts and skills.

“One must learn by doing the thing; though you
think you know it, you have no certainty until
you try.”
—Sophocles (495–406 BCE)

R2

II
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REVIEW OF PART II

a) Find a re-expression to create an appropriate model.
b) Predict the lifespan of an 18-year-old black man.
c) Are you satisfied that your model has accounted for

the relationship between Years Left and Age? Explain.

30. Tree growth. A 1996 study examined the growth of
grapefruit trees in Texas, determining the average trunk
Diameter (in inches) for trees of varying Ages:
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Age (yr) 2 4 6 8 10 12 14 16 18 20
Diameter (in.) 2.1 3.9 5.2 6.2 6.9 7.6 8.3 9.1 10.0 11.4

Age 10 20 30 40 50 60 70 80 90 100
Years Left 60.3 50.7 41.8 32.9 24.8 17.9 12.1 7.9 5.0 3.0

a) Fit a linear model to these data. What concerns do you
have about the model?

b) If data had been given for individual trees instead of
averages, would you expect the fit to be stronger, less
strong, or about the same? Explain.

JUST CHECKING
Answers

1. Counts are often best transformed by using the
square root.

2. None. The relationship is already straight.

3. Even though, technically, the population values are
counts, you should probably try a stronger transfor-
mation like log(population) because populations
grow in proportion to their size.

T
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REVIEW EXERCISES

1. College. Every year US News and World Report pub-
lishes a special issue on many U.S. colleges and universi-
ties. The scatterplots below have Student/Faculty Ratio
(number of students per faculty member) for the colleges
and universities on the y-axes plotted against 4 other
variables. The correct correlations for these scatterplots
appear in this list. Match them.

-  0 .98  -  0 .71  - 0.51    0 .09    0 .23    0 .69

4

8

12

16
20

7.5 15.0 22.5
% over 50

S/
F 

R
at

io

4
8

12

16

20

37.5 50.0 62.5 75.0

S/
F 

R
at

io

% under 20

4
8

12

16

2020

75.0 82.5 90.0
% Graduating on time

S/
F 

R
at

io

4
8

12

16

75.0 82.5 90.0 97.5

S/
F 

R
at

io

% Full–time Faculty

Review Exercises 245

2. Togetherness. Are good grades in high school associ-
ated with family togetherness? A random sample of 142
high school students was asked how many meals per
week their families ate together. Their responses pro-
duced a mean of 3.78 meals per week, with a standard
deviation of 2.2. Researchers then matched these re-
sponses against the students’ grade point averages
(GPAs). The scatterplot appeared to be reasonably lin-
ear, so they created a line of regression. No apparent
pattern emerged in the residuals plot. The equation of
the line was 
a) Interpret the y-intercept in this context.
b) Interpret the slope in this context.
c) What was the mean GPA for these students?
d) If a student in this study had a negative residual, what

did that mean?
e) Upon hearing of this study, a counselor recommended

that parents who want to improve the grades their
children get should get the family to eat together more
often. Do you agree with this interpretation? Explain.

3. Vineyards. Here are the scatterplot and regression
analysis for Case Prices of 36 wines from vineyards in 
the Finger Lakes region of New York State and the Ages
of the vineyards.

Age (yr)
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10 20 30

GPA = 2.73 + 0.11 Meals.

Dependent variable is: Case Price
R-squared = 2.7%

Variable Coefficient

Constant 92.7650
Age 0.567284

a) Does it appear that vineyards in business longer get
higher prices for their wines? Explain.

b) What does this analysis tell us about vineyards in the rest
of the world?

c) Write the regression equation.
d) Explain why that equation is essentially useless.

4. Vineyards again. Instead of Age, perhaps the Size of the
vineyard (in acres) is associated with the price of the wines.
Look at the scatterplot:

a) Do you see any evidence of an association?
b) What concern do you have about this scatterplot?
c) If the red “+” data point is removed, would the correla-

tion become stronger or weaker? Explain.
d) If the red “+” data point is removed, would the slope of

the line increase or decrease? Explain.

5. More twins 2004? As the table shows, the number 
of twins born in the United States has been increasing.
(www.cdc.gov/nchs/births.htm)
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Size (acres)

Year Twin Births Year Twin Births

1980 68,339 1993 96,445
1981 70,049 1994 97,064
1982 71,631 1995 96,736
1983 72,287 1996 100,750
1984 72,949 1997 104,137
1985 77,102 1998 110,670
1986 79,485 1999 114,307
1987 81,778 2000 118,916
1988 85,315 2001 121,246
1989 90,118 2002 125,134
1990 93,865 2003 128,665
1991 94,779 2004 132,219
1992 95,372

T

T

T
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Year
Manatees 

Killed

Powerboat 
Registrations 

(in 1000s)

1982 13 447
1983 21 460
1984 24 481
1985 16 498
1986 24 513
1987 20 512
1988 15 527
1989 34 559
1990 33 585
1992 33 614
1993 39 646
1994 43 675
1995 50 711
1996 47 719
1997 53 716
1998 38 716
1999 35 716
2000 49 735
2001 81 860
2002 95 923
2003 73 940
2004 69 946
2005 79 974

a) Find the equation of the regression line for predicting
the number of twin births.

b) Explain in this context what the slope means.
c) Predict the number of twin births in the United States

for the year 2010. Comment on your faith in that
prediction.

d) Comment on the residuals plot.

6. Dow Jones 2006. The Dow Jones stock index mea-
sures the performance of the stocks of America’s largest
companies (http://finance.yahoo.com). A regression of
the Dow prices on years 1972–2006 looks like this:

Dependent variable is: Dow Index
R-squared = 83.5% s = 1577

Variable Coefficient

Intercept
Year since 1970 341.095

a) What is the correlation between Dow Index and Year?
b) Write the regression equation.
c) Explain in this context what the equation says.
d) Here’s a scatterplot of the residuals. Which assump-

tion(s) of the regression analysis appear to be violated?

7. Acid rain. Biologists studying the effects of acid rain on
wildlife collected data from 163 streams in the Adiron-
dack Mountains. They recorded the pH (acidity) of the
water and the BCI, a measure of biological diversity, and
they calculated Here’s a scatterplot of BCI
against pH:

a) What is the correlation between pH and BCI?
b) Describe the association between these two variables.
c) If a stream has average pH, what would you predict

about the BCI?
d) In a stream where the pH is 3 standard deviations

above average, what would you predict about the BCI?

8. Manatees 2005. Marine biologists warn that the grow-
ing number of powerboats registered in Florida threatens
the existence of manatees. The data below come from the

750

1000

1250

1500

6.8 7.2 7.6 8.0
pH

BC
I

R2
=  27%.

2500

1250

0

–1250

R
es

id
ua

ls

0 2500 7500 10,0005000
Predicted

-2294.01

Florida Fish and Wildlife Conservation Commission
(www.floridamarine.org) and the National Marine Manu-
facturers Association (www.nmma.org/facts).

a) In this context, which is the explanatory variable?
b) Make a scatterplot of these data and describe the asso-

ciation you see.
c) Find the correlation between Boat Registrations and

Manatee Deaths.
d) Interpret the value of 
e) Does your analysis prove that powerboats are killing

manatees?

9. A manatee model 2005. Continue your analysis of the
manatee situation from the previous exercise.
a) Create a linear model of the association between

Manatee Deaths and Powerboat Registrations.
b) Interpret the slope of your model.
c) Interpret the y-intercept of your model.
d) How accurately did your model predict the high num-

ber of manatee deaths in 2005?
e) Which is better for the manatees, positive residuals or

negative residuals? Explain.
f) What does your model suggest about the future for

the manatee?

10. Grades. A Statistics instructor created a linear regres-
sion equation to predict students’ final exam scores from
their midterm exam scores. The regression equation was

a) If Susan scored a 70 on the midterm, what did the in-
structor predict for her score on the final?

Fin = 10 + 0.9 Mid.

R2.

T

T
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b) Susan got an 80 on the final. How big is her residual?
c) If the standard deviation of the final was 12 points

and the standard deviation of the midterm was 10
points, what is the correlation between the two tests?

d) How many points would someone need to score on
the midterm to have a predicted final score of 100?

e) Suppose someone scored 100 on the final. Explain
why you can’t estimate this student’s midterm score
from the information given.

f) One of the students in the class scored 100 on the
midterm but got overconfident, slacked off, and
scored only 15 on the final exam. What is the residual
for this student?

g) No other student in the class “achieved” such a dra-
matic turnaround. If the instructor decides not to in-
clude this student’s scores when constructing a new
regression model, will the value of the regression
increase, decrease, or remain the same? Explain.

h) Will the slope of the new line increase or decrease?

11. Traffic. Highway planners investigated the relationship
between traffic Density (number of automobiles per mile)
and the average Speed of the traffic on a moderately large
city thoroughfare. The data were collected at the same
location at 10 different times over a span of 3 months. They
found a mean traffic Density of 68.6 cars per mile (cpm)
with standard deviation of 27.07 cpm. Overall, the cars’
average Speed was 26.38 mph, with standard deviation of
9.68 mph. These researchers found the regression line for
these data to be 
a) What is the value of the correlation coefficient

between Speed and Density?
b) What percent of the variation in average Speed is

explained by traffic Density?
c) Predict the average Speed of traffic on the thoroughfare

when the traffic Density is 50 cpm.
d) What is the value of the residual for a traffic Density of

56 cpm with an observed Speed of 32.5 mph?
e) The data set initially included the point 

125 cpm, This point was considered
an outlier and was not included in the analysis. Will
the slope increase, decrease, or remain the same if we
redo the analysis and include this point?

f) Will the correlation become stronger, weaker, or re-
main the same if we redo the analysis and include this
point (125,55)?

g) A European member of the research team measured
the Speed of the cars in kilometers per hour 

and the traffic Density in cars per kilometer.
Find the value of his calculated correlation between
speed and density.

12. Cramming. One Thursday, researchers gave students
enrolled in a section of basic Spanish a set of 50 new
vocabulary words to memorize. On Friday the students
took a vocabulary test. When they returned to class the
following Monday, they were retested—without advance
warning. Here are the test scores for the 25 students.

0.62 miles)
(1 km L  

Speed = 55 mph.
Density =

Speed =  50.55 - 0.352 Density.

R2

a) What is the correlation between Friday and Monday
scores?

b) What does a scatterplot show about the association
between the scores?

c) What does it mean for a student to have a positive
residual?

d) What would you predict about a student whose Friday
score was one standard deviation below average?

e) Write the equation of the regression line.
f) Predict the Monday score of a student who earned a 40

on Friday.

13. Correlations. What factor most explains differences in
Fuel Efficiency among cars? Below is a correlation matrix
exploring that relationship for the car’s Weight, Horse-
power, engine size (Displacement), and number of Cylinders.

Horse- Displace-
MPG Weight power ment Cylinders

MPG 1.000
Weight 1.000
Horsepower 0.917 1.000
Displacement 0.951 0.872 1.000
Cylinders 0.917 0.864 0.940 1.000

a) Which factor seems most strongly associated with Fuel
Efficiency?

b) What does the negative correlation indicate?
c) Explain the meaning of for that relationship.

14. Autos revisited. Look again at the correlation table for
cars in the previous exercise.
a) Which two variables in the table exhibit the strongest

association?
b) Is that strong association necessarily cause-and-effect?

Offer at least two explanations why that association
might be so strong.

c) Engine displacements for U.S.-made cars are often
measured in cubic inches. For many foreign cars, the
units are either cubic centimeters or liters. How would
changing from cubic inches to liters affect the calcu-
lated correlations involving Displacement?

d) What would you predict about the Fuel Efficiency of a
car whose engine Displacement is one standard devia-
tion above the mean?

15. Cars, one more time! Can we predict the Horsepower
of the engine that manufacturers will put in a car by

R2

-0.806
-0.786
-0.871
-0.903

T

Fri. Mon. Fri. Mon. Fri. Mon.

42 36 48 37 39 41
44 44 43 41 46 32
45 46 45 32 37 36
48 38 47 44 40 31
44 40 50 47 41 32
43 38 34 34 48 39
41 37 38 31 37 31
35 31 43 40 36 41
43 32

T

T

T
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Diameter
(in.)

Age 
(yr)

Diameter 
(in.)

Age 
(yr)

1.8 4 10.3 23
1.8 5 14.3 25
2.2 8 13.2 28
4.4 8 9.9 29
6.6 8 13.2 30
4.4 10 15.4 30
7.7 10 17.6 33

10.8 12 14.3 34
7.7 13 15.4 35
5.5 14 11.0 38
9.9 16 15.4 38

10.1 18 16.5 40
12.1 20 16.5 42
12.8 22

knowing the Weight of the car? Here are the regression
analysis and residuals plot:

Dependent variable is: Horsepower
R-squared = 84.1%

Variable Coefficient

Intercept 3.49834
Weight 34.3144

a) Write the equation of the regression line.
b) Do you think the car’s Weight is measured in pounds

or thousands of pounds? Explain.
c) Do you think this linear model is appropriate? Explain.
d) The highest point in the residuals plot, representing a

residual of 22.5 horsepower, is for a Chevy weighing
2595 pounds. How much horsepower does this car
have?

16. Colorblind. Although some women are colorblind, this
condition is found primarily in men. Why is it wrong to
say there’s a strong correlation between Sex and
Colorblindness?

17. Old Faithful. There is evidence that eruptions of Old
Faithful can best be predicted by knowing the duration of
the previous eruption.
a) Describe what you see in the scatterplot of Intervals

between eruptions vs. Duration of the previous 
eruption.

b) Write the equation of the line of best fit. Here’s the re-
gression analysis:

Dependent variable is: Inter val
R-squared = 77.0%

Variable Coefficient

Intercept 33.9668
Duration 10.3582
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c) Carefully explain what the slope of the line means in
this context.

d) How accurate do you expect predictions based on this
model to be? Cite statistical evidence.

e) If you just witnessed an eruption that lasted 4 min-
utes, how long do you predict you’ll have to wait to
see the next eruption?

f) So you waited, and the next eruption came in 
79 minutes. Use this as an example to define a 
residual.

18. Which croc? The ranges inhabited by the Indian
gharial crocodile and the Australian saltwater crocodile
overlap in Bangladesh. Suppose a very large crocodile
skeleton is found there, and we wish to determine the
species of the animal. Wildlife scientists have measured
the lengths of the heads and the complete bodies of sev-
eral crocs (in centimeters) of each species, creating the
regression analyses below:

Indian Crocodile

Dependent variable is: IBody
R-squared = 97.2%

Variable Coefficient

Intercept
IHead 7.40004

-69.3693

T

a) Do the associations between the sizes of the heads 
and bodies of the two species appear to be strong? 
Explain.

b) In what ways are the two relationships similar?
Explain.

c) What is different about the two models? What does
that mean?

d) The crocodile skeleton found had a head length of 
62 cm and a body length of 380 cm. Which species do
you think it was? Explain why.

19. How old is that tree? One can determine how old a
tree is by counting its rings, but that requires cutting the
tree down. Can we estimate the tree’s age simply from
its diameter? A forester measured 27 trees of the same
species that had been cut down, and counted the rings to
determine the ages of the trees.

Australian Crocodile

Dependent variable is: ABody
R-squared = 98.0%

Variable Coefficient
Intercept

AHead 7.71726

-20.2245

T

T
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a) Find the correlation between Diameter and Age. Does
this suggest that a linear model may be appropriate?
Explain.

b) Create a scatterplot and describe the association.
c) Create the linear model.
d) Check the residuals. Explain why a linear model is

probably not appropriate.
e) If you used this model, would it generally overestimate

or underestimate the ages of very large trees? Explain.

20. Improving trees. In the last exercise you saw that the
linear model had some deficiencies. Let’s create a better
model.
a) Perhaps the cross-sectional area of a tree would be a

better predictor of its age. Since area is measured in
square units, try re-expressing the data by squaring
the diameters. Does the scatterplot look better?

b) Create a model that predicts Age from the square of
the Diameter.

c) Check the residuals plot for this new model. Is this
model more appropriate? Why?

d) Estimate the age of a tree 18 inches in diameter.

21. New homes. A real estate agent collects data to de-
velop a model that will use the Size of a new home (in
square feet) to predict its Sale Price (in thousands of dol-
lars). Which of these is most likely to be the slope of the
regression line: 0.008, 0.08, 0.8, or 8? Explain.

22. Smoking and pregnancy 2003. The organization Kids
Count monitors issues related to children. The table
shows a 50-state average of the percent of expectant
mothers who smoked cigarettes during their pregnancies.

24. Tips. It’s commonly believed that people use tips to re-
ward good service. A researcher for the hospitality indus-
try examined tips and ratings of service quality from 2645
dining parties at 21 different restaurants. The correlation
between ratings of service and tip percentages was 0.11.
(M. Lynn and M. McCall, “Gratitude and Gratuity.”
Journal of Socio-Economics 29: 203–214)
a) Describe the relationship between Quality of Service

and Tip Size.
b) Find and interpret the value of in this context.

25. US Cities. Data from 50 large U.S. cities show the mean
January Temperature and the Latitude. Describe what you
see in the scatterplot.

26. Correlations. The study of U.S. cities in Exercise 25
found the mean January Temperature (degrees Fahrenheit),
Altitude (feet above sea level), and Latitude (degrees north
of the equator) for 55 cities. Here’s the correlation matrix:

Jan. Temp Latitude Altitude

Jan. Temp 1.000
Latitude 1.000
Altitude 0.184 1.000

a) Which seems to be more useful in predicting January
Temperature—Altitude or Latitude? Explain.

b) If the Temperature were measured in degrees Celsius,
what would be the correlation between Temperature
and Latitude?

c) If the Temperature were measured in degrees Celsius
and the Altitude in meters, what would be the correla-
tion? Explain.

d) What would you predict about the January
Temperatures in a city whose Altitude is two standard
deviations higher than the average Altitude?

27. Winter in the city. Summary statistics for the data re-
lating the latitude and average January temperature for
55 large U.S. cities are given below.

Variable Mean StdDev

Latitude 39.02 5.42
JanTemp 26.44 13.49

Correlation

a) What percent of the variation in January Temperatures
can be explained by variation in Latitude?

b) What is indicated by the fact that the correlation is
negative?

c) Write the equation of the line of regression for predict-
ing January Temperature from Latitude.

d) Explain what the slope of the line means.

= -0.848

-0.369
-0.848
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Year
% Smoking 

While Pregnant Year
% Smoking 

While Pregnant

1990 19.2 1997 14.9
1991 18.7 1998 14.8
1992 17.9 1999 14.1
1993 16.8 2000 14.0
1994 16.0 2001 13.8
1995 15.4 2002 13.3
1996 15.3 2003 12.7

a) Create a scatterplot and describe the trend you see.
b) Find the correlation.
c) How is the value of the correlation affected by the fact

that the data are averages rather than percentages for
each of the 50 states?

d) Write a linear model and interpret the slope in context.

23. No smoking? The downward trend in smoking you
saw in the last exercise is good news for the health of ba-
bies, but will it ever stop?
a) Explain why you can’t use the linear model you cre-

ated in Exercise 22 to see when smoking during preg-
nancy will cease altogether.

b) Create a model that could estimate the year in which
the level of smoking would be 0%.

c) Comment on the reliability of such a prediction.
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e) Do you think the y-intercept is meaningful? Explain.
f) The latitude of Denver is . Predict the mean 

January temperature there.
g) What does it mean if the residual for a city is positive?

28. Depression. The September 1998 issue of the American
Psychologist published an article by Kraut et al. that
reported on an experiment examining “the social and
psychological impact of the Internet on 169 people in 
73 households during their first 1 to 2 years online.” In
the experiment, 73 households were offered free Internet
access for 1 or 2 years in return for allowing their time
and activity online to be tracked. The members of the
households who participated in the study were also
given a battery of tests at the beginning and again at 
the end of the study. The conclusion of the study made
news headlines: Those who spent more time online
tended to be more depressed at the end of the experi-
ment. Although the paper reports a more complex model,
the basic result can be summarized in the following
regression of Depression (at the end of the study, in 
“depression scale units”) vs. Internet Use (in mean hours
per week):

Dependent variable is: Depression
R-squared = 4.6%
s = 0.4563

Variable Coefficient

Intercept 0.5655
Internet use 0.0199

The news reports about this study clearly concluded that
using the Internet causes depression. Discuss whether
such a conclusion can be drawn from this regression. If
so, discuss the supporting evidence. If not, say why not.

29. Jumps 2004. How are Olympic performances in vari-
ous events related? The plot shows winning long-jump
and high-jump distances, in inches, for the Summer
Olympics from 1912 through 2004.

a) Describe the association.
b) Do long-jump performances somehow influence the

high-jumpers? How do you account for the relation-
ship you see?

c) The correlation for the given scatterplot is 0.925, but at
the Olympics these jumps are actually measured in
meters rather than inches. Does that make the actual
correlation higher or lower?

d) What would you predict about the long jump in a year
when the high-jumper jumped one standard deviation
better than the average high jump?
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30. Modeling jumps. Here are the summary statistics for

the Olympic long jumps and high jumps displayed in the
scatterplot above:

Event Mean StdDev

Long Jump 316.04 20.85
High Jump 83.85 7.46

Correlation 5 0.925

a) Write the equation of the line of regression for estimat-
ing High Jump from Long Jump.

b) Interpret the slope of the line.
c) In a year when the long jump is 350 inches, what high

jump would you predict?
d) Why can’t you use this line to estimate the long jump

for a year when you know the high jump was 85 inches?
e) Write the equation of the line you need to make that

prediction.

31. French. Consider the association between a student’s
score on a French vocabulary test and the weight of the
student. What direction and strength of correlation would
you expect in each of the following situations? Explain.
a) The students are all in third grade.
b) The students are in third through twelfth grades in the

same school district.
c) The students are in tenth grade in France.
d) The students are in third through twelth grades in

France.

32. Twins. Twins are often born after a pregnancy that 
lasts less than 9 months. The graph from the Journal of 
the American Medical Association (JAMA) shows the rate 
of preterm twin births in the United States over the past
20 years. In this study, JAMA categorized mothers by the
level of prenatal medical care they received: inadequate,
adequate, or intensive.
a) Describe the overall trend in preterm twin births.
b) Describe any differences you see in this trend, de-

pending on the level of prenatal medical care the
mother received.

c) Should expectant mothers be advised to cut back on
the level of medical care they seek in the hope of
avoiding preterm births? Explain.

Preterm Birth Rate per 100 live twin births among U.S. twins by inten-
sive, adequate, and less than adequate prenatal care utilization,
1981–1997. (JAMA 284[2000]: 335–341)
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33. Lunchtime. Create and interpret a model for the tod-
dlers’ lunchtime data presented in Chapter 7. The table
and graph show the number of minutes the kids stayed at
the table and the number of calories they consumed.

T

34. Gasoline. Since clean-air regulations have dictated the
use of unleaded gasoline, the supply of leaded gas in New
York state has diminished. The table below was given on
the August 2001 New York State Math B exam, a statewide
achievement test for high school students.

425
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Year Weight (lb) Year Weight (lb)

1973 185.5 1983 192.0
1975 182.4 1987 196.9
1977 182.1 1989 202.9
1979 191.1 1991 206.0
1981 189.4 1993 198.7

Year 1905 1919 1932 1945 1955 1965

Weight (lb) 164 163 181 192 195 199

36. Football weights. The Sears Cup was established in
1993 to honor institutions that maintain a broad-based
athletic program, achieving success in many sports, both
men’s and women’s. Since its Division III inception in
1995, the cup has been won by Williams College in every
year except one. Their football team has a 85.3% winning
record under their current coach. Why does the football
team win so much? Is it because they’re heavier than
their opponents? The table shows the average team
weights for selected years from 1973 to 1993.

Calories Time Calories Time

472 21.4 450 42.4
498 30.8 410 43.1
465 37.7 504 29.2
456 33.5 437 31.3
423 32.8 489 28.6
437 39.5 436 32.9
508 22.8 480 30.6
431 34.1 439 35.1
479 33.9 444 33.0
454 43.8 408 43.7

Year 1984 1988 1992 1996 2000
Gallons (1000’s) 150 124 104 76 50

a) Create a linear model to predict the number of gallons
that will be available in 2005.

b) The exam then asked students to estimate the year
when leaded gasoline will first become unavailable,
expecting them to use the model from part a to
answer the question. Explain why that method is
incorrect.

c) Create a model that would be appropriate for that task,
and make the estimate.

d) The “wrong” answer from the other model is fairly
accurate in this case. Why?

35. Tobacco and alcohol. Are people who use tobacco
products more likely to consume alcohol? Here are data
on household spending (in pounds) taken by the British
Government on 11 regions in Great Britain. Do tobacco
and alcohol spending appear to be related? What ques-
tions do you have about these data? What conclusions
can you draw?

Region Alcohol Tobacco

North 6.47 4.03
Yorkshire 6.13 3.76
Northeast 6.19 3.77
East Midlands 4.89 3.34
West Midlands 5.63 3.47
East Anglia 4.52 2.92
Southeast 5.89 3.20
Southwest 4.79 2.71
Wales 5.27 3.53
Scotland 6.08 4.51
Northern Ireland 4.02 4.56

a) Fit a straight line to the relationship between Weight
and Year.

b) Does a straight line seem reasonable?
c) Predict the average weight of the team for the year

2003. Does this seem reasonable?
d) What about the prediction for the year 2103? Explain.
e) What about the prediction for the year 3003? Explain.

37. Models. Find the predicted value of y, using each
model for .

a) c)

b)

38. Williams vs. Texas. Here are the average weights of
the football team for the University of Texas for various
years in the 20th century.

log yN = 5 - 0.23x

1

2yN
= 17.1 - 1.66xyN = 2 + 0.8 ln x

x = 10

a) Fit a straight line to the relationship of Weight by Year
for Texas football players.

b) According to these models, in what year will the 
predicted weight of the Williams College team from

T

T

T
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Exercise 36 first be more than the weight of the Uni-
versity of Texas team?

c) Do you believe this? Explain.

39. Vehicle weights. The Minnesota Department of Trans-
portation hoped that they could measure the weights of big
trucks without actually stopping the vehicles by using a
newly developed “weigh-in-motion” scale. After installa-
tion of the scale, a study was conducted to find out whether
the scale’s readings correspond to the true weights of the
trucks being monitored. In Exercise 40 of Chapter 7, you ex-
amined the scatterplot for the data they collected, finding
the association to be approximately linear with .
Their regression equation is  
where both the scale reading and the predicted weight of
the truck are measured in thousands of pounds.
a) Estimate the weight of a truck if this scale read 

31,200 pounds.
b) If that truck actually weighed 32,120 pounds, what

was the residual?
c) If the scale reads 35,590 pounds, and the truck has a

residual of pounds, how much does it actually
weigh?

d) In general, do you expect estimates made using this
equation to be reasonably accurate? Explain.

e) If the police plan to use this scale to issue tickets to
trucks that appear to be overloaded, will negative or
positive residuals be a greater problem? Explain.

40. Profit. How are a company’s profits related to its sales?
Let’s examine data from 71 large U.S. corporations. All
amounts are in millions of dollars.
a) Histograms of Profits and Sales and histograms of the

logarithms of Profits and Sales are on the next page.
Why are the re-expressed data better for regression?

-2440

Wt = 10.85 + 0.64 Scale,
R2

= 93%

b) Here are the scatterplot and residuals plot for the
regression of logarithm of Profits vs. log of Sales. Do
you think this model is appropriate? Explain.

c) Here’s the regression analysis. Write the equation.

Dependent variable is: Log Profit
R-squared = 48.1%

Variable Coefficient

Intercept
LogSales 0.647798

d) Use your equation to estimate profits earned by a
company with sales of 2.5 billion dollars. (That’s 
2500 million.)

41. Down the drain. Most water tanks have a drain plug
so that the tank may be emptied when it’s to be moved or
repaired. How long it takes a certain size of tank to drain
depends on the size of the plug, as shown in the table.
Create a model.

-0.106259
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4 11
2 2

Drain 
Time (min.)

140 80 35 20 13 10 5

42. Chips. A start-up company has developed an improved
electronic chip for use in laboratory equipment. The 
company needs to project the manufacturing cost, so it
develops a spreadsheet model that takes into account the
purchase of production equipment, overhead, raw mate-
rials, depreciation, maintenance, and other business costs.
The spreadsheet estimates the cost of producing 10,000 to
200,000 chips per year, as seen in the table. Develop a 
regression model to predict Costs based on the Level of
production.

Chips 
Produced 
(1000s)

Cost 
per 

Chip ($)

90 47.22
100 44.31
120 42.88
140 39.05
160 37.47
180 35.09
200 34.04

Chips 
Produced 
(1000s)

Cost 
per 

Chip ($)

10 146.10
20 105.80
30 85.75
40 77.02
50 66.10
60 63.92
70 58.80
80 50.91

T

T
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We all know what it means for something to be random. Or do 
we? Many children’s games rely on chance outcomes. Rolling
dice, spinning spinners, and shuffling cards all select at random.
Adult games use randomness as well, from card games to lotter-

ies to Bingo. What’s the most important aspect of the randomness in these
games? It must be fair.

What is it about random selection that makes it seem fair? It’s really two
things. First, nobody can guess the outcome before it happens. Second, when we
want things to be fair, usually some underlying set of outcomes will be equally
likely (although in many games, some combinations of outcomes are more likely
than others).

Randomness is not always what we might think of as “at random.” Random
outcomes have a lot of structure, especially when viewed in the long run. You
can’t predict how a fair coin will land on any single toss, but you’re pretty confi-
dent that if you flipped it thousands of times you’d see about 50% heads. As we
will see, randomness is an essential tool of Statistics. Statisticians don’t think of
randomness as the annoying tendency of things to be unpredictable or haphaz-
ard. Statisticians use randomness as a tool. In fact, without deliberately applying
randomness, we couldn’t do most of Statistics, and this book would stop right
about here.1

But truly random values are surprisingly hard to get. Just to see how fair
humans are at selecting, pick a number at random from the top of the next
page. Go ahead. Turn the page, look at the numbers quickly, and pick a num-
ber at random.

Ready?
Go.

CHAPTER

11
Understanding
Randomness

“The most decisive conceptual
event of twentieth century
physics has been the discovery
that the world is not
deterministic. . . . A space was
cleared for chance.”

— Ian Hocking, 
The Taming of Chance

1 Don’t get your hopes up.
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2 You’ll find a table of random digits of this kind in the back of this book.

It’s Not Easy Being Random
Did you pick 3? If so, you’ve got company. Almost 75% of all people pick the
number 3. About 20% pick either 2 or 4. If you picked 1, well, consider yourself a
little different. Only about 5% choose 1. Psychologists have proposed reasons for
this phenomenon, but for us, it simply serves as a lesson that we’ve got to find a
better way to choose things at random.

So how should we generate random numbers? It’s surprisingly difficult to get
random values even when they’re equally likely. Computers have become a popu-
lar way to generate random numbers. Even though they often do much better than
humans, computers can’t generate truly random numbers either. Computers fol-
low programs. Start a computer from the same place, and it will always follow ex-
actly the same path. So numbers generated by a computer program are not truly
random. Technically, “random” numbers generated this way are pseudorandom
numbers. Pseudorandom values are generated in a fixed sequence, and because
computers can represent only a finite number of distinct values, the sequence of
pseudorandom numbers must eventually repeat itself. Fortunately, pseudoran-
dom values are good enough for most purposes because they are virtually indis-
tinguishable from truly random numbers.

1  2  3  4
“The generation of random
numbers is too important to be
left to chance.”

—Robert R. Coveyou,
Oak Ridge National

Laboratory

There are ways to generate random numbers so that they are both equally
likely and truly random. In the past, entire books of carefully generated random
numbers were published. The books never made the best-seller lists and probably
didn’t make for great reading, but they were quite valuable to those who needed
truly random values.2 Today, we have a choice. We can use these books or find
genuinely random digits from several Internet sites. The sites use methods like
timing the decay of a radioactive element or even the random changes of lava

Activity: Random
Behavior. ActivStats’ Random
Experiment Tool lets you
experiment with truly random
outcomes. We’ll use it a lot in the
coming chapters.

Activity: Truly Random
Values on the Internet. This
activity will take you to an
Internet site (www.random.org)
that generates all the truly
random numbers you could
want.
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Practical Randomness 257

lamps to generate truly random digits.3 In either case, a string of random digits
might look like this:

You probably have more interesting things to download than a few million
random digits, but we’ll discuss ways to use such random digits to apply ran-
domness to real situations soon. The best ways we know to generate data that
give a fair and accurate picture of the world rely on randomness, and the ways in
which we draw conclusions from those data depend on the randomness, too.

7706356513310563210508993624272872250535395513645991015328128202
6070204916508913632855351361361043794293428486909462881431793360
6944182713168919406022181281304751019321546303870481407676636740
8887003319933147508331265192321413908608674496383528968974910533
8740522639824530519902027044464984322000946238678577902639002954
8906427308645681412198226653885873285801699027843110380420067664
3217535822643800292254644943760642389043766557204107354186024508
2217726304387410092537086270581997622725849795907032825001108963

An ordinary deck of playing cards, 
like the ones used in bridge and many
other card games, consists of 52
cards. There are numbered cards 
(2 through 10), and face cards (Jack,
Queen, King, Ace) whose value de-
pends on the game you are playing.
Each card is also marked by one of
four suits (clubs, diamonds, hearts, 
or spades) whose significance is also
game-specific.

Aren’t you done shuffling yet? Even something as common as card shuf-
fling may not be as random as you might think. If you shuffle cards by the usual
method in which you split the deck in half and try to let cards fall roughly alter-
nately from each half, you’re doing a “riffle shuffle.”

How many times should you shuffle cards to make the deck random? A surpris-
ing fact was discovered by statisticians Persi Diaconis, Ronald Graham, and W. M.
Kantor. It takes seven riffle shuffles. Fewer than seven leaves order in the deck, but
after that, more shuffling does little good. Most people, though, don’t shuffle that
many times.

When computers were first used to generate hands in bridge tournaments,
some professional bridge players complained that the computer was making too
many “weird” hands—hands with 10 cards of one suit, for example. Suddenly
these hands were appearing more often than players were used to when cards
were shuffled by hand. The players assumed that the computer was doing some-
thing wrong. But it turns out that it’s humans who hadn’t been shuffling enough
to make the decks really random and have those “weird” hands appear as often
as they should.

Practical Randomness
Suppose a cereal manufacturer puts pictures of famous athletes on cards in boxes
of cereal in the hope of boosting sales. The manufacturer announces that 20% of
the boxes contain a picture of Tiger Woods, 30% a picture of David Beckham, and
the rest a picture of Serena Williams. You want all three pictures. How many
boxes of cereal do you expect to have to buy in order to get the complete set?

How can we answer questions like this? Well, one way is to buy hundreds of
boxes of cereal to see what might happen. But let’s not. Instead, we’ll consider using
a random model. Why random? When we pick a box of cereal off the shelf, we don’t
know what picture is inside. We’ll assume that the pictures are randomly placed in
the boxes and that the boxes are distributed randomly to stores around the country.
Why a model? Because we won’t actually buy the cereal boxes. We can’t afford all
those boxes and we don’t want to waste food. So we need an imitation of the real
process that we can manipulate and control. In short, we’re going to simulate reality.

SPORTS
ALL-STARS

G
O
L
F

Tiger
WOODS

Tiger
WOODS

G
O
L
F SPORTS

ALL-STARS

DavidBECKHAM

S
O
C
C
E

R

S
O
C
C
E

R

DavidBECKHAMSPORTS

ALL-STARS

T
E
N
N
I
S

T
E
N
N
I
S

Serena

WILLIAMSSerena

WILLIAMS

3 For example, www.random.org or www.randomnumbers.info.
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258 CHAPTER 11    Understanding Randomness

A Simulation
The question we’ve asked is how many boxes do you expect to buy to get a com-
plete card collection. But we can’t answer our question by completing a card col-
lection just once. We want to understand the typical number of boxes to open, how
that number varies, and, often, the shape of the distribution. So we’ll have to do
this over and over. We call each time we obtain a simulated answer to our ques-
tion a trial.

For the sports cards, a trial’s outcome is the number of boxes. We’ll need at
least 3 boxes to get one of each card, but with really bad luck, you could empty
the shelves of several supermarkets before finding the card you need to get all 3.
So, the possible outcomes of a trial are 3, 4, 5, or lots more. But we can’t simply
pick one of those numbers at random, because they’re not equally likely. We’d
be surprised if we only needed 3 boxes to get all the cards, but we’d probably
be even more surprised to find that it took exactly 7,359 boxes. In fact, the rea-
son we’re doing the simulation is that it’s hard to guess how many boxes we’d
expect to open.

Building a Simulation
We know how to find equally likely random digits. How can we get from there to
simulating the trial outcomes? We know the relative frequencies of the cards: 20%
Tiger, 30% Beckham, and 50% Serena. So, we can interpret the digits 0 and 1 as
finding Tiger; 2, 3, and 4 as finding Beckham; and 5 through 9 as finding Serena to
simulate opening one box. Opening one box is the basic building block, called a
component of our simulation. But the component’s outcome isn’t the result we
want. We need to observe a sequence of components until our card collection is
complete. The trial’s outcome is called the response variable; for this simulation
that’s the number of components (boxes) in the sequence.

Let’s look at the steps for making a simulation:

Specify how to model a component outcome using equally likely random digits:

1. Identify the component to be repeated. In this case, our component is the
opening of a box of cereal.

2. Explain how you will model the component’s outcome. The digits from 0 to
9 are equally likely to occur. Because 20% of the boxes contain Tiger’s picture,
we’ll use 2 of the 10 digits to represent that outcome. Three of the 10 digits can
model the 30% of boxes with David Beckham cards, and the remaining 5 dig-
its can represent the 50% of boxes with Serena. One possible assignment of
the digits, then, is

Specify how to simulate trials:

3. Explain how you will combine the components to model a trial. We pretend
to open boxes (repeat components) until our collection is complete. We do this
by looking at each random digit and indicating what picture it represents. We
continue until we’ve found all three.

4. State clearly what the response variable is. What are we interested in? We
want to find out the number of boxes it might take to get all three pictures.

Put it all together to run the simulation:

5. Run several trials. For example, consider the third line of random digits
shown earlier (p. 257):

8906427308645681412198226653885873285801699027843110380420067664.

Let’s see what happened.

0, 1 Tiger 2, 3, 4 Beckham 5, 6, 7, 8, 9 Serena.

Modern physics has shown
that randomness is not just 
a mathematical game; it is
fundamentally the way the
universe works.

Regardless of improvements in
data collection or in computer
power, the best we can ever 
do, according to quantum
mechanics . . . is predict the
probability that an electron, or
a proton, or a neutron, or any
other of nature’s constituents,
will be found here or there.
Probability reigns supreme in
the microcosmos.
—Brian Greene, The Fabric of
the Cosmos: Space, Time, and
the Texture of Reality (p. 91)
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A Simulation 259

The first random digit, 8, means you get Serena’s picture. So the first com-
ponent’s outcome is Serena. The second digit, 9, means Serena’s picture is also
in the next box. Continuing to interpret the random digits, we get Tiger’s pic-
ture (0) in the third, Serena’s (6) again in the fourth, and finally Beckham (4)
on the fifth box. Since we’ve now found all three pictures, we’ve finished one
trial of our simulation. This trial’s outcome is 5 boxes.

Now we keep going, running more trials by looking at the rest of our line
of random digits:

It’s best to create a chart to keep track of what happens:

89064 2730 8645681 41219 822665388587328580 169902 78431 1038 042006 7664.

Analyze the response variable:

6. Collect and summarize the results of all the trials. You know how to sum-
marize and display a response variable. You’ll certainly want to report the
shape, center, and spread, and depending on the question asked, you may
want to include more.

7. State your conclusion, as always, in the context of the question you wanted
to answer. Based on this simulation, we estimate that customers hoping to
complete their card collection will need to open a median of 5 boxes, but it
could take a lot more.

If you fear that these may not be accurate estimates because we ran only nine
trials, you are absolutely correct. The more trials the better, and nine is woefully
inadequate. Twenty trials is probably a reasonable minimum if you are doing this
by hand. Even better, use a computer and run a few hundred trials.

4

8

12

16

# of Boxes

✴

Activity: Bigger Samples
Are Better. The random
simulation tool can generate lots
of outcomes with a single click,
so you can see more of the long
run with less effort.

Simulating a dice gameFOR EXAMPLE

The game of 21 can be played with an ordinary 6-sided die. Competitors each roll the die repeatedly, trying to get the highest total less than or equal to
21. If your total exceeds 21, you lose.

Suppose your opponent has rolled an 18. Your task is to try to beat him by getting more than 18 points without going over 21. How many rolls do you 
expect to make, and what are your chances of winning?

Question: How will you simulate the components?

A component is one roll of the die. I’ll simulate each roll by looking at a random digit from a table or an Internet site.
The digits 1 through 6 will represent the results on the die; I’ll ignore digits 7–9 and 0.

(continued)

Trial 
Number Component Outcomes

Trial 
Outcomes: 

y = Number 
of boxes

1 89064 5 Serena, Serena, Tiger, Serena, Beckham 5
2 2730 5 Beckham, Serena, Beckham, Tiger 4
3 8645681 5 Serena, Serena, Beckham, . . . , Tiger 7
4 41219 5 Beckham, Tiger, Beckham, Tiger, Serena 5
5 822665388587328580 5 Serena, Beckham, . . . , Tiger 18
6 169902 5 Tiger, Serena, Serena, Serena, Tiger, Beckham 6
7 78431 5 Serena, Serena, Beckham, Beckham, Tiger 5
8 1038 5 Tiger, Tiger, Beckham, Serena 4
9 042006 5 Tiger, Beckham, Beckham, Tiger, Tiger, Serena 6

10 7664 . . . 5 Serena, Serena, Serena, Beckham . . . ?
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260 CHAPTER 11    Understanding Randomness

Question: How will you combine components to model a trial? What’s the response variable?

I’ll add components until my total is greater than 18, counting the number of rolls. If my total is greater than 21, it is
a loss; if not, it is a win. There are two response variables. I’ll count the number of times I roll the die, and I’ll keep track
of whether I win or lose.

Question: How would you use these random digits to run trials? Show your method clearly for two trials.

91129 58757 69274 92380 82464 33089

I’ve marked the discarded digits in color.

For Example (continued)

Number of rolls Result

4 /// Won //// //// //// //// /

5 //// //// Lost //// ////

6 //// //// /

7 ////

8 /

JUST CHECKING
The baseball World Series consists of up to seven games. The first team to win four games wins the series. The first

two are played at one team’s home ballpark, the next three at the other team’s park, and the final two (if needed) are
played back at the first park. Records over the past century show that there is a home field advantage; the home team
has about a 55% chance of winning. Does the current system of alternating ballparks even out the home field advan-
tage? How often will the team that begins at home win the series?

Let’s set up the simulation:

1. What is the component to be repeated?

2. How will you model each component from equally
likely random digits?

3. How will you model a trial by combining components?

4. What is the response variable?

5. How will you analyze the response variable?

Fifty-seven students participated in a lottery for a particularly desirable dorm room—a triple with
a fireplace and private bath in the tower. Twenty of the participants were members of the same
varsity team. When all three winners were members of the team, the other students cried foul.

Question: Could an all-team outcome reasonably be expected to happen if everyone had a fair
shot at the room?

SimulationSTEP–BY–STEP EXAMPLE

Trial #1: 9 1 1 2 9 5 8 7 5 7 6

Total: 1 2 4 9 14 20 Outcomes:  6 rolls, won

Trial #2: 9 2 7 4 9 2 3 8 0 8 2 4 6

Total: 2 6 8 11 13 17 23 Outcomes:  7 rolls, lost

Question: Suppose you run 30 trials, getting the outcomes tallied here. What is your conclusion?

Based on my simulation, when competing against an opponent who has a 
score of 18, I expect my turn to usually last 5 or 6 rolls, and I should win 
about 70% of the time.
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A Simulation 261

I’ll use a simulation to investigate whether it’s
unlikely that three varsity athletes would get the
great room in the dorm if the lottery were fair.

A component is the selection of a student.

I’ll look at two-digit random numbers.

Let 00–19 represent the 20 varsity applicants.

Let 20–56 represent the other 37 applicants.

Skip 57–99. If I get a number in this range, I’ll
throw it away and go back for another two-
digit random number.

Plan State the problem. Identify the im-
portant parts of your simulation.

Components Identify the components.

Outcomes State how you will model
each component using equally likely ran-
dom digits. You can’t just use the digits
from 0 to 9 because the outcomes you are
simulating are not multiples of 10%.

There are 20 and 37 students in the two
groups. This time you must use pairs of
random digits (and ignore some of them)
to represent the 57 students.

Trial Explain how you will combine the
components to simulate a trial. In each 
of these trials, you can’t choose the same
student twice, so you’ll need to ignore a
random number if it comes up a second
or third time. Be sure to mention this in
describing your simulation.

Response Variable Define your re-
sponse variable.

Each trial consists of identifying pairs of digits
as V (varsity) or N (nonvarsity) until 3 people
are chosen, ignoring out-of-range or repeated
numbers (X)—I can’t put the same person in
the room twice.

Mechanics Run several trials. Carefully
record the random numbers, indicating

1) the corresponding component out-
comes (here, Varsity, Nonvarsity, or
ignored number) and

2) the value of the response variable.

The response variable is whether or not all three
selected students are on the varsity team.

(continued)

Trial
Number Component Outcomes All Varsity?

1 74 02 94 39 02  77  55 
X V X N X X N No

2 18 63 33 25
V X N N No

3 05 45 88 91  56
V N X X N No

4 39 09 07
N V V No

5 65 39 45 95 43
X N N X N No

6 98 95 11 68 77 12 17
X    X   V  X  X   V   V Yes

7 26 19 89 93 77 27
N  V   X    X   X   N No

BOCK_C11_0321570448 pp3.qxd  12/1/08  4:44 PM  Page 261



262 CHAPTER 11    Understanding Randomness

“All varsity” occurred once, or 10% of the time.Analyze Summarize the results across all
trials to answer the initial question.

In my simulation of “fair” room draws, the three
people chosen were all varsity team members
only 10% of the time. While this result could
happen by chance, it is not particularly likely. I’m
suspicious, but I’d need many more trials and a
smaller frequency of the all-varsity outcome be-
fore I would make an accusation of unfairness.

Conclusion Describe what the simula-
tion shows, and interpret your results in
the context of the real world.

TI Tips Generating random numbers

Instead of using coins, dice, cards, or tables of random numbers, you may de-
cide to use your calculator for simulations. There are several random number
generators offered in the menu.

is of particular importance. This command will produce any
number of random integers in a specified range.

Here are some examples showing how to use for simulations:

• randomly chooses a 0 or a 1. This is an effective simula-
tion of a coin toss. You could let 0 represent tails and 1 represent heads.

• produces a random integer from 1 to 6, a good way to
simulate rolling a die.

• simulates rolling two dice. To do several rolls in a row,
just hit repeatedly.

• produces five random integers that might represent
the pictures in the cereal boxes. Our run gave us two Tigers (0, 1), no Beck-
hams (2, 3, 4), and three Serenas (5–9).

• produces three random integers between 0 and 56, a
nice way to simulate the dorm room lottery. The window shows 6 trials, but
we would skip the first one because one student was chosen twice. In none
of the remaining 5 trials did three athletes (0–19) win.

8 23 52 37
N N N No

9 16  50 83 44 
V   N X N No

10 74  17  46 85 09 
X V    N X V No
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CONNECTIONS
Simulations often generate many outcomes of a response variable, and we are often interested in
the distribution of these responses. The tools we use to display and summarize the distribution of
any real variable are appropriate for displaying and summarizing randomly generated responses
as well.

Make histograms, boxplots, and Normal probability plots of the response variables from simula-
tions, and summarize them with measures of center and spread. Be especially careful to report the
variation of your response variable.

Don’t forget to think about your analyses. Simulations can hide subtle errors. A careful analysis
of the responses can save you from erroneous conclusions based on a faulty simulation.

You may be less likely to find an outlier in simulated responses, but if you find one, you should
certainly determine how it happened.

Activity: Estimating
Summaries from Random
Outcomes. See how well you can
estimate something you can’t
know just by generating random
outcomes.

WHAT CAN GO WRONG?
u Don’t overstate your case. Let’s face it: In some sense, a simulation is always wrong.

After all, it’s not the real thing. We didn’t buy any cereal or run a room draw. So be-
ware of confusing what really happens with what a simulation suggests might hap-
pen. Never forget that future results will not match your simulated results exactly.

u Model outcome chances accurately. A common mistake in constructing a simulation is
to adopt a strategy that may appear to produce the right kind of results, but that
does not accurately model the situation. For example, in our room draw, we could
have gotten 0, 1, 2, or 3 team members. Why not just see how often these digits oc-
cur in random digits from 0 to 9, ignoring the digits 4 and up?

3 2 1 7 9 0 0 5 9 7 3 7 9 2 5 2 4 1 3 8

3 2 1 x x 0 0 x x x 3 x x 2 x 2 x 1 3 x

This “simulation” makes it seem fairly likely that three team members would be
chosen. There’s a big problem with this approach, though: The digits 0, 1, 2, and 3
occur with equal frequency among random digits, making each outcome appear to
happen 25% of the time. In fact, the selection of 0, 1, 2, or all 3 team members are not
all equally likely outcomes. In our correct simulation, we estimated that all 3 would
be chosen only about 10% of the time. If your simulation overlooks important as-
pects of the real situation, your model will not be accurate.

u Run enough trials. Simulation is cheap and fairly easy to do. Don’t try to draw conclu-
sions based on 5 or 10 trials (even though we did for illustration purposes here).
We’ll make precise how many trials to use in later chapters. For now, err on the side
of large numbers of trials.

WHAT HAVE WE LEARNED?

We’ve learned to harness the power of randomness. We’ve learned that a simulation model can
help us investigate a question for which many outcomes are possible, we can’t (or don’t want to)
collect data, and a mathematical answer is hard to calculate. We’ve learned how to base our simu-
lation on random values generated by a computer, generated by a randomizing device such as a die
or spinner, or found on the Internet. Like all models, simulations can provide us with useful insights
about the real world.

Simulations. Improve your 
predictions by running thousands
of trials.
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Terms
Random 255. An outcome is random if we know the possible values it can have, but not which particular

value it takes.

Generating random numbers 256. Random numbers are hard to generate. Nevertheless, several Internet sites offer an unlimited
supply of equally likely random values.

Simulation 258. A simulation models a real-world situation by using random-digit outcomes to mimic the un-
certainty of a response variable of interest.

Simulation component 258. A component uses equally likely random digits to model simple random occurrences whose
outcomes may not be equally likely.

Trial 258. The sequence of several components representing events that we are pretending will take
place.

Response variable 258. Values of the response variable record the results of each trial with respect to what we were
interested in.

Skills
u Be able to recognize random outcomes in a real-world situation.

u Be able to recognize when a simulation might usefully model random behavior in the real world.

u Know how to perform a simulation either by generating random numbers on a computer or cal-
culator, or by using some other source of random values, such as dice, a spinner, or a table of
random numbers.

u Be able to describe a simulation so that others can repeat it.

u Be able to discuss the results of a simulation study and draw conclusions about the question be-
ing investigated.

SIMULATION ON THE COMPUTER

Simulations are best done with the help of technology simply because more trials makes a better simulation, and
computers are fast. There are special computer programs designed for simulation, and most statistics packages
and calculators can at least generate random numbers to support a simulation.
All technology-generated random numbers are pseudorandom. The random numbers available on the Internet may
technically be better, but the differences won’t matter for any simulation of modest size. Pseudorandom numbers

generate the next random value from the previous one by a specified algorithm. But
they have to start somewhere. This starting point is called the “seed.” Most pro-
grams let you set the seed. There’s usually little reason to do this, but if you wish to,
go ahead. If you reset the seed to the same value, the programs will generate the
same sequence of “random” numbers.

Activity: Creating
Random Values. Learn to use
your statistics package to
generate random outcomes.
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EXERCISES

1. Coin toss. Is a coin flip random? Why or why not?

2. Casino. A casino claims that its electronic “video
roulette” machine is truly random. What should that
claim mean?

3. The lottery. Many states run lotteries, giving away
millions of dollars if you match a certain set of winning
numbers. How are those numbers determined? Do you
think this method guarantees randomness? Explain.

4. Games. Many kinds of games people play rely on ran-
domness. Cite three different methods commonly used in
the attempt to achieve this randomness, and discuss the
effectiveness of each.

5. Birth defects. The American College of Obstetricians
and Gynecologists says that out of every 100 babies born
in the United States, 3 have some kind of major birth de-
fect. How would you assign random numbers to conduct
a simulation based on this statistic?

6. Colorblind. By some estimates, about 10% of all males
have some color perception defect, most commonly red–
green colorblindness. How would you assign random
numbers to conduct a simulation based on this statistic?

7. Geography. An elementary school teacher with 25 stu-
dents plans to have each of them make a poster about
two different states. The teacher first numbers the states
(in alphabetical order, from 1-Alabama to 50-Wyoming),
then uses a random number table to decide which states
each kid gets. Here are the random digits:

a) Which two state numbers does the first student get?
b) Which two state numbers go to the second student?

8. Get rich. Your state’s BigBucks Lottery prize has
reached $100,000,000, and you decide to play. You have to
pick five numbers between 1 and 60, and you’ll win if
your numbers match those drawn by the state. You de-
cide to pick your “lucky” numbers using a random num-
ber table. Which numbers do you play, based on these
random digits?

9. Play the lottery. Some people play state-run lotteries
by always playing the same favorite “lucky” number.
Assuming that the lottery is truly random, is this strategy
better, worse, or the same as choosing different numbers
for each play? Explain.

10. Play it again, Sam. In Exercise 8 you imagined playing
the lottery by using random digits to decide what numbers
to play. Is this a particularly good or bad strategy? Explain.

11. Bad simulations. Explain why each of the following
simulations fails to model the real situation properly:
a) Use a random integer from 0 through 9 to represent

the number of heads when 9 coins are tossed.

43680 98750 13092 76561 58712

45921 01710 22892 37076

b) A basketball player takes a foul shot. Look at a ran-
dom digit, using an odd digit to represent a good shot
and an even digit to represent a miss.

c) Use random digits from 1 through 13 to represent the
denominations of the cards in a five-card poker hand.

12. More bad simulations. Explain why each of the fol-
lowing simulations fails to model the real situation:
a) Use random numbers 2 through 12 to represent the

sum of the faces when two dice are rolled.
b) Use a random integer from 0 through 5 to represent

the number of boys in a family of 5 children.
c) Simulate a baseball player’s performance at bat by

letting , , , 
, and 

13. Wrong conclusion. A Statistics student properly simu-
lated the length of checkout lines in a grocery store and
then reported, “The average length of the line will be 
3.2 people.” What’s wrong with this conclusion?

14. Another wrong conclusion. After simulating the
spread of a disease, a researcher wrote, “24% of the
people contracted the disease.” What should the correct
conclusion be?

15. Election. You’re pretty sure that your candidate for class
president has about 55% of the votes in the entire school.
But you’re worried that only 100 students will show up to
vote. How often will the underdog (the one with 45% sup-
port) win? To find out, you set up a simulation.
a) Describe how you will simulate a component.
b) Describe how you will simulate a trial.
c) Describe the response variable.

16. Two pair or three of a kind? When drawing five cards
randomly from a deck, which is more likely, two pairs or
three of a kind? A pair is exactly two of the same denomi-
nation. Three of a kind is exactly 3 of the same denomina-
tion. (Don’t count three 8’s as a pair—that’s 3 of a kind.
And don’t count 4 of the same kind as two pair—that’s 
4 of a kind, a very special hand.) How could you simulate
5-card hands? Be careful; once you’ve picked the 8 of
spades, you can’t get it again in that hand.
a) Describe how you will simulate a component.
b) Describe how you will simulate a trial.
c) Describe the response variable.

17. Cereal. In the chapter’s example, 20% of the cereal
boxes contained a picture of Tiger Woods, 30% David
Beckham, and the rest Serena Williams. Suppose you buy
five boxes of cereal. Estimate the probability that you end
up with a complete set of the pictures. Your simulation
should have at least 20 runs.

18. Cereal, again. Suppose you really want the Tiger
Woods picture. How many boxes of cereal do you need to
buy to be pretty sure of getting at least one? Your simula-
tion should use at least 10 trials.

4 = a home run.3 = a triple
2 = a double1 = a single0 = an out
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19. Multiple choice. You take a quiz with 6 multiple
choice questions. After you studied, you estimated that
you would have about an 80% chance of getting any indi-
vidual question right. What are your chances of getting
them all right? Use at least 20 trials.

20. Lucky guessing? A friend of yours who took the mul-
tiple choice quiz in Exercise 19 got all 6 questions right,
but now claims to have guessed blindly on every ques-
tion. If each question offered 4 possible answers, do you
believe her? Explain, basing your argument on a simula-
tion involving at least 10 trials.

21. Beat the lottery. Many states run lotteries to raise
money. A Web site advertises that it knows “how to
increase YOUR chances of Winning the Lottery.” They
offer several systems and criticize others as foolish. One
system is called Lucky Numbers. People who play the
Lucky Numbers system just pick a “lucky” number to play,
but maybe some numbers are luckier than others. Let’s
use a simulation to see how well this system works.

To make the situation manageable, simulate a simple
lottery in which a single digit from 0 to 9 is selected as
the winning number. Pick a single value to bet, such as 1,
and keep playing it over and over. You’ll want to run at
least 100 trials. (If you can program the simulations 
on a computer, run several hundred. Or generalize the
questions to a lottery that chooses two- or three-digit
numbers—for which you’ll need thousands of trials.)
a) What proportion of the time do you expect to win?
b) Would you expect better results if you picked a “luck-

ier” number, such as 7? (Try it if you don’t know.)
Explain.

22. Random is as random does. The “beat the lottery”
Web site discussed in Exercise 21 suggests that because
lottery numbers are random, it is better to select your bet
randomly. For the same simple lottery in Exercise 21
(random values from 0 to 9), generate each bet by choos-
ing a separate random value between 0 and 9. Play many
games. What proportion of the time do you win?

23. It evens out in the end. The “beat the lottery” Web
site of Exercise 21 notes that in the long run we expect
each value to turn up about the same number of times.
That leads to their recommended strategy. First, watch
the lottery for a while, recording the winners. Then bet
the value that has turned up the least, because it will
need to turn up more often to even things out. If there is
more than one “rarest” value, just take the lowest one
(since it doesn’t matter). Simulating the simplified lottery
described in Exercise 21, play many games with this
system. What proportion of the time do you win?

24. Play the winner? Another strategy for beating the lot-
tery is the reverse of the system described in Exercise 23.
Simulate the simplified lottery described in Exercise 21.
Each time, bet the number that just turned up. The Web
site suggests that this method should do worse. Does it?
Play many games and see.

25. Driving test. You are about to take the road test for
your driver’s license. You hear that only 34% of candi-
dates pass the test the first time, but the percentage rises

to 72% on subsequent retests. Estimate the average num-
ber of tests drivers take in order to get a license. Your
simulation should use at least 20 runs.

26. Still learning? As in Exercise 25, assume that your
chance of passing the driver’s test is 34% the first time
and 72% for subsequent retests. Estimate the percentage
of those tested who still do not have a driver’s license
after two attempts.

27. Basketball strategy. Late in a basketball game, the
team that is behind often fouls someone in an attempt to
get the ball back. Usually the opposing player will get to
shoot foul shots “one and one,” meaning he gets a shot,
and then a second shot only if he makes the first one.
Suppose the opposing player has made 72% of his foul
shots this season. Estimate the number of points he will
score in a one-and-one situation.

28. Blood donors. A person with type O-positive blood
can receive blood only from other type O donors. About
44% of the U.S. population has type O blood. At a blood
drive, how many potential donors do you expect to
examine in order to get three units of type O blood?

29. Free groceries. To attract shoppers, a supermarket
runs a weekly contest that involves “scratch-off” cards.
With each purchase, customers get a card with a black
spot obscuring a message. When the spot is scratched
away, most of the cards simply say, “Sorry—please try
again.” But during the week, 100 customers will get cards
that make them eligible for a drawing for free groceries.
Ten of the cards say they may be worth $200, 10 others
say $100, 20 may be worth $50, and the rest could be
worth $20. To register those cards, customers write their
names on them and put them in a barrel at the front of
the store. At the end of the week the store manager draws
cards at random, awarding the lucky customers free gro-
ceries in the amount specified on their card. The draw-
ings continue until the store has given away more than
$500 of free groceries. Estimate the average number of
winners each week.

30. Find the ace. A new electronics store holds a contest
to attract shoppers. Once an hour someone in the store
is chosen at random to play the Music Game. Here’s
how it works: An ace and four other cards are shuffled
and placed face down on a table. The customer gets to
turn cards over one at a time, looking for the ace. The
person wins $100 worth of free CDs or DVDs if the ace
is the first card, $50 if it is the second card, and $20, $10,
or $5 if it is the third, fourth, or fifth card chosen. What
is the average dollar amount of music the store will
give away?

31. The family. Many couples want to have both a boy
and a girl. If they decide to continue to have children
until they have one child of each sex, what would the
average family size be? Assume that boys and girls are
equally likely.

32. A bigger family. Suppose a couple will continue hav-
ing children until they have at least two children of each
sex (two boys and two girls). How many children might
they expect to have?

266 CHAPTER 11    Understanding Randomness
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33. Dice game. You are playing a children’s game in which
the number of spaces you get to move is determined by
the rolling of a die. You must land exactly on the final
space in order to win. If you are 10 spaces away, how
many turns might it take you to win?

34. Parcheesi. You are three spaces from a win in Parcheesi.
On each turn, you will roll two dice. To win, you must roll
a total of 3 or roll a 3 on one of the dice. How many turns
might you expect this to take?

35. The hot hand. A basketball player with a 65% shooting
percentage has just made 6 shots in a row. The announcer
says this player “is hot tonight! She’s in the zone!” Assume
the player takes about 20 shots per game. Is it unusual for
her to make 6 or more shots in a row during a game?

36. The World Series. The World Series ends when a team
wins 4 games. Suppose that sports analysts consider one
team a bit stronger, with a 55% chance to win any indi-
vidual game. Estimate the likelihood that the underdog
wins the series.

37. Teammates. Four couples at a dinner party play a
board game after the meal. They decide to play as teams
of two and to select the teams randomly. All eight people
write their names on slips of paper. The slips are thor-
oughly mixed, then drawn two at a time. How likely is it
that every person will be teamed with someone other
than the person he or she came to the party with?

38. Second team. Suppose the couples in Exercise 37
choose the teams by having one member of each couple
write their names on the cards and the other people each
pick a card at random. How likely is it that every person
will be teamed with someone other than the person he or
she came with?

39. Job discrimination? A company with a large sales
staff announces openings for three positions as regional
managers. Twenty-two of the current salespersons apply,
12 men and 10 women. After the interviews, when the
company announces the newly appointed managers, all
three positions go to women. The men complain of job
discrimination. Do they have a case? Simulate a random
selection of three people from the applicant pool, and
make a decision about the likelihood that a fair process
would result in hiring all women.

Exercises 267

JUST CHECKING
Answers

1. The component is one game.

2. I’ll generate random numbers and assign numbers
from 00 to 54 to the home team’s winning and from
55 to 99 to the visitors’ winning.

3. I’ll generate components until one team wins 
4 games. I’ll record which team wins the series.

4. The response is who wins the series.

5. I’ll calculate the proportion of wins by the team that
starts at home.

40. Cell phones. A proud legislator claims that your state’s
new law against talking on a cell phone while driving has
reduced cell phone use to less than 12% of all drivers.
While waiting for your bus the next morning, you notice
that 4 of the 10 people who drive by are using their cell
phones. Does this cast doubt on the legislator’s figure 
of 12%? Use a simulation to estimate the likelihood of
seeing at least 4 of 10 randomly selected drivers talking
on their cell phones if the actual rate of usage is 12%.
Explain your conclusion clearly.
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Activity: Populations and
Samples. Explore the differences
between populations and samples.

268

CHAPTER

12
Sample Surveys

In 2007, Pew Research conducted a survey to assess Americans’ knowledge of
current events. They asked a random sample of 1,502 U.S. adults 23 factual
questions about topics currently in the news.1 Pew also asked respondents
where they got their news. Those who frequented major newspaper Web sites

or who are regular viewers of the Daily Show or Colbert Report scored best on
knowledge of current events.2 Even among those viewers, only 54% responded
correctly to 15 or more of the questions. Pew claimed that this was close to the
true percentage responding correctly that they would have found if they had
asked all U.S. adults who got their news from those sources. That step from a
small sample to the entire population is impossible without understanding Statis-
tics. To make business decisions, to do science, to choose wise investments, or to
understand what voters think they’ll do the next election, we need to stretch be-
yond the data at hand to the world at large.

To make that stretch, we need three ideas. You’ll find the first one natural. The
second may be more surprising. The third is one of the strange but true facts that
often confuse those who don’t know Statistics.

Idea 1: Examine a Part of the Whole
The first idea is to draw a sample. We’d like to know about an entire population
of individuals, but examining all of them is usually impractical, if not impossible.
So we settle for examining a smaller group of individuals—a sample—selected
from the population.

You do this every day. For example, suppose you wonder how the vegetable
soup you’re cooking for dinner tonight is going to go over with your friends. To
decide whether it meets your standards, you only need to try a small amount. You
might taste just a spoonful or two. You certainly don’t have to consume the whole

1 For example, two of the questions were “Who is the vice-president of the United States?”
and “What party controls Congress?”
2 The lowest scores came from those whose main source of news was network morning
shows or Fox News.
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The W’s and Sampling
The population we are
interested in is usually
determined by the Why of
our study.The sample we
draw will be the Who. When
and How we draw the
sample may depend on 
what is practical.

Bias 269

In 1936, a young pollster named
George Gallup used a subsample
of only 3000 of the 2.4 million
responses that the Literary Digest
received to reproduce the wrong
prediction of Landon’s victory over
Roosevelt. He then used an entirely
different sample of 50,000 and pre-
dicted that Roosevelt would get 56%
of the vote to Landon’s 44%. His
sample was apparently much more
representative of the actual voting
populace. The Gallup Organization
went on to become one of the leading
polling companies.

pot. You trust that the taste will represent the flavor of the entire pot. The idea
behind your tasting is that a small sample, if selected properly, can represent the
entire population.

It’s hard to go a day without hearing about the latest opinion poll. These polls
are examples of sample surveys, designed to ask questions of a small group of
people in the hope of learning something about the entire population. Most likely,
you’ve never been selected to be part of one of these national opinion polls. That’s
true of most people. So how can the pollsters claim that a sample is representative
of the entire population? The answer is that professional pollsters work quite hard
to ensure that the “taste”—the sample that they take—represents the population.
If not, the sample can give misleading information about the population.

Bias
Selecting a sample to represent the population fairly is
more difficult than it sounds. Polls or surveys most of-
ten fail because they use a sampling method that tends
to over- or underrepresent parts of the population. The
method may overlook subgroups that are harder to
find (such as the homeless or those who use only cell
phones) or favor others (such as Internet users who like
to respond to online surveys). Sampling methods that,
by their nature, tend to over- or underemphasize some
characteristics of the population are said to be biased.
Bias is the bane of sampling—the one thing above all to
avoid. Conclusions based on samples drawn with bi-
ased methods are inherently flawed. There is usually
no way to fix bias after the sample is drawn and no
way to salvage useful information from it.

Here’s a famous example of a really dismal failure. By the beginning of the
20th century, it was common for newspapers to ask readers to return “straw”
ballots on a variety of topics. (Today’s Internet surveys are the same idea, gone
electronic.) The earliest known example of such a straw vote in the United States
dates back to 1824.

During the period from 1916 to 1936, the magazine Literary Digest regularly
surveyed public opinion and forecast election results correctly. During the 1936
presidential campaign between Alf Landon and Franklin Delano Roosevelt, it
mailed more than 10 million ballots and got back an astonishing 2.4 million. (Polls
were still a relatively novel idea, and many people thought it was important to
send back their opinions.) The results were clear: Alf Landon would be the next
president by a landslide, 57% to 43%. You remember President Landon? No? In
fact, Landon carried only two states. Roosevelt won, 62% to 37%, and, perhaps
coincidentally, the Digest went bankrupt soon afterward.

What went wrong? One problem was that the Digest’s sample wasn’t repre-
sentative. Where would you find 10 million names and addresses to sample? The
Digest used the phone book, as many surveys do.3 But in 1936, at the height of the
Great Depression, telephones were a real luxury, so they sampled more rich than
poor voters. The campaign of 1936 focused on the economy, and those who were
less well off were more likely to vote for the Democrat. So the Digest’s sample was
hopelessly biased.

How do modern polls get their samples to represent the entire population? You
might think that they’d handpick individuals to sample with care and precision.

3 Today phone numbers are computer-generated to make sure that unlisted numbers are
included. But even now, cell phones and VOIP Internet phones are often not included.

Video: The Literary Digest
Poll and the Election of 1936.
Hear the story of one of the most
famous polling failures in history.
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Activity: Sampling from
Some Real Populations. Draw
random samples to see how
closely they resemble each other
and the population.

270 CHAPTER 12    Sample Surveys

But in fact, they do something quite different: They select individuals to sample at
random. The importance of deliberately using randomness is one of the great in-
sights of Statistics.

Idea 2: Randomize
Think back to the soup sample. Suppose you add some salt to the pot. If you sam-
ple it from the top before stirring, you’ll get the misleading idea that the whole
pot is salty. If you sample from the bottom, you’ll get an equally misleading idea
that the whole pot is bland. By stirring, you randomize the amount of salt through-
out the pot, making each taste more typical of the whole pot.

Not only does randomization protect you against factors that you know are
in the data, it can also help protect against factors that you didn’t even know were
there. Suppose, while you weren’t looking, a friend added a handful of peas to the
soup. If they’re down at the bottom of the pot, and you don’t randomize the soup
by stirring, your test spoonful won’t have any peas. By stirring in the salt, you also
randomize the peas throughout the pot, making your sample taste more typical
of the overall pot even though you didn’t know the peas were there. So randomizing
protects us even in this case.

How do we “stir” people in a survey? We select them at random. Randomizing
protects us from the influences of all the features of our population by making sure
that, on average, the sample looks like the rest of the population.

Why not match the sample to the population? Rather than randomiz-
ing, we could try to design our sample so that the people we choose are typical in
terms of every characteristic we can think of. We might want the income levels of
those we sample to match the population. How about age? Political affiliation?
Marital status? Having children? Living in the suburbs? We can’t possibly think of
all the things that might be important. Even if we could, we wouldn’t be able to
match our sample to the population for all these characteristics.

Is a random sample representative?FOR EXAMPLE

Here are summary statistics
comparing two samples of 8000
drawn at random from a com-
pany’s database of 3.5 million
customers:

Question: Do you think these samples are representative of the population? Explain.

The two samples look very similar with respect to these seven variables. It appears that randomizing has automati-
cally matched them pretty closely. We can reasonably assume that since the two samples don’t differ too much from
each other, they don’t differ much from the rest of the population either.

Age 
(yr)

White 
(%)

Female 
(%)

# of 
Children

Income 
Bracket 
(1–7)

Wealth 
Bracket 
(1–9)

Homeowner? 
(% Yes)

61.4 85.12 56.2 1.54 3.91 5.29 71.36
61.2 84.44 56.4 1.51 3.88 5.33 72.30

Idea 3: It’s the Sample Size
How large a random sample do we need for the sample to be reasonably repre-
sentative of the population? Most people think that we need a large percent-
age, or fraction, of the population, but it turns out that what matters is the
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Does a Census Make Sense? 271

number of individuals in the sample, not the size of the population. A random
sample of 100 students in a college represents the student body just about as
well as a random sample of 100 voters represents the entire electorate of the
United States. This is the third idea and probably the most surprising one in de-
signing surveys.

How can it be that only the size of the sample, and not the population, mat-
ters? Well, let’s return one last time to that pot of soup. If you’re cooking for a ban-
quet rather than just for a few people, your pot will be bigger, but do you need a
bigger spoon to decide how the soup tastes? Of course not. The same-size spoon-
ful is probably enough to make a decision about the entire pot, no matter how
large the pot. The fraction of the population that you’ve sampled doesn’t matter.4

It’s the sample size itself that’s important.
How big a sample do you need? That depends on what you’re estimating. To

get an idea of what’s really in the soup, you’ll need a large enough taste to get a
representative sample from the pot. For a survey that tries to find the proportion of
the population falling into a category, you’ll usually need several hundred re-
spondents to say anything precise enough to be useful.5

Does a Census Make Sense?
Why bother determining the right sample size? Wouldn’t it be better to just include
everyone and “sample” the entire population? Such a special sample is called a
census. Although a census would appear to provide the best possible information
about the population, there are a number of reasons why it might not.

First, it can be difficult to complete a census. Some individuals in the popula-
tion will be hard (and expensive) to locate. Or a census might just be impractical.
If you were a taste tester for the HostessTM Company, you probably wouldn’t want
to census all the Twinkies on the production line. Not only might this be life-
endangering, but you wouldn’t have any left to sell.

What do the pollsters do? How do professional polling agencies do their
work? The most common polling method today is to contact respondents by tele-
phone. Computers generate random telephone numbers, so pollsters can even call
some people with unlisted phone numbers. The person who answers the phone is
invited to respond to the survey—if that person qualifies. (For example, only if it’s
an adult who lives at that address.) If the person answering doesn’t qualify, the
caller will ask for an appropriate alternative. In phrasing questions, pollsters often
list alternative responses (such as candidates’ names) in different orders to avoid
biases that might favor the first name on the list.

Do these methods work? The Pew Research Center for the People and the Press,
reporting on one survey, says that

Across five days of interviewing, surveys today are able to make some kind of
contact with the vast majority of households (76%), and there is no decline in
this contact rate over the past seven years. But because of busy schedules,
skepticism and outright refusals, interviews were completed in just 38% of
households that were reached using standard polling procedures.

Nevertheless, studies indicate that those actually sampled can give a good snap-
shot of larger populations from which the surveyed households were drawn.

A friend who knows that you
are taking Statistics asks
your advice on her study.
What can you possibly say
that will be helpful? Just say,
“If you could just get a larger
sample, it would probably
improve your study.” Even
though a larger sample
might not be worth the cost,
it will almost always make
the results more precise.

Activity: Does the
Population Size Matter? Here’s
the narrated version of this
important idea about sampling.

4 Well, that’s not exactly true. If the population is small enough and the sample is more
than 10% of the whole population, it can matter. It doesn’t matter whenever, as usual, our
sample is a very small fraction of the population.
5 Chapter 19 gives the details behind this statement and shows how to decide on a sample
size for a survey.

Video: Frito-Lay Sampling
for Quality. How does a potato
chip manufacturer make sure to
cook only the best potatoes?

Populations and Samples. How 
well can a sample reveal the
population’s shape, center, and
spread? Explore what happens
as you change the sample size. 
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Any quantity that we
calculate from data could 
be called a “statistic.” But 
in practice, we usually use 
a statistic to estimate a
population parameter.

Second, populations rarely stand still. In populations of people, babies are born
and folks die or leave the country. In opinion surveys, events may cause a shift in
opinion during the survey. A census takes longer to complete and the population
changes while you work. A sample surveyed in just a few days may give more ac-
curate information.

Third, taking a census can be more complex than sampling. For example, the
U.S. Census records too many college students. Many are counted once with their
families and are then counted a second time in a report filed by their schools.

272 CHAPTER 12    Sample Surveys

The undercount. It’s particularly difficult to compile a complete census of a pop-
ulation as large, complex, and spread out as the U.S. population. The U.S. Census is
known to miss some residents. On occasion, the undercount has been striking. For
example, there have been blocks in inner cities in which the number of residents
recorded by the Census was smaller than the number of electric meters for which bills
were being paid. What makes the problem particularly important is that some groups
have a higher probability of being missed than others—undocumented immigrants,
the homeless, the poor. The Census Bureau proposed the use of random sampling to
estimate the number of residents missed by the ordinary census. Unfortunately, the
resulting debate has become more political than statistical.

Populations and Parameters
A study found that teens were less likely to “buckle up.” The National Center
for Chronic Disease Prevention and Health Promotion reports that 21.7% of U.S.
teens never or rarely wear seatbelts. We’re sure they didn’t take a census, so
what does the 21.7% mean? We can’t know what percentage of teenagers wear
seatbelts. Reality is just too complex. But we can simplify the question by build-
ing a model.

Models use mathematics to represent reality. Parameters are the key numbers
in those models. A parameter used in a model for a population is sometimes
called (redundantly) a population parameter.

But let’s not forget about the data. We use summaries of the data to estimate
the population parameters. As we know, any summary found from the data is a
statistic. Sometimes you’ll see the (also redundant) term sample statistic.6

We’ve already met two parameters in Chapter 6: the mean, , and the stan-
dard deviation, . We’ll try to keep denoting population model parameters with
Greek letters and the corresponding statistics with Latin letters. Usually, but not
always, the letter used for the statistic and the parameter correspond in a natural
way. So the standard deviation of the data is s, and the corresponding parameter
is (Greek for s). In Chapter 7, we used r to denote the sample correlation. The
corresponding correlation in a model for the population would be called (rho).
In Chapter 8, b1 represented the slope of a linear regression estimated from the
data. But when we think about a (linear) model for the population, we denote the
slope parameter (beta).

Get the pattern? Good. Now it breaks down. We denote the mean of a popu-
lation model with (because is the Greek letter for m). It might make sense to
denote the sample mean with m, but long-standing convention is to put a bar over
anything when we average it, so we write . What about proportions? Suppose
we want to talk about the proportion of teens who don’t wear seatbelts. If we use
p to denote the proportion from the data, what is the corresponding model
parameter? By all rights it should be . But statements like might be
confusing because has been equal to 3.1415926 . . . for so long, and it’s worked
so well. So, once again we violate the rule. We’ll use p for the population model

p

p = 0.25p

y

mm

b1

r

s

s

m

Activity: Statistics and
Parameters. Explore the
difference between statistics and
parameters.

6 Where else besides a sample could a statistic come from?

Remember: Population
model parameters are not
just unknown—usually they
are unknowable. We have to
settle for sample statistics.
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parameter and for the proportion from the data (since, like in regression, it’s
an estimated value).

Here’s a table summarizing the notation:

yNpN

Name Statistic Parameter

Mean y (mu, pronounced “meeoo,” not “moo”)m

Standard deviation s (sigma)s

Correlation r (rho)r

Regression coefficient b (beta, pronounced “baytah”7)b

Proportion pN p (pronounced “pee”8)

NOTATION ALERT:

This entire table is a notation
alert.

We draw samples because we can’t work with the entire population, but we
want the statistics we compute from a sample to reflect the corresponding parame-
ters accurately. A sample that does this is said to be representative. A biased sam-
pling methodology tends to over- or underestimate the parameter of interest.

JUST CHECKING
1. Various claims are often made for surveys. Why is each of the following claims not correct?

a) It is always better to take a census than to draw a sample.
b) Stopping students on their way out of the cafeteria is a good way to sample if we want to know about the qual-

ity of the food there.
c) We drew a sample of 100 from the 3000 students in a school. To get the same level of precision for a town of

30,000 residents, we’ll need a sample of 1000.
d) A poll taken at a statistics support Web site garnered 12,357 responses. The majority said they enjoy doing statis-

tics homework. With a sample size that large, we can be pretty sure that most Statistics students feel this way, too.
e) The true percentage of all Statistics students who enjoy the homework is called a “population statistic.”

Simple Random Samples
How would you select a representative sample? Most people would say that every
individual in the population should have an equal chance to be selected, and cer-
tainly that seems fair. But it’s not sufficient. There are many ways to give everyone
an equal chance that still wouldn’t give a representative sample. Consider, for
example, a school that has equal numbers of males and females. We could sample
like this: Flip a coin. If it comes up heads, select 100 female students at random. If
it comes up tails, select 100 males at random. Everyone has an equal chance of
selection, but every sample is of only a single sex—hardly representative.

We need to do better. Suppose we insist that every possible sample of the size
we plan to draw has an equal chance to be selected. This ensures that situations like
the one just described are not likely to occur and still guarantees that each person
has an equal chance of being selected. What’s different is that with this method,
each combination of people has an equal chance of being selected as well. A sample
drawn in this way is called a Simple Random Sample, usually abbreviated SRS.
An SRS is the standard against which we measure other sampling methods, and the
sampling method on which the theory of working with sampled data is based.

To select a sample at random, we first need to define where the sample will come
from. The sampling frame is a list of individuals from which the sample is drawn.

7 If you’re from the United States. If you’re British or Canadian, it’s “beetah.”
8 Just in case you weren’t sure.
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For example, to draw a random sample of students at a college, we might obtain a list
of all registered full-time students and sample from that list. In defining the sampling
frame, we must deal with the details of defining the population. Are part-time stu-
dents included? How about those who are attending school elsewhere and transfer-
ring credits back to the college?

Once we have a sampling frame, the easiest way to choose an SRS is to assign a
random number to each individual in the sampling frame. We then select only those
whose random numbers satisfy some rule.9 Let’s look at some ways to do this.

274 CHAPTER 12    Sample Surveys

Using random numbers to get an SRSFOR EXAMPLE

There are 80 students enrolled in an introductory Statistics class; you are to select a sample of 5.

Question: How can you select an SRS of 5 students using these random digits found on the Internet: 05166 29305 77482?

First I’ll number the students from 00 to 79. Taking the random numbers two digits at a time gives me 05, 16, 62,
93, 05, 77, and 48. I’ll ignore 93 because the students were numbered only up to 79. And, so as not to pick the same
person twice, I’ll skip the repeated number 05. My simple random sample consists of students with the numbers 05,
16, 62, 77, and 48.

u We can be more efficient when we’re choosing a larger sample from a sam-
pling frame stored in a data file. First we assign a random number with several
digits (say, from 0 to 10,000) to each individual. Then we arrange the random
numbers in numerical order, keeping each name with its number. Choosing
the first n names from this re-arranged list will give us a random sample of
that size.

u Often the sampling frame is so large that it would be too tedious to number
everyone consecutively. If our intended sample size is approximately 10% of
the sampling frame, we can assign each individual a single random digit 0 to 9.
Then we select only those with a specific random digit, say, 5.

Samples drawn at random generally differ one from another. Each draw of
random numbers selects different people for our sample. These differences lead to
different values for the variables we measure. We call these sample-to-sample dif-
ferences sampling variability. Surprisingly, sampling variability isn’t a problem;
it’s an opportunity. In future chapters we’ll investigate what the variation in a
sample can tell us about its population.

Stratified Sampling
Simple random sampling is not the only fair way to sample. More complicated de-
signs may save time or money or help avoid sampling problems. All statistical
sampling designs have in common the idea that chance, rather than human choice,
is used to select the sample.

Designs that are used to sample from large populations—especially popula-
tions residing across large areas—are often more complicated than simple ran-
dom samples. Sometimes the population is first sliced into homogeneous groups,
called strata, before the sample is selected. Then simple random sampling is used
within each stratum before the results are combined. This common sampling de-
sign is called stratified random sampling.

Why would we want to complicate things? Here’s an example. Suppose we
want to learn how students feel about funding for the football team at a large

9 Chapter 11 presented ways of finding and working with random numbers.

Error Okay, Bias Bad!
Sampling variability is
sometimes referred to as
sampling error, making it
sound like it’s some kind 
of mistake. It’s not. We
understand that samples will
vary, so “sampling error” is
to be expected. It’s bias we
must strive to avoid. Bias
means our sampling method
distorts our view of the
population, and that will
surely lead to mistakes.
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university. The campus is 60% men and 40% women, and we suspect that men
and women have different views on the funding. If we use simple random sam-
pling to select 100 people for the survey, we could end up with 70 men and 30
women or 35 men and 65 women. Our resulting estimates of the level of support
for the football funding could vary widely. To help reduce this sampling variabil-
ity, we can decide to force a representative balance, selecting 60 men at random
and 40 women at random. This would guarantee that the proportions of men and
women within our sample match the proportions in the population, and that
should make such samples more accurate in representing population opinion.

You can imagine the importance of stratifying by race, income, age, and other
characteristics, depending on the questions in the survey. Samples taken within a
stratum vary less, so our estimates can be more precise. This reduced sampling
variability is the most important benefit of stratifying.

Stratified sampling can also help us notice important differences among
groups. As we saw in Chapter 3, if we unthinkingly combine group data, we risk
reaching the wrong conclusion, becoming victims of Simpson’s paradox.

Stratifying the sampleFOR EXAMPLE

Recap: You’re trying to find out what freshmen think of the food served on campus. Food Services believes that men and women typically have different
opinions about the importance of the salad bar.

Question: How should you adjust your sampling strategy to allow for this difference?

I will stratify my sample by drawing an SRS of men and a separate SRS of women—assuming that the data from the
registrar include information about each person’s sex.

Cluster and Multistage Sampling
Suppose we wanted to assess the reading level of this textbook based on the
length of the sentences. Simple random sampling could be awkward; we’d have
to number each sentence, then find, for example, the 576th sentence or the 2482nd
sentence, and so on. Doesn’t sound like much fun, does it?

It would be much easier to pick a few pages at random and count the lengths
of the sentences on those pages. That works if we believe that each page is repre-
sentative of the entire book in terms of reading level. Splitting the population into
representative clusters can make sampling more practical. Then we could simply
select one or a few clusters at random and perform a census within each of them.
This sampling design is called cluster sampling. If each cluster represents the full
population fairly, cluster sampling will be unbiased.

Cluster samplingFOR EXAMPLE

Recap: In trying to find out what freshmen think about the food served on campus, you’ve considered both an SRS and a stratified sample. Now you
have run into a problem: It’s simply too difficult and time consuming to track down the individuals whose names were chosen for your sample. Fortu-
nately, freshmen at your school are all housed in 10 freshman dorms.

Questions: How could you use this fact to draw a cluster sample? How might that alleviate the problem? What concerns do you have?

To draw a cluster sample, I would select one or two dorms at random and then try to contact everyone in each selected
dorm. I could save time by simply knocking on doors on a given evening and interviewing people. I’d have to assume that
freshmen were assigned to dorms pretty much at random and that the people I’m able to contact are representative of
everyone in the dorm.
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Strata or Clusters?
We may split a population
into strata or clusters. What’s
the difference? We create
strata by dividing the
population into groups of
similar individuals so that
each stratum is different
from the others. By contrast,
since clusters each represent
the entire population, they
all look pretty much alike.

What’s the difference between cluster sampling and stratified sampling? We
stratify to ensure that our sample represents different groups in the population,
and we sample randomly within each stratum. Strata are internally homogeneous,
but differ from one another. By contrast, clusters are internally heterogeneous, each
resembling the overall population. We select clusters to make sampling more prac-
tical or affordable.

Stratified vs. cluster sampling. Boston cream pie consists of a layer of yellow
cake, a layer of pastry creme, another cake layer, and then a chocolate frosting. Sup-
pose you are a professional taster (yes, there really are such people) whose job is to
check your company’s pies for quality. You’d need to eat small samples of randomly
selected pies, tasting all three components: the cake, the creme, and the frosting.

One approach is to cut a thin vertical slice out of the pie. Such a slice will be a 
lot like the entire pie, so by eating that slice, you’ll learn about the whole pie. This
vertical slice containing all the different ingredients in the pie would be a cluster
sample.

Another approach is to sample in strata: Select some tastes of the cake at ran-
dom, some tastes of creme at random, and some bits of frosting at random. You’ll
end up with a reliable judgment of the pie’s quality.

Many populations you might want to learn about are like this Boston cream pie.
You can think of the subpopulations of interest as horizontal strata, like the layers
of pie. Cluster samples slice vertically across the layers to obtain clusters, each of
which is representative of the entire population. Stratified samples represent the
population by drawing some from each layer, reducing variability in the results that
could arise because of the differences among the layers.

Sometimes we use a variety of sampling methods together. In trying to assess
the reading level of this book, we might worry that it starts out easy and then gets
harder as the concepts become more difficult. If so, we’d want to avoid samples
that selected heavily from early or from late chapters. To guarantee a fair mix of
chapters, we could randomly choose one chapter from each of the seven parts of
the book and then randomly select a few pages from each of those chapters. If,
altogether, that made too many sentences, we might select a few sentences at ran-
dom from each of the chosen pages. So, what is our sampling strategy? First we
stratify by the part of the book and randomly choose a chapter to represent each
stratum. Within each selected chapter, we choose pages as clusters. Finally, we
consider an SRS of sentences within each cluster. Sampling schemes that combine
several methods are called multistage samples. Most surveys conducted by pro-
fessional polling organizations use some combination of stratified and cluster
sampling as well as simple random samples.

Multistage samplingFOR EXAMPLE

Recap: Having learned that freshmen are housed in separate dorms allowed you to sample their attitudes about the campus food by going to dorms
chosen at random, but you’re still concerned about possible differences in opinions between men and women. It turns out that these freshmen dorms
house the sexes on alternate floors.

Question: How can you design a sampling plan that uses this fact to your advantage?

Now I can stratify my sample by sex. I would first choose one or two dorms at random and then select some dorm
floors at random from among those that house men and, separately, from among those that house women. I could
then treat each floor as a cluster and interview everyone on that floor.
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Systematic Samples
Some samples select individuals systematically. For example, you might survey
every 10th person on an alphabetical list of students. To make it random, you still
must start the systematic selection from a randomly selected individual. When
the order of the list is not associated in any way with the responses sought,
systematic sampling can give a representative sample. Systematic sampling can
be much less expensive than true random sampling. When you use a systematic
sample, you should justify the assumption that the systematic method is not asso-
ciated with any of the measured variables.

Think about the reading-level sampling example again. Suppose we have
chosen a chapter of the book at random, then three pages at random from that
chapter, and now we want to select a sample of 10 sentences from the 73 sentences
found on those pages. Instead of numbering each sentence so we can pick a sim-
ple random sample, it would be easier to sample systematically. A quick calcula-
tion shows , so we can get our sample by just picking every seventh
sentence on the page. But where should you start? At random, of course. We’ve
accounted for of the sentences, so we’ll throw the extra 3 into the
starting group and choose a sentence at random from the first 10. Then we pick
every seventh sentence after that and record its length.

10 * 7 = 70

73>10 = 7.3

JUST CHECKING
2. We need to survey a random sample of the 300 passengers on a flight from San Francisco to Tokyo. Name each

sampling method described below.
a) Pick every 10th passenger as people board the plane.
b) From the boarding list, randomly choose 5 people flying first class and 25 of the other passengers.
c) Randomly generate 30 seat numbers and survey the passengers who sit there.
d) Randomly select a seat position (right window, right center, right aisle, etc.) and survey all the passengers

sitting in those seats.

The assignment says, “Conduct your own sample survey to find out how many hours per week students at your
school spend watching TV during the school year.” Let’s see how we might do this step by step. (Remember,
though—actually collecting the data from your sample can be difficult and time consuming.)

Question: How would you design this survey?

SamplingSTEP-BY-STEP EXAMPLE

I wanted to design a study to find out how
many hours of TV students at my school watch.

Plan State what you want to know.

Population and Parameter Identify
the W’s of the study. The Why determines
the population and the associated sam-
pling frame. The What identifies the
parameter of interest and the variables
measured. The Who is the sample we ac-
tually draw. The How, When, and Where
are given by the sampling plan.

The population studied was students at our
school. I obtained a list of all students currently
enrolled and used it as the sampling frame. The
parameter of interest was the number of TV
hours watched per week during the school year,
which I attempted to measure by asking stu-
dents how much TV they watched during the
previous week.
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The survey was taken over the period Oct. 15 
to Oct. 25. Surveys were sent to selected stu-
dents by e-mail, with the request that they
respond by e-mail as well. Students who could
not be reached by e-mail were handed the sur-
vey in person.

Sampling Practice Specify When,
Where, and How the sampling was per-
formed. Specify any other details of 
your survey, such as how respondents
were contacted, what incentives were 
offered to encourage them to respond,
how nonrespondents were treated, and 
so on.

I decided against stratifying by class or sex 
because I didn’t think TV watching would differ
much between males and females or across
classes. I selected a simple random sample 
of students from the list. I obtained an alpha-
betical list of students, assigned each a random
digit between 0 and 9, and then selected all
students who were assigned a “4.” This method
generated a sample of 212 students from the
population of 2133 students.

Often, thinking about the Why will help
us see whether the sampling frame and
plan are adequate to learn about the
population.

Sampling Plan Specify the sampling
method and the sample size, n. Specify
how the sample was actually drawn.
What is the sampling frame? How was
the randomization performed?

A good description should be complete
enough to allow someone to replicate 
the procedure, drawing another sample
from the same population in the same
manner.

During the period Oct. 15 to Oct. 25, 212 stu-
dents were randomly selected, using a simple
random sample from a list of all students
currently enrolled. The survey they received
asked the following question: “How many 
hours did you spend watching television 
last week?”

Of the 212 students surveyed, 110 responded.
It’s possible that the nonrespondents differ in
the number of TV hours watched from those
who responded, but I was unable to follow up on
them due to limited time and funds. The 110 re-
spondents reported an average 3.62 hours of
TV watching per week. The median was only
2 hours per week. A histogram of the data
shows that the distribution is highly right-
skewed, indicating that the median might be a
more appropriate summary of the typical TV
watching of the students.

Summary and Conclusion This report
should include a discussion of all the ele-
ments. In addition, it’s good practice to
discuss any special circumstances. Profes-
sional polling organizations report the
When of their samples but will also note,
for example, any important news that
might have changed respondents’ opin-
ions during the sampling process. In this
survey, perhaps, a major news story or
sporting event might change students’ TV
viewing behavior.

The question you ask also matters. It’s
better to be specific (“How many hours
did you watch TV last week?”) than to 
ask a general question (“How many 
hours of TV do you usually watch in 
a week?”).
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Defining the “Who”: You Can’t Always 
Get What You Want

Before you start a survey, think first about the population you want to study. You
may find that it’s not the well-defined group you thought it was. Who, exactly, is
a student, for example? Even if the population seems well defined, it may not be
a practical group from which to draw a sample. For example, election polls want
to sample from all those who will vote in the next election—a population that is
impossible to identify before Election Day.

Next, you must specify the sampling frame. (Do you have a list of students to
sample from? How about a list of registered voters?) Usually, the sampling frame
is not the group you really want to know about. (All those registered to vote are
not equally likely to show up.) The sampling frame limits what your survey can
find out.

Then there’s your target sample. These are the individuals for whom you
intend to measure responses. You’re not likely to get responses from all of them.
(“I know it’s dinnertime, but I’m sure you wouldn’t mind answering a few ques-
tions. It’ll only take 20 minutes or so. Oh, you’re busy?”) Nonresponse is a prob-
lem in many surveys.

Finally, there’s your sample—the actual respondents. These are the individu-
als about whom you do get data and can draw conclusions. Unfortunately, they
might not be representative of the sampling frame or the population.

Most of the students (90%) watch between 
0 and 10 hours per week, while 30% reported
watching less than 1 hour per week. A few
watch much more. About 3% reported watching
more than 20 hours per week.

The report should show a display of the
data, provide and interpret the statistics
from the sample, and state the conclu-
sions that you reached about the
population.
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The population is
determined by the Why of
the study. Unfortunately, the
sample is just those we can
reach to obtain responses—
the Who of the study.This
difference could undermine
even a well-designed study.

CALVIN AND HOBBES © 1993 Watterson. Reprinted with permission of Universal Press Syndicate. All rights reserved.

BOCK_C12_0321570448 pp3.qxd  12/1/08  3:03 PM  Page 279



280 CHAPTER 12    Sample Surveys

At each step, the group we can study may be constrained further. The Who
keeps changing, and each constraint can introduce biases. A careful study should
address the question of how well each group matches the population of interest.
One of the main benefits of simple random sampling is that it never loses its
sense of who’s Who. The Who in an SRS is the population of interest from which
we’ve drawn a representative sample. That’s not always true for other kinds 
of samples.

The Valid Survey
It isn’t sufficient to just draw a sample and start asking questions. We’ll want our
survey to be valid. A valid survey yields the information we are seeking about the
population we are interested in. Before setting out to survey, ask yourself:

u What do I want to know?

u Am I asking the right respondents?

u Am I asking the right questions?

u What would I do with the answers if I had them; would they address the
things I want to know?

These questions may sound obvious, but there are a number of pitfalls to avoid.
Know what you want to know. Before considering a survey, understand what
you hope to learn and about whom you hope to learn it. Far too often, peo-
ple decide to perform a survey without any clear idea of what they hope to
learn.
Use the right frame. A valid survey obtains responses from the appropriate re-
spondents. Be sure you have a suitable sampling frame. Have you identified
the population of interest and sampled from it appropriately? A company
might survey customers who returned warranty registration cards, a readily
available sampling frame. But if the company wants to know how to make
their product more attractive, the most important population is the customers
who rejected their product in favor of one from a competitor.
Tune your instrument. It is often tempting to ask questions you don’t really
need, but beware—longer questionnaires yield fewer responses and thus a
greater chance of nonresponse bias.
Ask specific rather than general questions. People are not very good at estimating
their typical behavior, so it is better to ask “How many hours did you sleep
last night?” than “How much do you usually sleep?” Sure, some responses
will include some unusual events (My dog was sick; I was up all night.), but
overall you’ll get better data.
Ask for quantitative results when possible. “How many magazines did you read
last week?” is better than “How much do you read: A lot, A moderate amount,
A little, or None at all?”
Be careful in phrasing questions. A respondent may not understand the question—
or may understand the question differently than the researcher intended it.
(“Does anyone in your family belong to a union?” Do you mean just me,
my spouse, and my children? Or does “family” include my father, my sib-
lings, and my second cousin once removed? What about my grandfather,
who is staying with us? I think he once belonged to the Autoworkers
Union.) Respondents are unlikely (or may not have the opportunity) to ask
for clarification. A question like “Do you approve of the recent actions of
the Secretary of Labor?” is likely not to measure what you want if many re-

BOCK_C12_0321570448 pp3.qxd  12/1/08  3:03 PM  Page 280



The Valid Survey 281

spondents don’t know who the Secretary of Labor is or what actions he or
she recently made.

Respondents may even lie or shade their responses if they feel embar-
rassed by the question (“Did you have too much to drink last night?”), are in-
timidated or insulted by the question (“Could you understand our new
Instructions for Dummies manual, or was it too difficult for you?”), or if they
want to avoid offending the interviewer (“Would you hire a man with a tat-
too?” asked by a tattooed interviewer). Also, be careful to avoid phrases that
have double or regional meanings. “How often do you go to town?” might be
interpreted differently by different people and cultures.
Even subtle differences in phrasing can make a difference. In January 2006, the New
York Times asked half of the 1229 U.S. adults in their sample the following
question:

After 9/11, President Bush authorized government wiretaps on some phone calls in
the U.S. without getting court warrants, saying this was necessary to reduce the
threat of terrorism. Do you approve or disapprove of this?

They found that 53% of respondents approved. But when they asked the
other half of their sample a question with only slightly different phrasing,

After 9/11, George W. Bush authorized government wiretaps on some phone calls in
the U.S. without getting court warrants. Do you approve or disapprove of this?

only 46% approved.
Be careful in phrasing answers. It’s often a good idea to offer choices rather than
inviting a free response. Open-ended answers can be difficult to analyze.
“How did you like the movie?” may start an interesting debate, but it may be
better to give a range of possible responses. Be sure to phrase them in a neu-
tral way. When asking “Do you support higher school taxes?” positive re-
sponses could be worded “Yes,” “Yes, it is important for our children,” or
“Yes, our future depends on it.” But those are not equivalent answers.

The best way to protect a survey from such unanticipated measurement
errors is to perform a pilot survey. A pilot is a trial run of the survey you eventu-
ally plan to give to a larger group, using a draft of your survey questions admin-
istered to a small sample drawn from the same sampling frame you intend to use.
By analyzing the results from this smaller survey, you can often discover ways to
improve your instrument.
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WHAT CAN GO WRONG?—OR, HOW TO SAMPLE BADLY
Bad sample designs yield worthless data. Many of the most convenient forms of sam-
pling can be seriously biased. And there is no way to correct for the bias from a bad
sample. So it’s wise to pay attention to sample design—and to beware of reports based
on poor samples.

Sample Badly with Volunteers
One of the most common dangerous sampling methods is a voluntary response sam-
ple. In a voluntary response sample, a large group of individuals is invited to respond,
and all who do respond are counted. This method is used by call-in shows, 900 num-
bers, Internet polls, and letters written to members of Congress. Voluntary response
samples are almost always biased, and so conclusions drawn from them are almost
always wrong.

It’s often hard to define the sampling frame of a voluntary response study. Practi-
cally, the frames are groups such as Internet users who frequent a particular Web site or
those who happen to be watching a particular TV show at the moment. But those sam-
pling frames don’t correspond to interesting populations.

Even within the sampling frame, voluntary response samples are often biased toward
those with strong opinions or those who are strongly motivated. People with very nega-
tive opinions tend to respond more often than those with equally strong positive opin-
ions. The sample is not representative, even though every individual in the population
may have been offered the chance to respond. The resulting voluntary response bias in-
validates the survey.

If you had it to do over again, would you have children? Ann Lan-
ders, the advice columnist, asked parents this question. The overwhelming
majority—70% of the more than 10,000 people who wrote in—said no, kids
weren’t worth it. A more carefully designed survey later showed that about
90% of parents actually are happy with their decision to have children. What
accounts for the striking difference in these two results? What parents do you
think are most likely to respond to the original question?

Activity: Sources of
Sampling Bias. Here’s a narrated
exploration of sampling bias.

Sample Badly, but Conveniently
Another sampling method that doesn’t work is convenience sampling. As the name
suggests, in convenience sampling we simply include the individuals who are conve-
nient for us to sample. Unfortunately, this group may not be representative of the popu-
lation. A recent survey of 437 potential home buyers in Orange County, California,
found, among other things, that

Do you use the Internet?

Click here   for yes

Click here   for no

Bias in samplingFOR EXAMPLE

Recap: You’re trying to find out what freshmen think of the food served on campus, and have thought of a variety of sampling meth-
ods, all time consuming. A friend suggests that you set up a “Tell Us What You Think” Web site and invite freshmen to visit the site to
complete a questionnaire.

Question: What’s wrong with this idea?

Letting each freshman decide whether to participate makes this a voluntary response survey. Students
who were dissatisfied might be more likely to go to the Web site to record their complaints, and this
could give me a biased view of the opinions of all freshmen.
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Internet convenience surveys
are worthless. As voluntary
response surveys, they have
no well-defined sampling
frame (all those who use the
Internet and visit their site?)
and thus report no useful
information. Do not believe
them.
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Bias in samplingFOR EXAMPLE

Recap: To try to gauge freshman opinion about the food served on campus, Food Services suggests that you just stand outside a
school cafeteria at lunchtime and stop people to ask them questions.

Questions: What’s wrong with this sampling strategy?

This would be a convenience sample, and it’s likely to be biased. I would miss people who use the cafeteria
for dinner, but not for lunch, and I’d never hear from anyone who hates the food so much that they have
stopped coming to the school cafeterias.

All but 2 percent of the buyers have at least one computer at home, and 62 percent have 
two or more. Of those with a computer, 99 percent are connected to the Internet (Jennifer
Hieger, “Portrait of Homebuyer Household: 2 Kids and a PC,” Orange County Register,
27 July 2001).

Later in the article, we learn that the survey was conducted via the Internet! That was
a convenient way to collect data and surely easier than drawing a simple random sam-
ple, but perhaps home builders shouldn’t conclude from this study that every family has
a computer and an Internet connection.

Many surveys conducted at shopping malls suffer from the same problem. People in
shopping malls are not necessarily representative of the population of interest. Mall
shoppers tend to be more affluent and include a larger percentage of teenagers and re-
tirees than the population at large. To make matters worse, survey interviewers tend to
select individuals who look “safe,” or easy to interview.

Sample from a Bad Sampling Frame
An SRS from an incomplete sampling frame introduces bias because the individuals in-
cluded may differ from the ones not in the frame. People in prison, homeless people,
students, and long-term travelers are all likely to be missed. In telephone surveys, peo-
ple who have only cell phones or who use VOIP Internet phones are often missing from
the sampling frame.

Undercoverage
Many survey designs suffer from undercoverage, in which some portion of the popula-
tion is not sampled at all or has a smaller representation in the sample than it has in the
population. Undercoverage can arise for a number of reasons, but it’s always a poten-
tial source of bias.

Telephone surveys are usually conducted when you are likely to be home, interrupt-
ing your dinner. If you eat out often, you may be less likely to be surveyed, a possible
source of undercoverage.

WHAT
^
CAN GO WRONG?

u Watch out for nonrespondents. A common and serious potential source of bias for most
surveys is nonresponse bias. No survey succeeds in getting responses from every-
one. The problem is that those who don’t respond may differ from those who do.
And they may differ on just the variables we care about. The lack of response will

(continued)

El se
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Remember the Literary Digest Survey? It turns out that they were wrong
on two counts. First, their list of 10 million people was not representative. There
was a selection bias in their sampling frame. There was also a nonresponse bias.
We know this because the Digest also surveyed a systematic sample in Chicago,
sending the same question used in the larger survey to every third registered voter.
They still got a result in favor of Landon, even though Chicago voted overwhelm-
ingly for Roosevelt in the election. This suggests that the Roosevelt supporters were
less likely to respond to the Digest survey. There’s a modern version of this prob-
lem: It’s been suggested that those who screen their calls with caller ID or an
answering machine, and so might not talk to a pollster, may differ in wealth or poli-
tical views from those who just answer the phone.

bias the results. Rather than sending out a large number of surveys for which the re-
sponse rate will be low, it is often better to design a smaller randomized survey for
which you have the resources to ensure a high response rate. One of the problems
with nonresponse bias is that it’s usually impossible to tell what the nonrespondents
might have said.

u Work hard to avoid influencing responses. Response bias10 refers to anything in the sur-
vey design that influences the responses. Response biases include the tendency of
respondents to tailor their responses to try to please the interviewer, the natural
unwillingness of respondents to reveal personal facts or admit to illegal or unap-
proved behavior and the ways in which the wording of the questions can influence
responses.

How to Think About Biases
u Look for biases in any survey you encounter. If you design one of your own, ask someone

else to help look for biases that may not be obvious to you. And do this before you
collect your data. There’s no way to recover from a biased sampling method or a
survey that asks biased questions. Sorry, it just can’t be done.

A bigger sample size for a biased study just gives you a bigger useless study. A
really big sample gives you a really big useless study. (Think of the 2.4 million
Literary Digest responses.)

u Spend your time and resources reducing biases. No other use of re-
sources is as worthwhile as reducing the biases.

u If you can, pilot-test your survey. Administer the survey in the exact
form that you intend to use it to a small sample drawn from the
population you intend to sample. Look for misunderstandings,
misinterpretation, confusion, or other possible biases. Then re-
fine your survey instrument.

u Always report your sampling methods in detail. Others may be able to
detect biases where you did not expect to find them.

Video: Biased Question
Wording. Watch a hapless
interviewer make every mistake
in the book.

Activity: Can a Large
Sample Protect Against Bias?
Explore how we can learn about
the population from large or
repeated samples.

A Short Survey
Given the fact that those who
understand Statistics are
smarter and better looking
than those who don’t, don’t
you think it is important to
take a course in Statistics?

10 Response bias is not the opposite of nonresponse bias. (We don’t make these terms
up; we just try to explain them.)

A researcher distributed a survey to an 
organization before some economizing changes
were made. She asked how people felt about a
proposed cutback in secretarial and administrative
support on a seven-point scale from Very Happy 
to Very Unhappy.

But virtually all respondents were very
unhappy about the cutbacks, so the results
weren’t particularly useful. If she had pretested
the question, she might have chosen a scale that
ran from Unhappy to Outraged.
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CONNECTIONS
With this chapter, we take our first formal steps to relate our sample data to a larger population.
Some of these ideas have been lurking in the background as we sought patterns and summaries for
data. Even when we only worked with the data at hand, we often thought about implications for a
larger population of individuals.

Notice the ongoing central importance of models. We’ve seen models in several ways in
previous chapters. Here we recognize the value of a model for a population. The parameters 
of such a model are values we will often want to estimate using statistics such as those we’ve
been calculating. The connections to summary statistics for center, spread, correlation, and 
slope are obvious.

We now have a specific application for random numbers. The idea of applying randomness
deliberately showed up in Chapter 11 for simulation. Now we need randomization to get good-
quality data from the real world.

WHAT HAVE WE LEARNED?

We’ve learned that a representative sample can offer us important insights about populations. It’s
the size of the sample—and not its fraction of the larger population—that determines the precision
of the statistics it yields.

We’ve learned several ways to draw samples, all based on the power of randomness to make
them representative of the population of interest:

u A Simple Random Sample (SRS) is our standard. Every possible group of individuals has an
equal chance of being our sample. That’s what makes it simple.

u Stratified samples can reduce sampling variability by identifying homogeneous subgroups and
then randomly sampling within each.

u Cluster samples randomly select among heterogeneous subgroups that each resemble the popu-
lation at large, making our sampling tasks more manageable.

u Systematic samples can work in some situations and are often the least expensive method of
sampling. But we still want to start them randomly.

u Multistage samples combine several random sampling methods.

We’ve learned that bias can destroy our ability to gain insights from our sample:

u Nonresponse bias can arise when sampled individuals will not or cannot respond.
u Response bias arises when respondents’ answers might be affected by external influences, such

as question wording or interviewer behavior.

We’ve learned that bias can also arise from poor sampling methods:

u Voluntary response samples are almost always biased and should be avoided and distrusted.
u Convenience samples are likely to be flawed for similar reasons.
u Even with a reasonable design, sample frames may not be representative. Undercoverage occurs

when individuals from a subgroup of the population are selected less often than they should be.

Finally, we’ve learned to look for biases in any survey we find and to be sure to report our methods
whenever we perform a survey so that others can evaluate the fairness and accuracy of our results.

Terms
Population 268. The entire group of individuals or instances about whom we hope to learn.

Sample 268. A (representative) subset of a population, examined in hope of learning about the population.

n
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Sample survey 269. A study that asks questions of a sample drawn from some population in the hope of learning
something about the entire population. Polls taken to assess voter preferences are common sample
surveys.

Bias 269. Any systematic failure of a sampling method to represent its population is bias. Biased sam-
pling methods tend to over- or underestimate parameters. It is almost impossible to recover from bias,
so efforts to avoid it are well spent. Common errors include

u relying on voluntary response.
u undercoverage of the population.
u nonresponse bias.
u response bias.

Randomization 270. The best defense against bias is randomization, in which each individual is given a fair, ran-
dom chance of selection.

Sample size 271. The number of individuals in a sample. The sample size determines how well the sample rep-
resents the population, not the fraction of the population sampled.

Census 271. A sample that consists of the entire population is called a census.

Population parameter 272. A numerically valued attribute of a model for a population. We rarely expect to know the true
value of a population parameter, but we do hope to estimate it from sampled data. For example, the
mean income of all employed people in the country is a population parameter.

Statistic, sample statistic 272. Statistics are values calculated for sampled data. Those that correspond to, and thus estimate,
a population parameter, are of particular interest. For example, the mean income of all employed
people in a representative sample can provide a good estimate of the corresponding population pa-
rameter. The term “sample statistic” is sometimes used, usually to parallel the corresponding term
“population parameter.”

Representative 273. A sample is said to be representative if the statistics computed from it accurately reflect the
corresponding population parameters.

Simple random sample (SRS) 273. A simple random sample of sample size is a sample in which each set of elements in the
population has an equal chance of selection.

Sampling frame 273. A list of individuals from whom the sample is drawn is called the sampling frame. Individuals
who may be in the population of interest, but who are not in the sampling frame, cannot be included
in any sample.

Sampling variability 274. The natural tendency of randomly drawn samples to differ, one from another. Sometimes, un-
fortunately, called sampling error, sampling variability is no error at all, but just the natural result of
random sampling.

Stratified random sample 274. A sampling design in which the population is divided into several subpopulations, or strata,

and random samples are then drawn from each stratum. If the strata are homogeneous, but are dif-
ferent from each other, a stratified sample may yield more consistent results than an SRS.

Cluster sample 275. A sampling design in which entire groups, or clusters, are chosen at random. Cluster sam-
pling is usually selected as a matter of convenience, practicality, or cost. Each cluster should be rep-
resentative of the population, so all the clusters should be heterogeneous and similar to each other.

Multistage sample 276. Sampling schemes that combine several sampling methods are called multistage samples. For
example, a national polling service may stratify the country by geographical regions, select a ran-
dom sample of cities from each region, and then interview a cluster of residents in each city.

Systematic sample 277. A sample drawn by selecting individuals systematically from a sampling frame. When there is
no relationship between the order of the sampling frame and the variables of interest, a systematic
sample can be representative.

Pilot 281. A small trial run of a survey to check whether questions are clear. A pilot study can reduce er-
rors due to ambiguous questions.

Voluntary response bias 282. Bias introduced to a sample when individuals can choose on their own whether to participate
in the sample. Samples based on voluntary response are always invalid and cannot be recovered, no
matter how large the sample size.

nn
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Convenience sample 282. A convenience sample consists of the individuals who are conveniently available. Convenience
samples often fail to be representative because every individual in the population is not equally con-
venient to sample.

Undercoverage 283. A sampling scheme that biases the sample in a way that gives a part of the population less
representation than it has in the population suffers from undercoverage.

Nonresponse bias 283. Bias introduced when a large fraction of those sampled fails to respond. Those who do re-
spond are likely to not represent the entire population. Voluntary response bias is a form of nonre-
sponse bias, but nonresponse may occur for other reasons. For example, those who are at work dur-
ing the day won’t respond to a telephone survey conducted only during working hours.

Response bias 284. Anything in a survey design that influences responses falls under the heading of response bias.
One typical response bias arises from the wording of questions, which may suggest a favored re-
sponse. Voters, for example, are more likely to express support of “the president” than support of
the particular person holding that office at the moment.

Skills
u Know the basic concepts and terminology of sampling (see the preceding list).

u Recognize population parameters in descriptions of populations and samples.

u Understand the value of randomization as a defense against bias.

u Understand the value of sampling to estimate population parameters from statistics calculated
on representative samples drawn from the population.

u Understand that the size of the sample (not the fraction of the population) determines the preci-
sion of estimates.

u Know how to draw a simple random sample from a master list of a population, using a computer
or a table of random numbers.

u Know what to report about a sample as part of your account of a statistical analysis.

u Report possible sources of bias in sampling methods. Recognize voluntary response and nonre-
sponse as sources of bias in a sample survey.

SAMPLING ON THE COMPUTER

Computer-generated pseudorandom numbers are usually good enough for drawing random samples. But there is
little reason not to use the truly random values available on the Internet.

Here’s a convenient way to draw an SRS of a specified size using a computer-based sampling frame. The sampling
frame can be a list of names or of identification numbers arrayed, for example, as a column in a spreadsheet, sta-
tistics program, or database:
1. Generate random numbers of enough digits so that each exceeds the size of the sampling frame list by sev-

eral digits. This makes duplication unlikely.
2. Assign the random numbers arbitrarily to individuals in the sampling frame list. For example, put them in an

adjacent column.
3. Sort the list of random numbers, carrying along the sampling frame list.
4. Now the first n values in the sorted sampling frame column are an SRS of n values from the entire sampling

frame.
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EXERCISES

1. Roper. Through their Roper Reports Worldwide, GfK
Roper conducts a global consumer survey to help multi-
national companies understand different consumer atti-
tudes throughout the world. Within 30 countries, the 
researchers interview 1000 people aged 13–65. Their
samples are designed so that they get 500 males and 
500 females in each country. (www.gfkamerica.com)
a) Are they using a simple random sample? Explain.
b) What kind of design do you think they are using?

2. Student Center Survey. For their class project, a
group of Statistics students decide to survey the student
body to assess opinions about the proposed new student
center. Their sample of 200 contained 50 first-year
students, 50 sophomores, 50 juniors, and 50 seniors.
a) Do you think the group was using an SRS? Why?
b) What sampling design do you think they used?

3. Emoticons. The Web site www.gamefaqs.com asked, 
as their question of the day to which visitors to the site
were invited to respond, “Do you ever use emoticons when
you type online?” Of the 87,262 respondents, 27% said that
they did not use emoticons. ;-(
a) What kind of sample was this?
b) How much confidence would you place in using 

27% as an estimate of the fraction of people who use
emoticons?

4. Drug tests. Major League Baseball tests players to see
whether they are using performance-enhancing drugs.
Officials select a team at random, and a drug-testing crew
shows up unannounced to test all 40 players on the team.
Each testing day can be considered a study of drug use in
Major League Baseball.
a) What kind of sample is this?
b) Is that choice appropriate?

5. Gallup. At its Web site (www.gallup.com) the Gallup
Poll publishes results of a new survey each day. Scroll
down to the end, and you’ll find a statement that includes
words such as these:

Results are based on telephone interviews with 1,008 national
adults, aged 18 and older, conducted April 2–5, 2007. . . . In
addition to sampling error, question wording and practical
difficulties in conducting surveys can introduce error or bias
into the findings of public opinion polls.

a) For this survey, identify the population of interest.
b) Gallup performs its surveys by phoning numbers gen-

erated at random by a computer program. What is the
sampling frame?

c) What problems, if any, would you be concerned about
in matching the sampling frame with the population?

6. Gallup World. At its Web site (www.gallupworldpoll
.com) the Gallup World Poll describes their methods.
After one report they explained:

Results are based on face-to-face interviews with randomly
selected national samples of approximately 1,000 adults, 

aged 15 and older, who live permanently in each of the 
21 sub-Saharan African nations surveyed. Those countries
include Angola (areas where land mines might be expected
were excluded), Benin, Botswana, Burkina Faso, Cameroon,
Ethiopia, Ghana, Kenya, Madagascar (areas where inter-
viewers had to walk more than 20 kilometers from a road
were excluded), Mali, Mozambique, Niger, Nigeria, Senegal,
Sierra Leone, South Africa, Tanzania, Togo, Uganda (the area
of activity of the Lord’s Resistance Army was excluded from
the survey), Zambia, and Zimbabwe. . . . In all countries
except Angola, Madagascar, and Uganda, the sample is
representative of the entire population.

a) Gallup is interested in sub-Saharan Africa. What kind
of survey design are they using?

b) Some of the countries surveyed have large popula-
tions. (Nigeria is estimated to have about 130 million
people.) Some are quite small. (Togo’s population is
estimated at 5.4 million.) Nonetheless, Gallup sam-
pled 1000 adults in each country. How does this affect
the precision of its estimates for these countries?

7–14. What did they do? For the following reports about
statistical studies, identify the following items (if possible). If you
can’t tell, then say so—this often happens when we read about a
survey.

a) The population
b) The population parameter of interest
c) The sampling frame
d) The sample
e) The sampling method, including whether or not ran-

domization was employed
f) Any potential sources of bias you can detect and any

problems you see in generalizing to the population 
of interest

7. Consumers Union asked all subscribers whether they had
used alternative medical treatments and, if so, whether
they had benefited from them. For almost all of the treat-
ments, approximately 20% of those responding reported
cures or substantial improvement in their condition.

8. A question posted on the Lycos Web site on 18 June 2000
asked visitors to the site to say whether they thought that
marijuana should be legally available for medicinal
purposes. (www.lycos.com)

9. Researchers waited outside a bar they had randomly
selected from a list of such establishments. They stopped
every 10th person who came out of the bar and asked
whether he or she thought drinking and driving was a
serious problem.

10. Hoping to learn what issues may resonate with voters in
the coming election, the campaign director for a mayoral
candidate selects one block from each of the city’s elec-
tion districts. Staff members go there and interview all
the residents they can find.
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11. The Environmental Protection Agency took soil samples
at 16 locations near a former industrial waste dump and
checked each for evidence of toxic chemicals. They found
no elevated levels of any harmful substances.

12. State police set up a roadblock to estimate the percentage
of cars with up-to-date registration, insurance, and safety
inspection stickers. They usually find problems with
about 10% of the cars they stop.

13. A company packaging snack foods maintains quality con-
trol by randomly selecting 10 cases from each day’s pro-
duction and weighing the bags. Then they open one bag
from each case and inspect the contents.

14. Dairy inspectors visit farms unannounced and take sam-
ples of the milk to test for contamination. If the milk is
found to contain dirt, antibiotics, or other foreign matter,
the milk will be destroyed and the farm reinspected until
purity is restored.

15. Mistaken poll. A local TV station conducted a
“PulsePoll” about the upcoming mayoral election.
Evening news viewers were invited to phone in their
votes, with the results to be announced on the late-
night news. Based on the phone calls, the station pre-
dicted that Amabo would win the election with 52% of
the vote. They were wrong: Amabo lost, getting only
46% of the vote. Do you think the station’s faulty pre-
diction is more likely to be a result of bias or sampling
error? Explain.

16. Another mistaken poll. Prior to the mayoral election
discussed in Exercise 15, the newspaper also conducted a
poll. The paper surveyed a random sample of registered
voters stratified by political party, age, sex, and area of
residence. This poll predicted that Amabo would win the
election with 52% of the vote. The newspaper was wrong:
Amabo lost, getting only 46% of the vote. Do you think
the newspaper’s faulty prediction is more likely to be a
result of bias or sampling error? Explain.

17. Parent opinion, part 1. In a large city school system
with 20 elementary schools, the school board is consider-
ing the adoption of a new policy that would require ele-
mentary students to pass a test in order to be promoted 
to the next grade. The PTA wants to find out whether
parents agree with this plan. Listed below are some of 
the ideas proposed for gathering data. For each, indicate
what kind of sampling strategy is involved and what 
(if any) biases might result.
a) Put a big ad in the newspaper asking people to log

their opinions on the PTA Web site.
b) Randomly select one of the elementary schools and

contact every parent by phone.
c) Send a survey home with every student, and ask par-

ents to fill it out and return it the next day.
d) Randomly select 20 parents from each elementary

school. Send them a survey, and follow up with a phone
call if they do not return the survey within a week.

18. Parent opinion, part 2. Let’s revisit the school system
described in Exercise 17. Four new sampling strategies
have been proposed to help the PTA determine whether
parents favor requiring elementary students to pass a test
in order to be promoted to the next grade. For each, indi-

cate what kind of sampling strategy is involved and what
(if any) biases might result.
a) Run a poll on the local TV news, asking people to dial

one of two phone numbers to indicate whether they
favor or oppose the plan.

b) Hold a PTA meeting at each of the 20 elementary
schools, and tally the opinions expressed by those
who attend the meetings.

c) Randomly select one class at each elementary school
and contact each of those parents.

d) Go through the district’s enrollment records, selecting
every 40th parent. PTA volunteers will go to those
homes to interview the people chosen.

19. Churches. For your political science class, you’d like to
take a survey from a sample of all the Catholic Church
members in your city. A list of churches shows 17 Catho-
lic churches within the city limits. Rather than try to ob-
tain a list of all members of all these churches, you decide
to pick 3 churches at random. For those churches, you’ll
ask to get a list of all current members and contact 
100 members at random.
a) What kind of design have you used?
b) What could go wrong with your design?

20. Playground. Some people have been complaining that
the children’s playground at a municipal park is too
small and is in need of repair. Managers of the park de-
cide to survey city residents to see if they believe the
playground should be rebuilt. They hand out question-
naires to parents who bring children to the park. Describe
possible biases in this sample.

21. Roller coasters. An amusement park has opened a
new roller coaster. It is so popular that people are waiting
for up to 3 hours for a 2-minute ride. Concerned about
how patrons (who paid a large amount to enter the park
and ride on the rides) feel about this, they survey every
10th person on the line for the roller coaster, starting from
a randomly selected individual.
a) What kind of sample is this?
b) What is the sampling frame?
c) Is it likely to be representative?

22. Playground, act two. The survey described in Exer-
cise 20 asked,

Many people believe this playground is too small and in need of
repair. Do you think the playground should be repaired and ex-
panded even if that means raising the entrance fee to the park?

Describe two ways this question may lead to response bias.

23. Wording the survey. Two members of the PTA com-
mittee in Exercises 17 and 18 have proposed different
questions to ask in seeking parents’ opinions.

Question 1: Should elementary school–age children have to
pass high-stakes tests in order to remain with their classmates?
Question 2: Should schools and students be held accountable
for meeting yearly learning goals by testing students before
they advance to the next grade?

a) Do you think responses to these two questions might
differ? How? What kind of bias is this?

b) Propose a question with more neutral wording that
might better assess parental opinion.
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24. Banning ephedra. An online poll at a Web site asked:

A nationwide ban of the diet supplement ephedra went into
effect recently. The herbal stimulant has been linked to 155
deaths and many more heart attacks and strokes. Ephedra man-
ufacturer NVE Pharmaceuticals, claiming that the FDA lacked
proof that ephedra is dangerous if used as directed, was denied a
temporary restraining order on the ban yesterday by a federal
judge. Do you think that ephedra should continue to be banned
nationwide?

65% of 17,303 respondents said “yes.” Comment on each
of the following statements about this poll:
a) With a sample size that large, we can be pretty certain

we know the true proportion of Americans who think
ephedra should be banned.

b) The wording of the question is clearly very biased.
c) The sampling frame is all Internet users.
d) Results of this voluntary response survey can’t be reli-

ably generalized to any population of interest.

25. Survey questions. Examine each of the following
questions for possible bias. If you think the question is
biased, indicate how and propose a better question.
a) Should companies that pollute the environment be

compelled to pay the costs of cleanup?
b) Given that 18-year-olds are old enough to vote and

to serve in the military, is it fair to set the drinking
age at 21?

26. More survey questions. Examine each of the follow-
ing questions for possible bias. If you think the question
is biased, indicate how and propose a better question.
a) Do you think high school students should be required

to wear uniforms?
b) Given humanity’s great tradition of exploration, do

you favor continued funding for space flights?

27. Phone surveys. Anytime we conduct a survey, we
must take care to avoid undercoverage. Suppose we
plan to select 500 names from the city phone book, call
their homes between noon and 4 p.m., and interview
whoever answers, anticipating contacts with at least
200 people.
a) Why is it difficult to use a simple random sample here?
b) Describe a more convenient, but still random, sam-

pling strategy.
c) What kinds of households are likely to be included in

the eventual sample of opinion? Excluded?
d) Suppose, instead, that we continue calling each num-

ber, perhaps in the morning or evening, until an adult
is contacted and interviewed. How does this improve
the sampling design?

e) Random-digit dialing machines can generate the phone
calls for us. How would this improve our design? Is
anyone still excluded?

28. Cell phone survey. What about drawing a random
sample only from cell phone exchanges? Discuss the
advantages and disadvantages of such a sampling
method compared with surveying randomly generated
telephone numbers from non–cell phone exchanges. Do
you think these advantages and disadvantages have
changed over time? How do you expect they’ll change
in the future?

Barrett Bowman Chen
DeLara DeRoos Grigorov
Maceli Mulvaney Pagliarulo
Rosica Smithson Tadros
Williams Yamamoto

29. Arm length. How long is your arm compared with
your hand size? Put your right thumb at your left shoul-
der bone, stretch your hand open wide, and extend your
hand down your arm. Put your thumb at the place where
your little finger is, and extend down the arm again.
Repeat this a third time. Now your little finger will prob-
ably have reached the back of your left hand. If the fourth
hand width goes past the end of your middle finger, turn
your hand sideways and count finger widths to get there.
a) How many hand and finger widths is your arm?
b) Suppose you repeat your measurement 10 times and

average your results. What parameter would this
average estimate? What is the population?

c) Suppose you now collect arm lengths measured in this
way from 9 friends and average these 10 measure-
ments. What is the population now? What parameter
would this average estimate?

d) Do you think these 10 arm lengths are likely to be rep-
resentative of the population of arm lengths in your
community? In the country? Why or why not?

30. Fuel economy. Occasionally, when I fill my car with gas,
I figure out how many miles per gallon my car got. I wrote
down those results after 6 fill-ups in the past few months.
Overall, it appears my car gets 28.8 miles per gallon.
a) What statistic have I calculated?
b) What is the parameter I’m trying to estimate?
c) How might my results be biased?
d) When the Environmental Protection Agency (EPA)

checks a car like mine to predict its fuel economy,
what parameter is it trying to estimate?

31. Accounting. Between quarterly audits, a company
likes to check on its accounting procedures to address any
problems before they become serious. The accounting
staff processes payments on about 120 orders each day.
The next day, the supervisor rechecks 10 of the transac-
tions to be sure they were processed properly.
a) Propose a sampling strategy for the supervisor.
b) How would you modify that strategy if the company

makes both wholesale and retail sales, requiring dif-
ferent bookkeeping procedures?

32. Happy workers? A manufacturing company employs 14
project managers, 48 foremen, and 377 laborers. In an effort
to keep informed about any possible sources of employee
discontent, management wants to conduct job satisfaction
interviews with a sample of employees every month.
a) Do you see any potential danger in the company’s

plan? Explain.
b) Propose a sampling strategy that uses a simple random

sample.
c) Why do you think a simple random sample might not

provide the representative opinion the company seeks?
d) Propose a better sampling strategy.
e) Listed below are the last names of the project man-

agers. Use random numbers to select two people to be
interviewed. Explain your method carefully.
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33. Quality control. Sammy’s Salsa, a small local com-
pany, produces 20 cases of salsa a day. Each case contains
12 jars and is imprinted with a code indicating the date
and batch number. To help maintain consistency, at the
end of each day, Sammy selects three jars of salsa, weighs
the contents, and tastes the product. Help Sammy select
the sample jars. Today’s cases are coded 07N61 through
07N80.
a) Carefully explain your sampling strategy.
b) Show how to use random numbers to pick 3 jars.
c) Did you use a simple random sample? Explain.

34. A fish story. Concerned about reports of discolored
scales on fish caught downstream from a newly sited
chemical plant, scientists set up a field station in a shore-
line public park. For one week they asked fishermen
there to bring any fish they caught to the field station for
a brief inspection. At the end of the week, the scientists
said that 18% of the 234 fish that were submitted for in-
spection displayed the discoloration. From this informa-
tion, can the researchers estimate what proportion of fish
in the river have discolored scales? Explain.

35. Sampling methods. Consider each of these situations.
Do you think the proposed sampling method is appropri-
ate? Explain.
a) We want to know what percentage of local doctors ac-

cept Medicaid patients. We call the offices of 50 doctors
randomly selected from local Yellow Page listings.

b) We want to know what percentage of local businesses
anticipate hiring additional employees in the upcom-
ing month. We randomly select a page in the Yellow
Pages and call every business listed there.

36. More sampling methods. Consider each of these situ-
ations. Do you think the proposed sampling method is
appropriate? Explain.
a) We want to know if there is neighborhood support

to turn a vacant lot into a playground. We spend a
Saturday afternoon going door-to-door in the neigh-
borhood, asking people to sign a petition.

b) We want to know if students at our college are satis-
fied with the selection of food available on campus.
We go to the largest cafeteria and interview every 10th
person in line.

JUST CHECKING 
Answers

1. a) It can be hard to reach all members of a population,
and it can take so long that circumstances change,
affecting the responses. A well-designed sample is
often a better choice.

b) This sample is probably biased—students who
didn’t like the food at the cafeteria might not
choose to eat there.

c) No, only the sample size matters, not the fraction of
the overall population.

d) Students who frequent this Web site might be more
enthusiastic about Statistics than the overall popu-
lation of Statistics students. A large sample cannot
compensate for bias.

e) It’s the population “parameter.” “Statistics” de-
scribe samples.

2. a) systematic
b) stratified
c) simple
d) cluster
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CHAPTER

13
Experiments and
Observational
Studies

Who gets good grades? And, more importantly, why? Is there something
schools and parents could do to help weaker students improve their
grades? Some people think they have an answer: music! No, not
your iPod, but an instrument. In a study conducted at Mission Viejo

High School, in California, researchers compared the scholastic performance of
music students with that of non-music students. Guess what? The music students
had a much higher overall grade point average than the non-music students, 3.59
to 2.91. Not only that: A whopping 16% of the music students had all A’s com-
pared with only 5% of the non-music students.

As a result of this study and others, many parent groups and educators
pressed for expanded music programs in the nation’s schools. They argued that
the work ethic, discipline, and feeling of accomplishment fostered by learning to
play an instrument also enhance a person’s ability to succeed in school. They
thought that involving more students in music would raise academic perform-
ance. What do you think? Does this study provide solid evidence? Or are there
other possible explanations for the difference in grades? Is there any way to really
prove such a conjecture?

Observational Studies
This research tried to show an association between music education and grades.
But it wasn’t a survey. Nor did it assign students to get music education. Instead,
it simply observed students “in the wild,” recording the choices they made and
the outcome. Such studies are called observational studies. In observational stud-
ies, researchers don’t assign choices; they simply observe them. In addition, this
was a retrospective study, because researchers first identified subjects who stud-
ied music and then collected data on their past grades.

What’s wrong with concluding that music education causes good grades?
One high school during one academic year may not be representative of the
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whole United States. That’s true, but the real problem is that the claim that music
study caused higher grades depends on there being no other differences between the
groups that could account for the differences in grades, and studying music was
not the only difference between the two groups of students.

We can think of lots of lurking variables that might cause the groups to per-
form differently. Students who study music may have better work habits to start
with, and this makes them successful in both music and course work. Music stu-
dents may have more parental support (someone had to pay for all those lessons),
and that support may have enhanced their academic performance, too. Maybe
they came from wealthier homes and had other advantages. Or it could be that
smarter kids just like to play musical instruments.

Observational studies are valuable for discovering trends
and possible relationships. They are used widely in public
health and marketing. Observational studies that try to discover
variables related to rare outcomes, such as specific diseases, are
often retrospective. They first identify people with the disease
and then look into their history and heritage in search of things
that may be related to their condition. But retrospective studies
have a restricted view of the world because they are usually re-
stricted to a small part of the entire population. And because
retrospective records are based on historical data, they can have
errors. (Do you recall exactly what you ate even yesterday? How
about last Wednesday?)

A somewhat better approach is to observe individuals over
time, recording the variables of interest and ultimately seeing how things turn
out. For example, we might start by selecting young students who have not be-
gun music lessons. We could then track their academic performance over several
years, comparing those who later choose to study music with those who do not.
Identifying subjects in advance and collecting data as events unfold would make
this a prospective study.

Although an observational study may identify important variables related to
the outcome we are interested in, there is no guarantee that we have found the
right or the most important related variables. Students who choose to study an
instrument might still differ from the others in some important way that we
failed to observe. It may be this difference—whether we know what it is or not—
rather than music itself that leads to better grades. It’s just not possible for obser-
vational studies, whether prospective or retrospective, to demonstrate a causal
relationship.

For rare illnesses, it’s not practical to draw a 
large enough sample to see many ill respondents,
so the only option remaining is to develop
retrospective data. For example, researchers can
interview those who have become ill.The likely
causes of both legionnaires’ disease and HIV were
initially identified from such retrospective studies
of the small populations who were initially
infected. But to confirm the causes, researchers
needed laboratory-based experiments.

Designing an observational studyFOR EXAMPLE

In early 2007, a larger-than-usual number of cats and dogs developed kidney failure; many died. Ini-
tially, researchers didn’t know why, so they used an observational study to investigate.

Question: Suppose you were called on to plan a study seeking the cause of this problem. Would your 
design be retrospective or prospective? Explain why.

I would use a retrospective observational study. Even though the incidence of
disease was higher than usual, it was still rare. Surveying all pets would have
been impractical. Instead, it makes sense to locate some who were sick and ask
about their diets, exposure to toxins, and other possible causes.
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Randomized, Comparative Experiments
Is it ever possible to get convincing evidence of a cause-and-effect relationship?
Well, yes it is, but we would have to take a different approach. We could take a
group of third graders, randomly assign half to take music lessons, and forbid the
other half to do so. Then we could compare their grades several years later. This
kind of study design is called an experiment.

An experiment requires a random assignment of subjects to treatments. Only
an experiment can justify a claim like “Music lessons cause higher grades.” Ques-
tions such as “Does taking vitamin C reduce the chance of getting a cold?” and
“Does working with computers improve performance in Statistics class?” and
“Is this drug a safe and effective treatment for that disease?” require a designed
experiment to establish cause and effect.

Experiments study the relationship between two or more variables. An experi-
menter must identify at least one explanatory variable, called a factor, to manipulate
and at least one response variable to measure. What distinguishes an experiment
from other types of investigation is that the experimenter actively and deliberately
manipulates the factors to control the details of the possible treatments, and assigns
the subjects to those treatments at random. The experimenter then observes the re-
sponse variable and compares responses for different groups of subjects who have
been treated differently. For example, we might design an experiment to see
whether the amount of sleep and exercise you get affects your performance.

The individuals on whom or which we experiment are known by a variety of
terms. Humans who are experimented on are commonly called subjects or
participants. Other individuals (rats, days, petri dishes of bacteria) are commonly
referred to by the more generic term experimental unit. When we recruit subjects
for our sleep deprivation experiment by advertising in Statistics class, we’ll prob-
ably have better luck if we invite them to be participants than if we advertise that
we need experimental units.

The specific values that the experimenter chooses for a factor are called the
levels of the factor. We might assign our participants to sleep for 4, 6, or 8 hours.
Often there are several factors at a variety of levels. (Our subjects will also be as-
signed to a treadmill for 0 or 30 minutes.) The combination of specific levels from
all the factors that an experimental unit receives is known as its treatment. (Our
subjects could have any one of six different treatments—three sleep levels, each at
two exercise levels.)

How should we assign our participants to these treatments? Some students
prefer 4 hours of sleep, while others need 8. Some exercise regularly; others are
couch potatoes. Should we let the students choose the treatments they’d prefer?
No. That would not be a good idea. To have any hope of drawing a fair conclu-
sion, we must assign our participants to their treatments at random.

It may be obvious to you that we shouldn’t let the students choose the treatment
they’d prefer, but the need for random assignment is a lesson that was once hard for
some to accept. For example, physicians might naturally prefer to assign patients to
the therapy that they think best rather than have a random element such as a coin flip
determine the treatment. But we’ve known for more than a century that for the re-
sults of an experiment to be valid, we must use deliberate randomization.

Experimental design was advanced 
in the 19th century by work in psy-
chophysics by Gustav Fechner
(1801–1887), the founder of experi-
mental psychology. Fechner designed
ingenious experiments that exhibited
many of the features of modern de-
signed experiments. Fechner was care-
ful to control for the effects of factors
that might affect his results. For exam-
ple, in his 1860 book Elemente der
Psychophysik he cautioned readers to
group experiment trials together to
minimize the possible effects of time 
of day and fatigue.

An Experiment:
Manipulates the factor levels
to create treatments.
Randomly assigns subjects to
these treatment levels.
Compares the responses of
the subject groups across
treatment levels.

“He that leaves nothing to
chance will do few things ill,
but he will do very few
things.”

—Lord Halifax
(1633–1695)

The Women’s Health Initiative is a major 15-year research program funded
by the National Institutes of Health to address the most common causes of death,
disability, and poor quality of life in older women. It consists of both an observational
study with more than 93,000 participants and several randomized comparative
experiments. The goals of this study include

u giving reliable estimates of the extent to which known risk factors predict heart dis-
ease, cancers, and fractures;
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The Four Principles of Experimental Design
1. Control. We control sources of variation other than the factors we are testing

by making conditions as similar as possible for all treatment groups. For hu-
man subjects, we try to treat them alike. However, there is always a question
of degree and practicality. Controlling extraneous sources of variation re-
duces the variability of the responses, making it easier to detect differences
among the treatment groups.

Making generalizations from the experiment to other levels of the con-
trolled factor can be risky. For example, suppose we test two laundry de-
tergents and carefully control the water temperature at This would
reduce the variation in our results due to water temperature, but what could
we say about the detergents’ performance in cold water? Not much. It would
be hard to justify extrapolating the results to other temperatures.

Although we control both experimental factors and other sources of varia-
tion, we think of them very differently. We control a factor by assigning subjects
to different factor levels because we want to see how the response will change
at those different levels. We control other sources of variation to prevent them
from changing and affecting the response variable.

180°F.

u identifying “new” risk factors for these and other diseases in women;
u comparing risk factors, presence of disease at the start of the study, and new occur-

rences of disease during the study across all study components; and
u creating a future resource to identify biological indicators of disease, especially sub-

stances and factors found in blood.

That is, the study seeks to identify possible risk factors and assess how serious they
might be. It seeks to build up data that might be checked retrospectively as the
women in the study continue to be followed. There would be no way to find out
these things with an experiment because the task includes identifying new risk fac-
tors. If we don’t know those risk factors, we could never control them as factors in
an experiment.

By contrast, one of the clinical trials (randomized experiments) that received much
press attention randomly assigned postmenopausal women to take either hormone
replacement therapy or an inactive pill. The results published in 2002 and 2004
concluded that hormone replacement with estrogen carried increased risks of stroke.

No drug can be sold in the
United States without first
showing, in a suitably
designed experiment
approved by the Food and
Drug Administration (FDA),
that it’s safe and effective.
The small print on the
booklet that comes with
many prescription drugs
usually describes the
outcomes of that experiment.

Determining the treatments and response variableFOR EXAMPLE

Recap: In 2007, deaths of a large number of pet dogs and cats were ultimately traced to contamination of some brands of pet food. The manufacturer
now claims that the food is safe, but before it can be released, it must be tested.

Question: In an experiment to test whether the food is now safe for dogs to eat,1 what would be the treatments and what would be the response
variable?

The treatments would be ordinary-size portions of two dog foods: the new one from the company (the test food) and
one that I was certain was safe (perhaps prepared in my kitchen or laboratory). The response would be a veterinar-
ian’s assessment of the health of the test animals.

1 It may disturb you (as it does us) to think of deliberately putting dogs at risk in this ex-
periment, but in fact that is what is done. The risk is borne by a small number of dogs so
that the far larger population of dogs can be kept safe.

Video: An Industrial
Experiment. Manufacturers often
use designed experiments to help
them perfect new products.
Watch this video about one such
experiment.

The Four Principles of Experimental Design 295
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2. Randomize. As in sample surveys, randomization allows us to equalize the
effects of unknown or uncontrollable sources of variation. It does not eliminate
the effects of these sources, but it should spread them out across the treatment
levels so that we can see past them. If experimental units were not assigned to
treatments at random, we would not be able to use the powerful methods of
Statistics to draw conclusions from an experiment. Assigning subjects to treat-
ments at random reduces bias due to uncontrolled sources of variation. Ran-
domization protects us even from effects we didn’t know about. There’s an
adage that says “control what you can, and randomize the rest.”

3. Replicate. Two kinds of replication show up in comparative experiments.
First, we should apply each treatment to a number of subjects. Only with such
replication can we estimate the variability of responses. If we have not assessed
the variation, the experiment is not complete. The outcome of an experiment
on a single subject is an anecdote, not data.

A second kind of replication shows up when the experimental units are
not a representative sample from the population of interest. We may believe
that what is true of the students in Psych 101 who volunteered for the sleep
experiment is true of all humans, but we’ll feel more confident if our results
for the experiment are replicated in another part of the country, with people of
different ages, and at different times of the year. Replication of an entire
experiment with the controlled sources of variation at different levels is an es-
sential step in science.

4. Block. The ability of randomizing to equalize variation across treatment
groups works best in the long run. For example, if we’re allocating players to
two 6-player soccer teams from a pool of 12 children, we might do so at ran-
dom to equalize the talent. But what if there were two 12-year-olds and ten
6-year-olds in the group? Randomizing may place both 12-year-olds on the
same team. In the long run, if we did this over and over, it would all equalize.
But wouldn’t it be better to assign one 12-year-old to each group (at random)
and five 6-year-olds to each team (at random)? By doing this, we would im-
prove fairness in the short run. This approach makes the division more fair by
recognizing the variation in age and allocating the players at random within
each age level. When we do this, we call the variable age a blocking variable.
The levels of age are called blocks.

Sometimes, attributes of the experimental units that we are not studying
and that we can’t control may nevertheless affect the outcomes of an experi-
ment. If we group similar individuals together and then randomize within
each of these blocks, we can remove much of the variability due to the differ-
ence among the blocks. Blocking is an important compromise between ran-
domization and control. However, unlike the first three principles, blocking is
not required in an experimental design.

The deep insight that experiments
should use random assignment is
quite an old one. It can be attributed
to the American philosopher and sci-
entist C. S. Peirce in his experiments
with J. Jastrow, published in 1885.

Activity: The Three Rules
of Experimental Design. Watch
an animated discussion of three
rules of design.

Activity: Perform an
Experiment. How well can you
read pie charts and bar charts?
Find out as you serve as the
subject in your own experiment.
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Diagrams
An experiment is carried out over time with specific actions occurring in a speci-
fied order. A diagram of the procedure can help in thinking about experiments.2

Control, randomize, and replicateFOR EXAMPLE

Recap: We’re planning an experiment to see whether the new pet food is safe for dogs to eat. We’ll feed some
animals the new food and others a food known to be safe, comparing their health after a period of time.

Questions: In this experiment, how will you implement the principles of control, randomization, and replication?

I’d control the portion sizes eaten by the dogs. To reduce possible variability from fac-
tors other than the food, I’d standardize other aspects of their environments—housing
the dogs in similar pens and ensuring that each got the same amount of water, exer-
cise, play, and sleep time, for example. I might restrict the experiment to a single breed
of dog and to adult dogs to further minimize variation.
To equalize traits, pre-existing conditions, and other unknown influences, I would assign dogs to the two feed treat-
ments randomly.
I would replicate by assigning more than one dog to each treatment to allow for variability among individual dogs. If I
had the time and funding, I might replicate the entire experiment using, for example, a different breed of dog.

2 Diagrams of this sort were introduced by David Moore in his textbooks and are widely used.

Group 1

Group 2

Treatment 1

Treatment 2

CompareRandom
Allocation

The diagram emphasizes the random allocation of subjects to treatment groups,
the separate treatments applied to these groups, and the ultimate comparison of 
results. It’s best to specify the responses that will be compared. A good way to
start comparing results for the treatment groups is with boxplots.

An ad for OptiGro plant fertilizer claims that with this product you will grow
“juicier, tastier” tomatoes.You’d like to test this claim, and wonder whether you
might be able to get by with half the specified dose. How can you set up an ex-
periment to check out the claim?

Of course, you’ll have to get some tomatoes, try growing some plants with the
product and some without, and see what happens. But you’ll need a clearer plan
than that. How should you design your experiment?

Designing an ExperimentSTEP-BY-STEP EXAMPLE
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Let’s work through the design, step by step. We’ll design the simplest kind
of experiment, a completely randomized experiment in one factor. Since this is a
design for an experiment, most of the steps are part of the Think stage. The state-
ments in the right column are the kinds of things you would need to say in
proposing an experiment.You’d need to include them in the  “methods” section of
a report once the experiment is run.

Question: How would you design an experiment to test OptiGro fertilizer?

I want to know whether tomato plants grown
with OptiGro yield juicier, tastier tomatoes
than plants raised in otherwise similar circum-
stances but without the fertilizer.

I’ll evaluate the juiciness and taste of the
tomatoes by asking a panel of judges to rate
them on a scale from 1 to 7 in juiciness and in
taste.

The factor is fertilizer, specifically OptiGro 
fertilizer. I’ll grow tomatoes at three different
factor levels: some with no fertilizer, some with
half the specified amount of OptiGro, and some
with the full dose of OptiGro. These are the
three treatments.

I’ll obtain 24 tomato plants of the same vari-
ety from a local garden store.

Plan State what you want to know.

A completely randomized
experiment is the ideal simple
design, just as a simple random
sample is the ideal simple
sample—and for many of the
same reasons.

Response Specify the response variable.

Treatments Specify the factor levels
and the treatments.

Experimental Units Specify the experi-
mental units.

Experimental Design Observe the
principles of design:

Control any sources of variability
you know of and can control.

Replicate results by placing more than
one plant in each treatment group.

Randomly assign experimental units
to treatments, to equalize the effects of
unknown or uncontrollable sources of
variation.

Describe how the randomization will
be accomplished.

I’ll locate the farm plots near each other so
that the plants get similar amounts of sun
and rain and experience similar temperatures. 
I will weed the plots equally and otherwise treat
the plants alike.

I'll use 8 plants in each treatment group.

To randomly divide the plants into three groups,
first I’ll label the plants with numbers 00–23.
I’ll look at pairs of digits across a random num-
ber table. The first 8 plants identified (ignoring
numbers 24–99 and any repeats) will go in
Group 1, the next 8 in Group 2, and the remain-
ing plants in Group 3.
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I will grow the plants until the tomatoes are
mature, as judged by reaching a standard color.

I’ll harvest the tomatoes when ripe and store
them for evaluation.

Specify any other experiment details. You
must give enough details so that another
experimenter could exactly replicate your
experiment. It’s generally better to in-
clude details that might seem irrelevant
than to leave out matters that could turn
out to make a difference.

Specify how to measure the response.

I will display the results with side-by-side box-
plots to compare the three treatment groups.

I will compare the means of the groups.

Once you collect the data, you’ll need to
display them and compare the results for
the three treatment groups.

Ra
nd

om
 A

ss
ig

nm
en

t Group 1
8 plants

Group 2
8 plants

Group 3
8 plants

Treatment 1
control

Treatment 2
1/2 dose

Treatment 3
full fertilizer

Compare
juiciness
and
tastiness

24 tomato
plants from
a garden
store

Make a Picture A diagram of your 
design can help you think about it clearly.

If the differences in taste and juiciness among
the groups are greater than I would expect by
knowing the usual variation among tomatoes, 
I may be able to conclude that these differ-
ences can be attributed to treatment with
the fertilizer.

To answer the initial question, we ask
whether the differences we observe in the
means of the three groups are meaningful.

Because this is a randomized experiment,
we can attribute significant differences to
the treatments. To do this properly, we’ll
need methods from what is called “statis-
tical inference,” the subject of the rest of
this book.

I’ll set up a numerical scale of juiciness and one
of tastiness for the taste testers. Several peo-
ple will taste slices of tomato and rate them.

Does the Difference Make a Difference?
If the differences among the treatment groups are big enough, we’ll attribute the
differences to the treatments, but how can we decide whether the differences are
big enough?

Would we expect the group means to be identical? Not really. Even if the treat-
ment made no difference whatever, there would still be some variation. We assigned
the tomato plants to treatments at random. But a different random assignment
would have led to different results. Even a repeat of the same treatment on a differ-
ent randomly assigned set of plants would lead to a different mean. The real ques-
tion is whether the differences we observed are about as big as we might get just
from the randomization alone, or whether they’re bigger than that. If we decide
that they’re bigger, we’ll attribute the differences to the treatments. In that case we
say the differences are statistically significant.

Activity: Graph the Data.
Do you think there’s a significant
difference in your perception of
pie charts and bar charts?
Explore the data from your plot
perception experiment.
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How will we decide if something is different enough to be considered statisti-
cally significant? Later chapters will offer methods to help answer that question,
but to get some intuition, think about deciding whether a coin is fair. If we flip a
fair coin 100 times, we expect, on average, to get 50 heads. Suppose we get 54 heads
out of 100. That doesn’t seem very surprising. It’s well within the bounds of ordi-
nary random fluctuations. What if we’d seen 94 heads? That’s clearly outside the
bounds. We’d be pretty sure that the coin flips were not random. But what about
74 heads? Is that far enough from 50% to arouse our suspicions? That’s the sort of
question we need to ask of our experiment results.

In Statistics terminology, 94 heads would be a statistically significant differ-
ence from 50, and 54 heads would not. Whether 74 is statistically significant or not
would depend on the chance of getting 74 heads in 100 flips of a fair coin and on
our tolerance for believing that rare events can happen to us.

Back at the tomato stand, we ask whether the differences we see among the
treatment groups are the kind of differences we’d expect from randomization. A
good way to get a feeling for that is to look at how much our results vary among
plants that get the same treatment. Boxplots of our results by treatment group can
give us a general idea.

For example, Figure 13.1 shows two pairs of boxplots whose centers differ by
exactly the same amount. In the upper set, that difference appears to be larger
than we’d expect just by chance. Why? Because the variation is quite small within
treatment groups, so the larger difference between the groups is unlikely to be just
from the randomization. In the bottom pair, that same difference between the cen-
ters looks less impressive. There the variation within each group swamps the dif-
ference between the two medians. We’d say the difference is statistically significant
in the upper pair and not statistically significant in the lower pair.

In later chapters we’ll see statistical tests that quantify this intuition. For now,
the important point is that a difference is statistically significant if we don’t be-
lieve that it’s likely to have occurred only by chance.

FIGURE 13.1
The boxplots in both pairs have cen-
ters the same distance apart, but
when the spreads are large, the ob-
served difference may be just from
random fluctuation.

JUST CHECKING
1. At one time, a method called “gastric freezing” was used to treat people with peptic ulcers. An inflatable bladder

was inserted down the esophagus and into the stomach, and then a cold liquid was pumped into the bladder. Now
you can find the following notice on the Internet site of a major insurance company:

[Our company] does not cover gastric freezing (intragastric hypothermia) for chronic peptic ulcer disease. . . .

Gastric freezing for chronic peptic ulcer disease is a non-surgical treatment which was popular about 20 years ago but now is
seldom performed. It has been abandoned due to a high complication rate, only temporary improvement experienced by pa-
tients, and a lack of effectiveness when tested by double-blind, controlled clinical trials.

What did that “controlled clinical trial” (experiment) probably look like? (Don’t worry about “double-blind”; 
we’ll get to that soon.)
a) What was the factor in this experiment?
b) What was the response variable?
c) What were the treatments?

d) How did researchers decide which subjects 
received which treatment?

e) Were the results statistically significant?

Experiments and Samples
Both experiments and sample surveys use randomization to get unbiased data.
But they do so in different ways and for different purposes. Sample surveys try to
estimate population parameters, so the sample needs to be as representative of
the population as possible. By contrast, experiments try to assess the effects of
treatments. Experimental units are not always drawn randomly from the popula-
tion. For example, a medical experiment may deal only with local patients who
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have the disease under study. The randomization is in the assignment of their
therapy. We want a sample to exhibit the diversity and variability of the popula-
tion, but for an experiment the more homogeneous the subjects the more easily
we’ll spot  differences in the effects of the treatments.

Unless the experimental units are chosen from the population
at random, you should be cautious about generalizing experi-
ment results to larger populations until the experiment has been
repeated under different circumstances. Results become more
persuasive if they remain the same in completely different set-
tings, such as in a different season, in a different country, or for
a different species, to name a few.

Even without choosing experimental units from a popula-
tion at random, experiments can draw stronger conclusions
than surveys. By looking only at the differences across treat-
ment groups, experiments cancel out many sources of bias. For
example, the entire pool of subjects may be biased and not rep-
resentative of the population. (College students may need more

sleep, on average, than the general population.) When we assign subjects ran-
domly to treatment groups, all the groups are still biased, but in the same way.
When we consider the differences in their responses, these biases cancel out, al-
lowing us to see the differences due to treatment effects more clearly.

Control Treatments
Suppose you wanted to test a $300 piece of software designed to shorten down-
load times. You could just try it on several files and record the download times,
but you probably want to compare the speed with what would happen without the
software installed. Such a baseline measurement is called a control treatment, and
the experimental units to whom it is applied are called a control group.

This is a use of the word “control” in an entirely different context. Previously,
we controlled extraneous sources of variation by keeping them constant. Here, we
use a control treatment as another level of the factor in order to compare the treat-
ment results to a situation in which “nothing happens.” That’s what we did in the
tomato experiment when we used no fertilizer on the 8 tomatoes in Group 1.

Blinding
Humans are notoriously susceptible to errors in judgment.3 All of us. When we
know what treatment was assigned, it’s difficult not to let that knowledge influ-
ence our assessment of the response, even when we try to be careful.

Suppose you were trying to advise your school on which brand of cola to
stock in the school’s vending machines. You set up an experiment to see which of
the three competing brands students prefer (or whether they can tell the difference
at all). But people have brand loyalties. You probably prefer one brand already. So
if you knew which brand you were tasting, it might influence your rating. To
avoid this problem, it would be better to disguise the brands as much as possible.
This strategy is called blinding the participants to the treatment.4

But it isn’t just the subjects who should be blind. Experimenters themselves
often subconsciously behave in ways that favor what they believe. Even techni-
cians may treat plants or test animals differently if, for example, they expect them
to die. An animal that starts doing a little better than others by showing an in-
creased appetite may get fed a bit more than the experimental protocol specifies.

Experiments are rarely performed on random
samples from a population. Don’t describe the
subjects in an experiment as a random sample
unless they really are. More likely, the
randomization was in assigning subjects to
treatments.

Activity: Control Groups
in Experiments. Is a control
group really necessary?

3 For example, here we are in Chapter 13 and you’re still reading the footnotes.
4 C. S. Peirce, in the same 1885 work in which he introduced randomization, also recom-
mended blinding.
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People are so good at picking up subtle cues about treat-
ments that the best (in fact, the only) defense against such biases
in experiments on human subjects is to keep anyone who could
affect the outcome or the measurement of the response from
knowing which subjects have been assigned to which treatments.
So, not only should your cola-tasting subjects be blinded, but
also you, as the experimenter, shouldn’t know which drink is
which, either—at least until you’re ready to analyze the results.

There are two main classes of individuals who can affect the
outcome of the experiment:

u those who could influence the results (the subjects, treat-
ment administrators, or technicians)

u those who evaluate the results ( judges, treating physicians,
etc.)

When all the individuals in either one of these classes are blinded,
an experiment is said to be single-blind. When everyone in both
classes is blinded, we call the experiment double-blind. Even if
several individuals in one class are blinded—for example, both
the patients and the technicians who administer the treatment—
the study would still be just single-blind. If only some of the in-
dividuals in a class are blind—for example, if subjects are not
told of their treatment, but the administering technician is not

blind—there is a substantial risk that subjects can discern their treatment from
subtle cues in the technician’s behavior or that the technician might inadvertently
treat subjects differently. Such experiments cannot be considered truly blind.

In our tomato experiment, we certainly don’t want the people judging the
taste to know which tomatoes got the fertilizer. That makes the experiment single-
blind. We might also not want the people caring for the tomatoes to know which
ones were being fertilized, in case they might treat them differently in other ways,
too. We can accomplish this double-blinding by having some fake fertilizer for
them to put on the other plants. Read on.

Blinding by Misleading
Social science experiments can sometimes blind
subjects by misleading them about the purpose 
of a study. One of the authors participated as an
undergraduate volunteer in a (now infamous)
psychology experiment using such a blinding
method.The subjects were told that the
experiment was about three-dimensional spatial
perception and were assigned to draw a model of
a horse. While they were busy drawing, a loud
noise and then groaning were heard coming from
the room next door.The real purpose of the
experiment was to see how people reacted to the
apparent disaster.The experimenters wanted to
see whether the social pressure of being in
groups made people react to the disaster
differently. Subjects had been randomly assigned
to draw either in groups or alone; that was the
treatment.The experimenter had no interest in
how well the subjects could draw the horse, but
the subjects were blinded to the treatment
because they were misled.

BlindingFOR EXAMPLE

Recap: In our experiment to see if the new pet food is now safe, we’re feeding one group of dogs the new food and another group a food we know to be
safe. Our response variable is the health of the animals as assessed by a veterinarian.

Questions: Should the vet be blinded? Why or why not? How would you do this? (Extra credit: Can this experiment be double-blind? Would that mean
that the test animals wouldn’t know what they were eating?)

Whenever the response variable involves judgment, it is a good idea to blind the evaluator to the treatments. The vet-
erinarian should not be told which dogs ate which foods.
Extra credit: There is a need for double-blinding. In this case, the workers who care for and feed the animals should not be
aware of which dogs are receiving which food. We’ll need to make the “safe” food look as much like the “test” food as possible.

Placebos
Often, simply applying any treatment can induce an improvement. Every parent
knows the medicinal value of a kiss to make a toddler’s scrape or bump stop
hurting. Some of the improvement seen with a treatment—even an effective
treatment—can be due simply to the act of treating. To separate these two effects,
we can use a control treatment that mimics the treatment itself.

Activity: Blinded
Experiments. This narrated
account of blinding isn’t a
placebo!
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A “fake” treatment that looks just like the treatments being
tested is called a placebo. Placebos are the best way to blind
subjects from knowing whether they are receiving the treatment
or not. One common version of a placebo in drug testing is a
“sugar pill.” Especially when psychological attitude can affect
the results, control group subjects treated with a placebo may
show an improvement.

The fact is that subjects treated with a placebo sometimes
improve. It’s not unusual for 20% or more of subjects given a
placebo to report reduction in pain, improved movement, or
greater alertness, or even to demonstrate improved health or
performance. This placebo effect highlights both the impor-
tance of effective blinding and the importance of comparing
treatments with a control. Placebo controls are so effective that
you should use them as an essential tool for blinding whenever
possible.
The best experiments are usually

u randomized. u double-blind.
u comparative. u placebo-controlled.

The placebo effect is stronger when placebo
treatments are administered with authority or 
by a figure who appears to be an authority.
“Doctors” in white coats generate a stronger
effect than salespeople in polyester suits. But the
placebo effect is not reduced much even when
subjects know that the effect exists. People often
suspect that they’ve gotten the placebo if nothing
at all happens. So, recently, drug manufacturers
have gone so far in making placebos realistic that
they cause the same side effects as the drug being
tested! Such  “active placebos” usually induce a
stronger placebo effect. When those side effects
include loss of appetite or hair, the practice may
raise ethical questions.

Does ginkgo biloba improve memory? Researchers investigated the pur-
ported memory-enhancing effect of ginkgo biloba tree extract (P. R. Solomon, 
F. Adams, A. Silver, J. Zimmer, R. De Veaux, “Ginkgo for Memory Enhancement. A
Randomized Controlled Trial.” JAMA 288 [2002]: 835–840). In a randomized,
comparative, double-blind, placebo-controlled study, they administered treatments
to 230 elderly community members. One group received Ginkoba™ according to the
manufacturer’s instructions. The other received a similar-looking placebo. Thirteen
different tests of memory were administered before and after treatment. The
placebo group showed greater improvement on 7 of the tests, the treatment group
on the other 6. None showed any significant differences. Here are boxplots of one
measure.
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Blocking
We wanted to use 18 tomato plants of the same variety for our experiment, but
suppose the garden store had only 12 plants left. So we drove down to the nursery
and bought 6 more plants of that variety. We worry that the tomato plants from the
two stores are different somehow, and, in fact, they don’t really look the same.

How can we design the experiment so that the differences between the stores
don’t mess up our attempts to see differences among fertilizer levels? We can’t
measure the effect of a store the same way as we can the fertilizer because we
can’t assign it as we would a factor in the experiment. You can’t tell a tomato what
store to come from.
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Because stores may vary in the care they give plants or in the sources of their
seeds, the plants from either store are likely to be more like each other than they
are like the plants from the other store. When groups of experimental units are
similar, it’s often a good idea to gather them together into blocks. By blocking, we
isolate the variability attributable to the differences between the blocks, so that we
can see the differences caused by the treatments more clearly. Here, we would de-
fine the plants from each store to be a block. The randomization is introduced
when we randomly assign treatments within each block.

In a completely randomized design, each of the 18 plants would have an
equal chance to land in each of the three treatment groups. But we realize that
the store may have an effect. To isolate the store effect, we block on store by as-
signing the plants from each store to treatments at random. So we now have six
treatment groups, three for each block. Within each block, we’ll randomly assign
the same number of plants to each of the three treatments. The experiment is still
fair because each treatment is still applied (at random) to the same number of
plants and to the same proportion from each store: 4 from store A and 2 from
store B. Because the randomization occurs only within the blocks (plants from
one store cannot be assigned to treatment groups for the other), we call this a
randomized block design.

In effect, we conduct two parallel experiments, one for tomatoes from each
store, and then combine the results. The picture tells the story:
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Group 1
4 plants

Group 2
4 plants

Group 3
4 plants

Treatment 1
control

Treatment 2
1/2 dose

Treatment 3
full dose

Compare
juiciness
and
tastiness

12 tomatoes
from store A
and 6 from
store B

Block A
12 tomato
plants

Group 4
2 plants

Group 5
2 plants

Group 6
2 plants

Treatment 1
control

Treatment 2
1/2 dose

Treatment 3
full dose

Compare
juiciness
and
tastiness

Block B
6 tomato
plants

In a retrospective or prospective study, subjects are sometimes paired because
they are similar in ways not under study. Matching subjects in this way can re-
duce variation in much the same way as blocking. For example, a retrospective
study of music education and grades might match each student who studies an
instrument with someone of the same sex who is similar in family income but
didn’t study an instrument. When we compare grades of music students with
those of non-music students, the matching would reduce the variation due to
income and sex differences.

Blocking is the same idea for experiments as stratifying is for sampling. Both
methods group together subjects that are similar and randomize within those
groups as a way to remove unwanted variation. (But be careful to keep the terms
straight. Don’t say that we “stratify” an experiment or “block” a sample.) We use
blocks to reduce variability so we can see the effects of the factors; we’re not usu-
ally interested in studying the effects of the blocks themselves.

BOCK_C13_0321570448 pp3.qxd  12/1/08  3:09 PM  Page 304



Adding More Factors 305

Adding More Factors
There are two kinds of gardeners. Some water frequently, making sure that the
plants are never dry. Others let Mother Nature take her course and leave the wa-
tering to her. The makers of OptiGro want to ensure that their product will work
under a wide variety of watering conditions. Maybe we should include the amount
of watering as part of our experiment. Can we study a second factor at the same
time and still learn as much about fertilizer?

We now have two factors (fertilizer at three levels and irrigation at two 
levels). We combine them in all possible ways to yield six treatments:

BlockingFOR EXAMPLE

Recap: In 2007, pet food contamination put cats at risk, as well as dogs. Our experiment should probably test the
safety of the new food on both animals.

Questions: Why shouldn’t we randomly assign a mix of cats and dogs to the two treatment groups? What would you 
recommend instead?

Dogs and cats might respond differently to the foods, and that variability could obscure my
results. Blocking by species can remove that superfluous variation. I’d randomize cats to the
two treatments (test food and safe food) separately from the dogs. I’d measure their re-
sponses separately and look at the results afterward.

JUST CHECKING
2. Recall the experiment about gastric freezing, an old method for treating peptic ulcers that you read about in the

first Just Checking. Doctors would insert an inflatable bladder down the patient’s esophagus and into the stomach
and then pump in a cold liquid. A major insurance company now states that it doesn’t cover this treatment because
“double-blind, controlled clinical trials” failed to demonstrate that gastric freezing was effective.
a) What does it mean that the experiment was double-blind?
b) Why would you recommend a placebo control?
c) Suppose that researchers suspected that the effectiveness of the gastric freezing treatment might depend on

whether a patient had recently developed the peptic ulcer or had been suffering from the condition for a long
time. How might the researchers have designed the experiment?

No Fertilizer Half Fertilizer Full Fertilizer

No Added Water 1 2 3
Daily Watering 4 5 6

If we allocate the original 12 plants, the experiment now assigns 2 plants to each
of these six treatments at random. This experiment is a completely randomized
two-factor experiment because any plant could end up assigned at random to
any of the six treatments (and we have two factors).

It’s often important to include several factors in the same experiment in order
to see what happens when the factor levels are applied in different combinations.
A common misconception is that applying several factors at once makes it diffi-
cult to separate the effects of the individual factors. You may hear people say that
experiments should always be run “one factor at a time.” In fact, just the opposite

Think Like a Statistician
With two factors, we can
account for more of the
variation.That lets us see the
underlying patterns more
clearly.
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is true: Experiments with more than one factor are both more efficient and pro-
vide more information than one-at-a-time experiments. There are many ways
to design efficient multifactor experiments. You can take a whole course on the
design and analysis of such experiments.

Confounding
Professor Stephen Ceci of Cornell University performed an experiment to investi-
gate the effect of a teacher’s classroom style on student evaluations. He taught a
class in developmental psychology during two successive terms to a total of 472
students in two very similar classes. He kept everything about his teaching iden-
tical (same text, same syllabus, same office hours, etc.) and modified only his style
in class. During the fall term, he maintained a subdued demeanor. During the
spring term, he used expansive gestures and lectured with more enthusiasm,
varying his vocal pitch and using more hand gestures. He administered a stan-
dard student evaluation form at the end of each term.

The students in the fall term class rated him only an average teacher. Those in
the spring term class rated him an excellent teacher, praising his knowledge and
accessibility, and even the quality of the textbook. On the question “How much
did you learn in the course?” the average response changed from 2.93 to 4.05 on a
5-point scale.5

How much of the difference he observed was due to his difference in manner,
and how much might have been due to the season of the year? Fall term in Ithaca,
NY (home of Cornell University), starts out colorful and pleasantly warm but
ends cold and bleak. Spring term starts out bitter and snowy and ends with
blooming flowers and singing birds. Might students’ overall happiness have been
affected by the season and reflected in their evaluations?

Unfortunately, there’s no way to tell. Nothing in the data enables us to tease
apart these two effects, because all the students who experienced the subdued
manner did so during the fall term and all who experienced the expansive man-
ner did so during the spring. When the levels of one factor are associated with the
levels of another factor, we say that these two factors are confounded.

In some experiments, such as this one, it’s just not possible to avoid some con-
founding. Professor Ceci could have randomly assigned students to one of two
classes during the same term, but then we might question whether mornings or
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Treatment 4
control/water

Treatment 5
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Treatment 6
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5 But the two classes performed almost identically well on the final exam.
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afternoons were better, or whether he really delivered the same class the second
time (after practicing on the first class). Or he could have had another professor
deliver the second class, but that would have raised more serious issues about dif-
ferences in the two professors and concern over more serious confounding.

ConfoundingFOR EXAMPLE

Recap: After many dogs and cats suffered health problems caused by contaminated foods, we’re trying to 
find out whether a newly formulated pet food is safe. Our experiment will feed some animals the new food and 
others a food known to be safe, and a veterinarian will check the response.

Question: Why would it be a bad design to feed the test food to some dogs and the safe food to cats?

This would create confounding. We would not be able to tell whether any differences in ani-
mals’ health were attributable to the food they had eaten or to differences in how the two
species responded.

A two-factor example Confounding can also arise from a badly designed mul-
tifactor experiment. Here’s a classic. A credit card bank wanted to test the sensitiv-
ity of the market to two factors: the annual fee charged for a card and the annual
percentage rate charged. Not wanting to scrimp on sample size, the bank selected
100,000 people at random from a mailing list. It sent out 50,000 offers with a low
rate and no fee and 50,000 offers with a higher rate and a $50 annual fee. Guess
what happened? That’s right—people preferred the low-rate, no-fee card. No sur-
prise. In fact, they signed up for that card at over twice the rate as the other offer.
And because of the large sample size, the bank was able to estimate the difference
precisely. But the question the bank really wanted to answer was “how much of the
change was due to the rate, and how much was due to the fee?” unfortunately,
there’s simply no way to separate out the two effects. If the bank had sent out all
four possible different treatments—low rate with no fee, low rate with $50 fee, high
rate with no fee, and high rate with $50 fee—each to 25,000 people, it could have
learned about both factors and could have also seen what happens when the two
factors occur in combination.

Lurking or Confounding?
Confounding may remind you of the problem of lurking variables we discussed
back in Chapters 7 and 9. Confounding variables and lurking variables are alike
in that they interfere with our ability to interpret our analyses simply. Each can
mislead us, but there are important differences in both how and where the confu-
sion may arise.

A lurking variable creates an association between two other variables that
tempts us to think that one may cause the other. This can happen in a regression
analysis or an observational study when a lurking variable influences both the
explanatory and response variables. Recall that countries with more TV sets per
capita tend to have longer life expectancies. We shouldn’t conclude it’s the TVs
“causing” longer life. We suspect instead that a generally higher standard of liv-
ing may mean that people can afford more TVs and get better health care, too.
Our data revealed an association between TVs and life expectancy, but economic
conditions were a likely lurking variable. A lurking variable, then, is usually
thought of as a variable associated with both y and x that makes it appear that x
may be causing y.
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Confounding can arise in experiments when some other variable associated
with a factor has an effect on the response variable. However, in a designed ex-
periment, the experimenter assigns treatments (at random) to subjects rather than
just observing them. A confounding variable can’t be thought of as causing that
assignment. Professor Ceci’s choice of teaching styles was not caused by the
weather, but because he used one style in the fall and the other in spring, he was
unable to tell how much of his students’ reactions were attributable to his teach-
ing and how much to the weather. A confounding variable, then, is associated in a
noncausal way with a factor and affects the response. Because of the confound-
ing, we find that we can’t tell whether any effect we see was caused by our factor
or by the confounding variable—or even by both working together.

Both confounding and lurking variables are outside influences that make it
harder to understand the relationship we are modeling. However, the nature of
the causation is different in the two situations. In regression and observational
studies, we can only observe associations between variables. Although we can’t
demonstrate a causal relationship, we often imagine whether x could cause y. We
can be misled by a lurking variable that influences both. In a designed experi-
ment, we often hope to show that the factor causes a response. Here we can be
misled by a confounding variable that’s associated with the factor and causes or
contributes to the differences we observe in the response.

It’s worth noting that the role of blinding in an experiment is to combat a pos-
sible source of confounding. There’s a risk that knowledge about the treatments
could lead the subjects or those interacting with them to behave differently or
could influence judgments made by the people evaluating the responses. That
means we won’t know whether the treatments really do produce different results
or if we’re being fooled by these confounding influences.

6 R. D. DeVeaux and M. Szelewski, “Optimizing Automatic Splitless Injection Parameters
for Gas Chromatographic Environmental Analysis.” Journal of Chromatographic Science 27,
no. 9 (1989): 513–518.

WHAT CAN GO WRONG?
u Don’t give up just because you can’t run an experiment. Sometimes we can’t run an experi-

ment because we can’t identify or control the factors. Sometimes it would simply be
unethical to run the experiment. (Consider randomly assigning students to take—
and be graded in—a Statistics course deliberately taught to be boring and difficult
or one that had an unlimited budget to use multimedia, real-world examples, and
field trips to make the subject more interesting.) If we can’t perform an experiment,
often an observational study is a good choice.

u Beware of confounding. Use randomization whenever possible to ensure that the fac-
tors not in your experiment are not confounded with your treatment levels. Be alert
to confounding that cannot be avoided, and report it along with your results.

u Bad things can happen even to good experiments. Protect yourself by recording additional
information. An experiment in which the air conditioning failed for 2 weeks, affect-
ing the results, was saved by recording the temperature (although that was not orig-
inally one of the factors) and estimating the effect the higher temperature had on the
response.6

It’s generally good practice to collect as much information as possible about your
experimental units and the circumstances of the experiment. For example, in the
tomato experiment, it would be wise to record details of the weather (temperature,
rainfall, sunlight) that might affect the plants and any facts available about their
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growing situation. (Is one side of the field in shade sooner than the other as the day
proceeds? Is one area lower and a bit wetter?) Sometimes we can use this extra in-
formation during the analysis to reduce biases.

u Don’t spend your entire budget on the first run. Just as it’s a good idea to pretest a survey,
it’s always wise to try a small pilot experiment before running the full-scale experi-
ment. You may learn, for example, how to choose factor levels more effectively,
about effects you forgot to control, and about unanticipated confoundings.

CONNECTIONS
The fundamental role of randomization in experiments clearly points back to our discussions of
randomization, to our experiments with simulations, and to our use of randomization in sampling.
The similarities and differences between experiments and samples are important to keep in mind
and can make each concept clearer.

If you think that blocking in an experiment resembles stratifying in a sample, you’re quite right.
Both are ways of removing variation we can identify to help us see past the variation in the data.

Experiments compare groups of subjects that have been treated differently. Graphics such as
boxplots that help us compare groups are closely related to these ideas. Think about what we look
for in a boxplot to tell whether two groups look really different, and you’ll be thinking about the
same issues as experiment designers.

Generally, we’re going to consider how different the mean responses are for different treatment
groups. And we’re going to judge whether those differences are large by using standard deviations
as rulers. (That’s why we needed to replicate results for each treatment; we need to be able to esti-
mate those standard deviations.) The discussion in Chapter 6 introduced this fundamental statisti-
cal thought, and it’s going to keep coming back over and over again. Statistics is about variation.

We’ll see a number of ways to analyze results from experiments in subsequent chapters.

WHAT HAVE WE LEARNED?

We’ve learned to recognize sample surveys, observational studies, and randomized comparative 
experiments. We know that these methods collect data in different ways and lead us to different
conclusions.

We’ve learned to identify retrospective and prospective observational studies and understand the
advantages and disadvantages of each.

We’ve learned that only well-designed experiments can allow us to reach cause-and-effect conclu-
sions. We manipulate levels of treatments to see if the factor we have identified produces changes
in our response variable.

We’ve learned the principles of experimental design:

u We want to be sure that variation in the response variable can be attributed to our factor, so we
identify and control as many other sources of variability as possible.

u Because there are many possible sources of variability that we cannot identify, we try to equalize
those by randomly assigning experimental units to treatments.

u We replicate the experiment on as many subjects as possible.
u We consider blocking to reduce variability from sources we recognize but cannot control.

We’ve learned the value of having a control group and of using blinding and placebo controls.

Finally, we’ve learned to recognize the problems posed by confounding variables in experiments and
lurking variables in observational studies.
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Terms
Observational study 292. A study based on data in which no manipulation of factors has been employed.

Retrospective study 292. An observational study in which subjects are selected and then their previous conditions or
behaviors are determined. Retrospective studies need not be based on random samples and they
usually focus on estimating differences between groups or associations between variables.

Prospective study 293. An observational study in which subjects are followed to observe future outcomes. Because
no treatments are deliberately applied, a prospective study is not an experiment. Nevertheless,
prospective studies typically focus on estimating differences among groups that might appear as the
groups are followed during the course of the study.

Experiment 294. An experiment manipulates factor levels to create treatments, randomly assigns subjects to
these treatment levels, and then compares the responses of the subject groups across treatment levels.

Random assignment 294. To be valid, an experiment must assign experimental units to treatment groups at random.
This is called random assignment.

Factor 294. A variable whose levels are manipulated by the experimenter. Experiments attempt to discover
the effects that differences in factor levels may have on the responses of the experimental units.

Response 294. A variable whose values are compared across different treatments. In a randomized experi-
ment, large response differences can be attributed to the effect of differences in treatment level.

Experimental units 294. Individuals on whom an experiment is performed. Usually called subjects or participants

when they are human.

Level 294. The specific values that the experimenter chooses for a factor are called the levels of the factor.

Treatment 294. The process, intervention, or other controlled circumstance applied to randomly assigned ex-
perimental units. Treatments are the different levels of a single factor or are made up of combina-
tions of levels of two or more factors.

Principles of u 295. Control aspects of the experiment that we know may have an effect on the response, 
experimental design but that are not the factors being studied.

u 296. Randomize subjects to treatments to even out effects that we cannot control.
u 296. Replicate over as many subjects as possible. Results for a single subject are just anec-

dotes. If, as often happens, the subjects of the experiment are not a representative sample from
the population of interest, replicate the entire study with a different group of subjects, preferably
from a different part of the population.

u 296. Block to reduce the effects of identifiable attributes of the subjects that cannot be controlled.

Statistically significant 299. When an observed difference is too large for us to believe that it is likely to have occurred nat-
urally, we consider the difference to be statistically significant. Subsequent chapters will show specific
calculations and give rules, but the principle remains the same.

Control group 301. The experimental units assigned to a baseline treatment level, typically either the default
treatment, which is well understood, or a null, placebo treatment. Their responses provide a basis
for comparison.

Blinding 301. Any individual associated with an experiment who is not aware of how subjects have been
allocated to treatment groups is said to be blinded.

Single-blind 302. There are two main classes of individuals who can affect the outcome of an experiment:
Double-blind u those who could influence the results (the subjects, treatment administrators, or technicians).

u those who evaluate the results (judges, treating physicians, etc.).

When every individual in either of these classes is blinded, an experiment is said to be single-blind.
When everyone in both classes is blinded, we call the experiment double-blind.

Placebo 303. A treatment known to have no effect, administered so that all groups experience the same
conditions. Many subjects respond to such a treatment (a response known as a placebo effect). Only
by comparing with a placebo can we be sure that the observed effect of a treatment is not due sim-
ply to the placebo effect.

Placebo effect 303. The tendency of many human subjects (often 20% or more of experiment subjects) to show a
response even when administered a placebo.
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Blocking 303. When groups of experimental units are similar, it is often a good idea to gather them together
into blocks. By blocking, we isolate the variability attributable to the differences between the blocks
so that we can see the differences caused by the treatments more clearly.

Matching 304. In a retrospective or prospective study, subjects who are similar in ways not under study may
be matched and then compared with each other on the variables of interest. Matching, like block-
ing, reduces unwanted variation.

Designs 298, 305. In a completely randomized design, all experimental units have an equal chance of 
receiving any treatment.

304. In a randomized block design, the randomization occurs only within blocks.

Confounding 306. When the levels of one factor are associated with the levels of another factor in such a way
that their effects cannot be separated, we say that these two factors are confounded.

Skills
u Recognize when an observational study would be appropriate.

u Be able to identify observational studies as retrospective or prospective, and understand the
strengths and weaknesses of each method.

u Know the four basic principles of sound experimental design—control, randomize, replicate, and
block—and be able to explain each.

u Be able to recognize the factors, the treatments, and the response variable in a description of a
designed experiment.

u Understand the essential importance of randomization in assigning treatments to experimental
units.

u Understand the importance of replication to move from anecdotes to general conclusions.

u Understand the value of blocking so that variability due to differences in attributes of the sub-
jects can be removed.

u Understand the importance of a control group and the need for a placebo treatment in some
studies.

u Understand the importance of blinding and double-blinding in studies on human subjects, and
be able to identify blinding and the need for blinding in experiments.

u Understand the value of a placebo in experiments with human participants.

u Be able to design a completely randomized experiment to test the effect of a single factor.

u Be able to design an experiment in which blocking is used to reduce variation.

u Know how to use graphical displays to compare responses for different treatment groups. Under-
stand that you should never proceed with any other analysis of a designed experiment without
first looking at boxplots or other graphical displays.

u Know how to report the results of an observational study. Identify the subjects, how the data
were gathered, and any potential biases or flaws you may be aware of. Identify the factors known
and those that might have been revealed by the study.

u Know how to compare the responses in different treatment groups to assess whether the differ-
ences are larger than could be reasonably expected from ordinary sampling variability.

u Know how to report the results of an experiment. Tell who the subjects are and how their assign-
ment to treatments was determined. Report how and in what measurement units the response
variable was measured.

u Understand that your description of an experiment should be sufficient for another researcher to
replicate the study with the same methods.

u Be able to report on the statistical significance of the result in terms of whether the observed
group-to-group differences are larger than could be expected from ordinary sampling variation.
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EXPERIMENTS ON THE COMPUTER

Most experiments are analyzed with a statistics package. You should almost always display the results of a
comparative experiment with side-by-side boxplots. You may also want to display the means and standard
deviations of the treatment groups in a table.
The analyses offered by statistics packages for comparative randomized experiments fall under the general head-
ing of Analysis of Variance, usually abbreviated ANOVA. These analyses are beyond the scope of this chapter.

EXERCISES

1. Standardized test scores. For his Statistics class exper-
iment, researcher J. Gilbert decided to study how parents’
income affects children’s performance on standardized
tests like the SAT. He proposed to collect information from
a random sample of test takers and examine the relation-
ship between parental income and SAT score.
a) Is this an experiment? If not, what kind of study is it?
b) If there is relationship between parental income and

SAT score, why can’t we conclude that differences in
score are caused by differences in parental income?

2. Heart attacks and height. Researchers who examined
health records of thousands of males found that men who
died of myocardial infarction (heart attack) tended to be
shorter than men who did not.
a) Is this an experiment? If not, what kind of study is it?
b) Is it correct to conclude that shorter men are at higher

risk for heart attack? Explain.

3. MS and vitamin D. Multiple sclerosis (MS) is an 
autoimmune disease that strikes more often the farther
people live from the equator. Could vitamin D—which
most people get from the sun’s ultraviolet rays—be a fac-
tor? Researchers compared vitamin D levels in blood
samples from 150 U.S. military personnel who have de-
veloped MS with blood samples of nearly 300 who have
not. The samples were taken, on average, five years be-
fore the disease was diagnosed. Those with the highest
blood vitamin D levels had a 62% lower risk of MS than
those with the lowest levels. (The link was only in whites,
not in blacks or Hispanics.)
a) What kind of study was this?
b) Is that an appropriate choice for investigating this

problem? Explain.
c) Who were the subjects?
d) What were the variables?

4. Super Bowl commercials. When spending large
amounts to purchase advertising time, companies want
to know what audience they’ll reach. In January 2007, a
poll asked 1008 American adults whether they planned to
watch the upcoming Super Bowl. Men and women were
asked separately whether they were looking forward
more to the football game or to watching the commer-
cials. Among the men, 16% were planning to watch and

were looking forward primarily to the commercials.
Among women, 30% were looking forward primarily to
the commercials.
a) Was this a stratified sample or a blocked experiment?

Explain.
b) Was the design of the study appropriate for the 

advertisers’ questions?

5. Menopause. Researchers studied the herb black co-
hosh as a treatment for hot flashes caused by menopause.
They randomly assigned 351 women aged 45 to 55 who
reported at least two hot flashes a day to one of five
groups: (1) black cohosh, (2) a multiherb supplement
with black cohosh, (3) the multiherb supplement plus 
advice to consume more soy foods, (4) estrogen replace-
ment therapy, or (5) receive a placebo. After a year, only
the women given estrogen replacement therapy had
symptoms different from those of the placebo group.
[Annals of Internal Medicine 145:12, 869–897]
a) What kind of study was this?
b) Is that an appropriate choice for this problem?
c) Who were the subjects?
d) Identify the treatment and response variables.

6. Honesty. Coffee stations in offices often just ask users
to leave money in a tray to pay for their coffee, but many
people cheat. Researchers at Newcastle University re-
placed the picture of flowers on the wall behind the cof-
fee station with a picture of staring eyes. They found that
the average contribution increased significantly above the
well-established standard when people felt they were be-
ing watched, even though the eyes were patently not real.
(NY Times 12/10/06)
a) Was this a survey, an observational study, or an exper-

iment? How can we tell?
b) Identify the variables.
c) What does “increased significantly” mean in a statisti-

cal sense?

7–20. What’s the design? Read each brief report of statisti-
cal research, and identify
a) whether it was an observational study or an experiment.

If it was an observational study, identify (if possible)
b) whether it was retrospective or prospective.
c) the subjects studied and how they were selected.
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d) the parameter of interest.
e) the nature and scope of the conclusion the study can

reach.

If it was an experiment, identify (if possible)
b) the subjects studied.
c) the factor(s) in the experiment and the number of

levels for each.
d) the number of treatments.
e) the response variable measured.
f) the design (completely randomized, blocked, or

matched).
g) whether it was blind (or double-blind).
h) the nature and scope of the conclusion the experiment

can reach.

7. Over a 4-month period, among 30 people with bipolar dis-
order, patients who were given a high dose (10 g/day) of
omega-3 fats from fish oil improved more than those given
a placebo. (Archives of General Psychiatry 56 [1999]: 407)

8. Among a group of disabled women aged 65 and older
who were tracked for several years, those who had a vita-
min B12 deficiency were twice as likely to suffer severe
depression as those who did not. (American Journal of Psy-
chiatry 157 [2000]: 715)

9. In a test of roughly 200 men and women, those with mod-
erately high blood pressure (averaging 164/89 mm Hg)
did worse on tests of memory and reaction time than
those with normal blood pressure. (Hypertension 36
[2000]: 1079)

10. Is diet or exercise effective in combating insomnia? Some
believe that cutting out desserts can help alleviate the
problem, while others recommend exercise. Forty volun-
teers suffering from insomnia agreed to participate in a
month-long test. Half were randomly assigned to a spe-
cial no-desserts diet; the others continued desserts as
usual. Half of the people in each of these groups were
randomly assigned to an exercise program, while the oth-
ers did not exercise. Those who ate no desserts and en-
gaged in exercise showed the most improvement.

11. After menopause, some women take supplemental estro-
gen. There is some concern that if these women also drink
alcohol, their estrogen levels will rise too high. Twelve
volunteers who were receiving supplemental estrogen
were randomly divided into two groups, as were 12 other
volunteers not on estrogen. In each case, one group drank
an alcoholic beverage, the other a nonalcoholic beverage.
An hour later, everyone’s estrogen level was checked.
Only those on supplemental estrogen who drank alcohol
showed a marked increase.

12. Researchers have linked an increase in the incidence of
breast cancer in Italy to dioxin released by an industrial
accident in 1976. The study identified 981 women who
lived near the site of the accident and were under age 40
at the time. Fifteen of the women had developed breast
cancer at an unusually young average age of 45. Medical
records showed that they had heightened concentrations
of dioxin in their blood and that each tenfold increase in
dioxin level was associated with a doubling of the risk of
breast cancer. (Science News, Aug. 3, 2002)

13. In 2002 the journal Science reported that a study of women
in Finland indicated that having sons shortened the life-
spans of mothers by about 34 weeks per son, but that
daughters helped to lengthen the mothers’ lives. The data
came from church records from the period 1640 to 1870.

14. Scientists at a major pharmaceutical firm investigated the
effectiveness of an herbal compound to treat the common
cold. They exposed each subject to a cold virus, then gave
him or her either the herbal compound or a sugar solu-
tion known to have no effect on colds. Several days later
they assessed the patient’s condition, using a cold sever-
ity scale ranging from 0 to 5. They found no evidence of
benefits associated with the compound.

15. The May 4, 2000, issue of Science News reported that, con-
trary to popular belief, depressed individuals cry no more
often in response to sad situations than nondepressed
people. Researchers studied 23 men and 48 women with
major depression and 9 men and 24 women with no de-
pression. They showed the subjects a sad film about a boy
whose father has died, noting whether or not the subjects
cried. Women cried more often than men, but there were
no significant differences between the depressed and
nondepressed groups.

16. Some people who race greyhounds give the dogs large
doses of vitamin C in the belief that the dogs will run
faster. Investigators at the University of Florida tried
three different diets in random order on each of five rac-
ing greyhounds. They were surprised to find that when
the dogs ate high amounts of vitamin C they ran more
slowly. (Science News, July 20, 2002)

17. Some people claim they can get relief from migraine
headache pain by drinking a large glass of ice water. Re-
searchers plan to enlist several people who suffer from
migraines in a test. When a participant experiences a mi-
graine headache, he or she will take a pill that may be a
standard pain reliever or a placebo. Half of each group
will also drink ice water. Participants will then report the
level of pain relief they experience.

18. A dog food company wants to compare a new lower-
calorie food with their standard dog food to see if it’s 
effective in helping inactive dogs maintain a healthy
weight. They have found several dog owners willing to
participate in the trial. The dogs have been classified as
small, medium, or large breeds, and the company will
supply some owners of each size of dog with one of the
two foods. The owners have agreed not to feed their dogs
anything else for a period of 6 months, after which the
dogs’ weights will be checked.

19. Athletes who had suffered hamstring injuries were ran-
domly assigned to one of two exercise programs. Those
who engaged in static stretching returned to sports activ-
ity in a mean of 15.2 days faster than those assigned to a
program of agility and trunk stabilization exercises.
( Journal of Orthopaedic & Sports Physical Therapy 34 [March
2004]: 3)

20. Pew Research compared respondents to an ordinary 
5-day telephone survey with respondents to a 4-month-
long rigorous survey designed to generate the highest
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possible response rate. They were especially interested in
identifying any variables for which those who responded
to the ordinary survey were different from those who
could be reached only by the rigorous survey.

21. Omega-3. Exercise 7 describes an experiment that
showed that high doses of omega-3 fats might be of bene-
fit to people with bipolar disorder. The experiment in-
volved a control group of subjects who received a placebo.
Why didn’t the experimenters just give everyone the
omega-3 fats to see if they improved?

22. Insomnia. Exercise 10 describes an experiment showing
that exercise helped people sleep better. The experiment
involved other groups of subjects who didn’t exercise.
Why didn’t the experimenters just have everyone exercise
and see if their ability to sleep improved?

23. Omega-3 revisited. Exercises 7 and 21 describe an ex-
periment investigating a dietary approach to treating
bipolar disorder. Researchers randomly assigned 30 sub-
jects to two treatment groups, one group taking a high
dose of omega-3 fats and the other a placebo.
a) Why was it important to randomize in assigning the

subjects to the two groups?
b) What would be the advantages and disadvantages of

using 100 subjects instead of 30?

24. Insomnia again. Exercises 10 and 22 describe an ex-
periment investigating the effectiveness of exercise in
combating insomnia. Researchers randomly assigned half
of the 40 volunteers to an exercise program.
a) Why was it important to randomize in deciding who

would exercise?
b) What would be the advantages and disadvantages of

using 100 subjects instead of 40?

25. Omega-3, finis. Exercises 7, 21, and 23 describe an ex-
periment investigating the effectiveness of omega-3 fats
in treating bipolar disorder. Suppose some of the 30 sub-
jects were very active people who walked a lot or got vig-
orous exercise several times a week, while others tended
to be more sedentary, working office jobs and watching a
lot of TV. Why might researchers choose to block the sub-
jects by activity level before randomly assigning them to
the omega-3 and placebo groups?

26. Insomnia, at last. Exercises 10, 22, and 24 describe an
experiment investigating the effectiveness of exercise in
combating insomnia. Suppose some of the 40 subjects had
maintained a healthy weight, but others were quite over-
weight. Why might researchers choose to block the sub-
jects by weight level before randomly assigning some of
each group to the exercise program?

27. Tomatoes. Describe a strategy to randomly split the 24
tomato plants into the three groups for the chapter’s com-
pletely randomized single factor test of OptiGro fertilizer.

28. Tomatoes II. The chapter also described a completely
randomized two-factor experiment testing OptiGro fertil-
izer in conjunction with two different routines for water-
ing the plants. Describe a strategy to randomly assign the
24 tomato plants to the six treatments.

29. Shoes. A running-shoe manufacturer wants to test the
effect of its new sprinting shoe on 100-meter dash times.

The company sponsors 5 athletes who are running the
100-meter dash in the 2004 Summer Olympic games. To
test the shoe, it has all 5 runners run the 100-meter dash
with a competitor’s shoe and then again with their new
shoe. The company uses the difference in times as the re-
sponse variable.
a) Suggest some improvements to the design.
b) Why might the shoe manufacturer not be able to gen-

eralize the results they find to all runners?

30. Swimsuits. A swimsuit manufacturer wants to test the
speed of its newly designed suit. The company designs
an experiment by having 6 randomly selected Olympic
swimmers swim as fast as they can with their old swim-
suit first and then swim the same event again with the
new, expensive swimsuit. The company will use the 
difference in times as the response variable. Criticize the
experiment and point out some of the problems with
generalizing the results.

31. Hamstrings. Exercise 19 discussed an experiment to
see if the time it took athletes with hamstring injuries to
be able to return to sports was different depending on
which of two exercise programs they engaged in.
a) Explain why it was important to assign the athletes to

the two different treatments randomly.
b) There was no control group consisting of athletes who

did not participate in a special exercise program. Ex-
plain the advantage of including such a group.

c) How might blinding have been used?
d) One group returned to sports activity in a mean of

37.4 days (SD = 27.6 days) and the other in a mean of
22.2 days (SD = 8.3 days). Do you think this difference
is statistically significant? Explain.

32. Diet and blood pressure. An experiment that showed
that subjects fed the DASH diet were able to lower their
blood pressure by an average of 6.7 points compared to a
group fed a “control diet.” All meals were prepared by
dieticians.
a) Why were the subjects randomly assigned to the diets

instead of letting people pick what they wanted to eat?
b) Why were the meals prepared by dieticians?
c) Why did the researchers need the control group? If the

DASH diet group’s blood pressure was lower at the
end of the experiment than at the beginning, wouldn’t
that prove the effectiveness of that diet?

d) What additional information would you want to
know in order to decide whether an average reduc-
tion in blood pressure of 6.7 points was statistically
significant?

33. Mozart. Will listening to a Mozart piano sonata make
you smarter? In a 1995 study published in the journal
Psychological Science, Rauscher, Shaw, and Ky reported
that when students were given a spatial reasoning section
of a standard IQ test, those who listened to Mozart for 
10 minutes improved their scores more than those who
simply sat quietly.
a) These researchers said the differences were statistically

significant. Explain what that means in context.
b) Steele, Bass, and Crook tried to replicate the original

study. In their study, also published in Psychological
Science (1999), the subjects were 125 college students
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who participated in the experiment for course credit.
Subjects first took the test. Then they were assigned to
one of three groups: listening to a Mozart piano
sonata, listening to music by Philip Glass, and sitting
for 10 minutes in silence. Three days after the treat-
ments, they were retested. Draw a diagram displaying
the design of this experiment.

c) These boxplots show the differences in score before
and after treatment for the three groups. Did the
Mozart group show improvement?
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d) Do you think the results prove that listening to Mozart
is beneficial? Explain.

34. Full moon. It’s a common belief that people behave
strangely when there’s a full moon and that as a result
police and emergency rooms are busier than usual. De-
sign a way you could find out whether there is any merit
to this belief. Will you use an observational study or an
experiment? Why?

35. Wine. A 2001 Danish study published in the Archives of
Internal Medicine casts significant doubt on suggestions
that adults who drink wine have higher levels of “good”
cholesterol and fewer heart attacks. These researchers
followed a group of individuals born at a Copenhagen
hospital between 1959 and 1961 for 40 years. Their study
found that in this group the adults who drank wine were
richer and better educated than those who did not.
a) What kind of study was this?
b) It is generally true that people with high levels of

education and high socioeconomic status are healthier
than others. How does this call into question the sup-
posed health benefits of wine?

c) Can studies such as these prove causation (that wine
helps prevent heart attacks, that drinking wine makes
one richer, that being rich helps prevent heart attacks,
etc.)? Explain.

36. Swimming. Recently, a group of adults who swim 
regularly for exercise were evaluated for depression. It
turned out that these swimmers were less likely to be 
depressed than the general population. The researchers
said the difference was statistically significant.
a) What does “statistically significant” mean in this

context?
b) Is this an experiment or an observational study?

Explain.
c) News reports claimed this study proved that swimming

can prevent depression. Explain why this conclusion
is not justified by the study. Include an example of a
possible lurking variable.

d) But perhaps it is true. We wonder if exercise can ward
off depression, and whether anaerobic exercise (like
weight training) is as effective as aerobic exercise (like
swimming). We find 120 volunteers not currently en-
gaged in a regular program of exercise. Design an
appropriate experiment.

37. Dowsing. Before drilling for water, many rural home-
owners hire a dowser (a person who claims to be able to
sense the presence of underground water using a forked
stick.) Suppose we wish to set up an experiment to test
one dowser’s ability. We get 20 identical containers, fill
some with water, and ask him to tell which ones they are.
a) How will we randomize this procedure?
b) The dowser correctly identifies the contents of 12 out

of 20 containers. Do you think this level of success is
statistically significant? Explain.

c) How many correct identifications (out of 20) would
the dowser have to make to convince you that the
forked-stick trick works? Explain.

38. Healing. A medical researcher suspects that giving
post-surgical patients large doses of vitamin E will speed
their recovery times by helping their incisions heal more
quickly. Design an experiment to test this conjecture. Be
sure to identify the factors, levels, treatments, response
variable, and the role of randomization.

39. Reading. Some schools teach reading using phonics
(the sounds made by letters) and others using whole 
language (word recognition). Suppose a school district
wants to know which method works better. Suggest a 
design for an appropriate experiment.

40. Gas mileage. Do cars get better gas mileage with pre-
mium instead of regular unleaded gasoline? It might be
possible to test some engines in a laboratory, but we’d
rather use real cars and real drivers in real day-to-day
driving, so we get 20 volunteers. Design the experiment.

41. Weekend deaths. A study published in the New Eng-
land Journal of Medicine (Aug. 2001) suggests that it’s dan-
gerous to enter a hospital on a weekend. During a 10-year
period, researchers tracked over 4 million emergency ad-
missions to hospitals in Ontario, Canada. Their findings
revealed that patients admitted on weekends had a much
higher risk of death than those who went on weekdays.
a) The researchers said the difference in death rates was

“statistically significant.” Explain in this context what
that means.

b) What kind of study was this? Explain.
c) If you think you’re quite ill on a Saturday, should you

wait until Monday to seek medical help? Explain.
d) Suggest some possible explanations for this troubling

finding.

42. Shingles. A research doctor has discovered a new 
ointment that she believes will be more effective than the
current medication in the treatment of shingles (a painful
skin rash). Eight patients have volunteered to participate
in the initial trials of this ointment. You are the statistician
hired as a consultant to help design a completely ran-
domized experiment.
a) Describe how you will conduct this experiment.
b) Suppose the eight patients’ last names start with the

letters A to H. Using the random numbers listed below,
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show which patients you will assign to each treatment.
Explain your randomization procedure clearly.

c) Can you make this experiment double-blind? How?
d) The initial experiment revealed that males and fe-

males may respond differently to the ointment.
Further testing of the drug’s effectiveness is now
planned, and many patients have volunteered. What
changes in your first design, if any, would you make
for this second stage of testing?

43. Beetles. Hoping to learn how to control crop damage
by a certain species of beetle, a researcher plans to test
two different pesticides in small plots of corn. A few days
after application of the chemicals, he’ll check the number
of beetle larvae found on each plant. The researcher
wants to know whether either pesticide works and
whether there is a significant difference in effectiveness
between them. Design an appropriate experiment.

44. SAT Prep. Can special study courses actually help raise
SAT scores? One organization says that the 30 students
they tutored achieved an average gain of 60 points when
they retook the test.
a) Explain why this does not necessarily prove that the

special course caused the scores to go up.
b) Propose a design for an experiment that could test the

effectiveness of the tutorial course.
c) Suppose you suspect that the tutorial course might be

more helpful for students whose initial scores were
particularly low. How would this affect your pro-
posed design?

45. Safety switch. An industrial machine requires an
emergency shutoff switch that must be designed so that it
can be easily operated with either hand. Design an exper-
iment to find out whether workers will be able to deacti-
vate the machine as quickly with their left hands as with
their right hands. Be sure to explain the role of random-
ization in your design.

46. Washing clothes. A consumer group wants to test the
effectiveness of a new “organic” laundry detergent and
make recommendations to customers about how to best
use the product. They intentionally get grass stains on 30
white T-shirts in order to see how well the detergent will
clean them. They want to try the detergent in cold water
and in hot water on both the “regular” and “delicates”
wash cycles. Design an appropriate experiment, indicat-
ing the number of factors, levels, and treatments. Explain
the role of randomization in your experiment.

41098  18329  78458  31685  55259
47. Skydiving, anyone? A humor piece published in the

British Medical Journal (“Parachute use to prevent death
and major trauma related to gravitational challenge: sys-
tematic review of randomized control trials,” Gordon,
Smith, and Pell, BMJ, 2003:327) notes that we can’t tell for
sure whether parachutes are safe and effective because
there has never been a properly randomized, double-
blind, placebo-controlled study of parachute effectiveness
in skydiving. (Yes, this is the sort of thing statisticians find
funny . . . .) Suppose you were designing such a study:
a) What is the factor in this experiment?
b) What experimental units would you propose?7

c) What would serve as a placebo for this study?
d) What would the treatments be?
e) What would the response variable be?
f) What sources of variability would you control?
g) How would you randomize this “experiment”?
h) How would you make the experiment double-blind?

JUST CHECKING
Answers

1. a) The factor was type of treatment for peptic ulcer.
b) The response variable could be a measure of relief

from gastric ulcer pain or an evaluation by a
physician of the state of the disease.

c) Treatments would be gastric freezing and some 
alternative control treatment.

d) Treatments should be assigned randomly.
e) No. The Web site reports “lack of effectiveness,”

indicating that no large differences in patient
healing were noted.

2. a) Neither the patients who received the treatment
nor the doctor who evaluated them afterward
knew what treatment they had received.

b) The placebo is needed to accomplish blinding. The
best alternative would be using body-temperature
liquid rather than the freezing liquid.

c) The researchers should block the subjects by the
length of time they had had the ulcer, then ran-
domly assign subjects in each block to the freezing
and placebo groups.

7 Don’t include your Statistics instructor!
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showed up in the use of alcohol and marijuana, conviction
of crimes, and teenage pregnancy.

2. The journal Circulation reported that among 1900 people
who had heart attacks, those who drank an average of 
19 cups of tea a week were 44% more likely than non-
drinkers to survive at least 3 years after the attack.

3. Researchers at the Purina Pet Institute studied Labrador
retrievers for evidence of a relationship between diet and
longevity. At 8 weeks of age, 2 puppies of the same sex
and weight were randomly assigned to one of two
groups—a total of 48 dogs in all. One group was allowed
to eat all they wanted, while the other group was fed a
diet about 25% lower in calories. The median lifespan of
dogs fed the restricted diet was 22 months longer than
that of other dogs. (Science News 161, no. 19)

Gathering Data
QUICK REVIEW
Before you can make a boxplot, calculate a mean, describe a
distribution, or fit a line, you must have meaningful data to
work with. Getting good data is essential to any investigation.
No amount of clever analysis can make up for badly collected
data. Here’s a brief summary of the key concepts and skills:

u The way you gather data depends both on what you want
to discover and on what is practical.

u To get some insight into what might happen in a real 
situation, model it with a simulation using random 
numbers.

u To answer questions about a target population, collect 
information from a sample with a survey or poll.
• Choose the sample randomly. Random sampling 

designs include simple, stratified, systematic, cluster,
and multistage.

• A simple random sample draws without restriction
from the entire target population.

• When there are subgroups within the population that
may respond differently, use a stratified sample.

• Avoid bias, a systematic distortion of the results. Sam-
ple designs that allow undercoverage or response bias
and designs such as voluntary response or convenience
samples don’t faithfully represent the population.

• Samples will naturally vary one from another. This
sample-to-sample variation is called sampling error.
Each sample only approximates the target population.

u Observational studies collect information from a sample
drawn from a target population.
• Retrospective studies examine existing data. Prospec-

tive studies identify subjects in advance, then follow
them to collect data as the data are created, perhaps
over many years.

• Observational studies can spot associations between
variables but cannot establish cause and effect. It’s 
impossible to eliminate the possibility of lurking or 
confounding variables.

u To see how different treatments influence a response 
variable, design an experiment.
• Assign subjects to treatments randomly. If you don’t as-

sign treatments randomly, your experiment is not likely
to yield valid results.

• Control known sources of variation as much as possible.
Reduce variation that cannot be controlled by using
blocking, if possible.

• Replicate the experiment, assigning several subjects to
each treatment level.

• If possible, replicate the entire experiment with an 
entirely different collection of subjects.

• A well-designed experiment can provide evidence that
changes in the factors cause changes in the response
variable.

Now for more opportunities to review these concepts and
skills . . .

III
PA R T

REVIEW OF PART III

REVIEW EXERCISES

1–18. What design? Analyze the design of each research ex-
ample reported. Is it a sample survey, an observational study, or
an experiment? If a sample, what are the population, the parameter
of interest, and the sampling procedure? If an observational
study, was it retrospective or prospective? If an experiment, de-
scribe the factors, treatments, randomization, response variable,
and any blocking, matching, or blinding that may be present. In
each, what kind of conclusions can be reached?

1. Researchers identified 242 children in the Cleveland area
who had been born prematurely (at about 29 weeks). They
examined these children at age 8 and again at age 20, com-
paring them to another group of 233 children not born
prematurely. Their report, published in the New England
Journal of Medicine, said the “preemies” engaged in signifi-
cantly less risky behavior than the others. Differences
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4. The radioactive gas radon, found in some homes, poses a
health risk to residents. To assess the level of contamina-
tion in their area, a county health department wants to
test a few homes. If the risk seems high, they will publi-
cize the results to emphasize the need for home testing.
Officials plan to use the local property tax list to ran-
domly choose 25 homes from various areas of the county.

5. Almost 90,000 women participated in a 16-year study of
the role of the vitamin folate in preventing colon cancer.
Some of the women had family histories of colon cancer
in close relatives. In this at-risk group, the incidence of
colon cancer was cut in half among those who main-
tained a high folate intake. No such difference was 
observed in those with no family-based risk. (Science
News, Feb. 9, 2002)

6. In the journal Science, a research team reported that plants
in southern England are flowering earlier in the spring.
Records of the first flowering dates for 385 species over a
period of 47 years indicate that flowering has advanced
an average of 15 days per decade, an indication of climate
warming, according to the authors.

7. Fireworks manufacturers face a dilemma. They must be
sure that the rockets work properly, but test firing a
rocket essentially destroys it. On the other hand, not test-
ing the product leaves open the danger that they sell a
bunch of duds, leading to unhappy customers and loss of
future sales. The solution, of course, is to test a few of the
rockets produced each day, assuming that if those tested
work properly, the others are ready for sale.

8. Can makeup damage fetal development? Many cosmetics
contain a class of chemicals called phthalates. Studies that
exposed some laboratory animals to these chemicals
found a heightened incidence of damage to male repro-
ductive systems. Since traces of phthalates are found in
the urine of women who use beauty products, there is
growing concern that they may present a risk to male 
fetuses. (Science News, July 20, 2002)

9. Can long-term exposure to strong electromagnetic fields
cause cancer? Researchers in Italy tracked down 13 years
of medical records for people living near Vatican Radio’s
powerful broadcast antennas. A disproportionate share of
the leukemia cases occurred among men and children
who lived within 6 kilometers of the antennas. (Science
News, July 20, 2002)

10. Some doctors have expressed concern that men who have
vasectomies seemed more likely to develop prostate can-
cer. Medical researchers used a national cancer registry to
identify 923 men who had had prostate cancer and 1224
men of similar ages who had not. Roughly one quarter of
the men in each group had undergone a vasectomy, many
more than 25 years before the study. The study’s authors
concluded that there is strong evidence that having the
operation presents no long-term risk for developing
prostate cancer. (Science News, July 20, 2002)

11. Researchers investigating appetite control as a means
of losing weight found that female rats ate less and
lost weight after injections of the hormone leptin, while
male rats responded better to insulin. (Science News,
July 20, 2002)

12. An artisan wants to create pottery that has the appear-
ance of age. He prepares several samples of clay with
four different glazes and test fires them in a kiln at three
different temperature settings.

13. Tests of gene therapy on laboratory rats have raised
hopes of stopping the degeneration of tissue that charac-
terizes chronic heart failure. Researchers at the University
of California, San Diego, used hamsters with cardiac dis-
ease, randomly assigning 30 to receive the gene therapy
and leaving the other 28 untreated. Five weeks after treat-
ment the gene therapy group’s heart muscles stabilized,
while those of the untreated hamsters continued to
weaken. (Science News, July 27, 2002)

14. Researchers at the University of Bristol (England) investi-
gated reasons why different species of birds begin to sing at
different times in the morning. They captured and exam-
ined birds of 57 species at seven different sites. They meas-
ured the diameter of the birds’ eyes and also recorded the
time of day at which each species began to sing. These 
researchers reported a strong relationship between eye di-
ameter and time of singing, saying that birds with bigger
eyes tended to sing earlier. (Science News, 161, no. 16 [2002])

15. An orange-juice processing plant will accept a shipment
of fruit only after several hundred oranges selected from
various locations within the truck are carefully inspected.
If too many show signs of unsuitability for juice (bruised,
rotten, unripe, etc.), the whole truckload is rejected.

16. A soft-drink manufacturer must be sure the bottle caps 
on the soda are fully sealed and will not come off easily.
Inspectors pull a few bottles off the production line at
regular intervals and test the caps. If they detect any
problems, they will stop the bottling process to adjust or
repair the machine that caps the bottles.

17. Physically fit people seem less likely to die of cancer. A
report in the May 2002 issue of Medicine and Science in
Sports and Exercise followed 25,892 men aged 30 to 87 for
10 years. The most physically fit men had a 55% lower
risk of death from cancer than the least fit group.

18. Does the use of computer software in Introductory Statis-
tics classes lead to better understanding of the concepts?
A professor teaching two sections of Statistics decides to
investigate. She teaches both sections using the same lec-
tures and assignments, but gives one class statistics soft-
ware to help them with their homework. The classes take
the same final exam, and graders do not know which stu-
dents used computers during the semester. The professor
is also concerned that students who have had calculus
may perform differently from those who have not, so she
plans to compare software vs. no-software scores sepa-
rately for these two groups of students.

19. Point spread. When taking bets on sporting events,
bookmakers often include a “point spread” that awards
the weaker team extra points. In theory this makes the
outcome of the bet a toss-up. Suppose a gambler places a
$10 bet and picks the winners of five games. If he’s right
about fewer than three of the games, he loses. If he gets
three, four, or all five correct, he’s paid $10, $20, and $50,
respectively. Estimate the amount such a bettor might ex-
pect to lose over many weeks of gambling.
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20. The lottery. Many people spend a lot of money trying
to win huge jackpots in state lotteries. Let’s play a simpli-
fied version using only the numbers from 1 to 20. You bet
on three numbers. The state picks five winning numbers.
If your three are all among the winners, you are rich!
a) Simulate repeated plays. How long did it take you to

win?
b) In real lotteries, there are many more choices (often

54) and you must match all five winning numbers. Ex-
plain how these changes affect your chances of hitting
the jackpot.

21. Everyday randomness. Aside from casinos, lotteries,
and games, there are other situations you encounter in
which something is described as “random” in some way.
Give three different examples. Describe how randomness
is (or is not) achieved in each.

22. Cell phone risks. Researchers at the Washington Uni-
versity School of Medicine randomly placed 480 rats into
one of three chambers containing radio antennas. One
group was exposed to digital cell phone radio waves, the
second to analog cell phone waves, and the third group
to no radio waves. Two years later the rats were exam-
ined for signs of brain tumors. In June 2002 the scientists
said that differences among the three groups were not
statistically significant.
a) Is this a study or an experiment? Explain.
b) Explain in this context what “not statistically signifi-

cant” means.
c) Comment on the fact that this research was funded by

Motorola, a manufacturer of cell phones.

23. Tips. In restaurants, servers rely on tips as a major
source of income. Does serving candy after the meal
produce larger tips? To find out, two waiters determined
randomly whether or not to give candy to 92 dining
parties. They recorded the sizes of the tips and reported
that guests getting candy tipped an average of 17.8% of
the bill, compared with an average tip of only 15.1%
from those who got no candy. (“Sweetening the Till: The
Use of Candy to Increase Restaurant Tipping.” Journal of
Applied Social Psychology 32, no. 2 [2002]: 300–309)
a) Was this an experiment or an observational study?

Explain.
b) Is it reasonable to conclude that the candy caused

guests to tip more? Explain.
c) The researchers said the difference was statistically

significant. Explain in this context what that means.

24. Tips, take 2. In another experiment to see if getting
candy after a meal would induce customers to leave a
bigger tip, a waitress randomly decided what to do with
80 dining parties. Some parties received no candy, some
just one piece, and some two pieces. Others initially got
just one piece of candy, and then the waitress suggested
that they take another piece. She recorded the tips re-
ceived, finding that, in general, the more candy, the
higher the tip, but the highest tips (23%) came from the
parties who got one piece and then were offered more.
(“Sweetening the Till: The Use of Candy to Increase
Restaurant Tipping.” Journal of Applied Social Psychology
32, no. 2 [2002]: 300–309)

a) Diagram this experiment.
b) How many factors are there? How many levels?
c) How many treatments are there?
d) What is the response variable?
e) Did this experiment involve blinding? Double

blinding?
f) In what way might the waitress, perhaps unintention-

ally, have biased the results?

25. Cloning. In September 1998, USA Weekend magazine
asked, “Should humans be cloned?” Readers were
invited to vote “Yes” or “No” by calling one of two
different 900 numbers. Based on 38,023 responses, the
magazine reported that “9 out of 10 readers oppose
cloning.”
a) Explain why you think the conclusion is not justified.

Describe the types of bias that may be present.
b) Reword the question in a way that you think might

create a more positive response.

26. Laundry. An experiment to test a new laundry deter-
gent, SparkleKleen, is being conducted by a consumer
advocate group. They would like to compare its perform-
ance with that of a laboratory standard detergent they
have used in previous experiments. They can stain 
16 swatches of cloth with 2 tsp of a common staining
compound and then use a well-calibrated optical scanner
to detect the amount of the stain left after washing. To
save time in the experiment, several suggestions have
been made. Comment on the possible merits and draw-
backs of each one.
a) Since data for the laboratory standard detergent are

already available from previous experiments, for this
experiment wash all 16 swatches with SparkleKleen,
and compare the results with the previous data.

b) Use both detergents with eight separate runs each, but
to save time, use only a 10-second wash time with
very hot water.

c) To ease bookkeeping, first run all of the standard de-
tergent washes on eight swatches, then run all of the
SparkleKleen washes on the other eight swatches.

d) Rather than run the experiment, use data from the
company that produced SparkleKleen, and compare
them with past data from the standard detergent.

27. When to stop? You play a game that involves rolling a
die. You can roll as many times as you want, and your
score is the total for all the rolls. But ... if you roll a 6 your
score is 0 and your turn is over. What might be a good
strategy for a game like this?
a) One of your opponents decides to roll 4 times, then

stop (hoping not to get the dreaded 6 before then). Use
a simulation to estimate his average score.

b) Another opponent decides to roll until she gets at least
12 points, then stop. Use a simulation to estimate her
average score.

c) Propose another strategy that you would use to play
this game. Using your strategy, simulate several turns.
Do you think you would beat the two opponents?

28. Rivets. A company that manufactures rivets believes
the shear strength of the rivets they manufacture follows
a Normal model with a mean breaking strength of 950
pounds and a standard deviation of 40 pounds.
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a) What percentage of rivets selected at random will
break when tested under a 900-pound load?

b) You’re trying to improve the rivets and want to exam-
ine some that fail. Use a simulation to estimate how
many rivets you might need to test in order to find
three that fail at 900 pounds (or below).

29. Homecoming. A college Statistics class conducted a
survey concerning community attitudes about the col-
lege’s large homecoming celebration. That survey drew
its sample in the following manner: Telephone numbers
were generated at random by selecting one of the local
telephone exchanges (first three digits) at random and
then generating a random four-digit number to follow
the exchange. If a person answered the phone and the call
was to a residence, then that person was taken to be the
subject for interview. (Undergraduate students and those
under voting age were excluded, as was anyone who
could not speak English.) Calls were placed until a sam-
ple of 200 eligible respondents had been reached.
a) Did every telephone number that could occur in that

community have an equal chance of being generated?
b) Did this method of generating telephone numbers 

result in a simple random sample (SRS) of local 
residences? Explain.

c) Did this method generate an SRS of local voters? 
Explain.

d) Is this method unbiased in generating samples of
households? Explain.

30. Youthful appearance. Readers’ Digest reported results
of several surveys that asked graduate students to exam-
ine photographs of men and women and try to guess
their ages. Researchers compared these guesses with the
number of times the people in the pictures reported hav-
ing sexual intercourse. It turned out that those who had
been more sexually active were judged as looking
younger, and that the difference was described as “statis-
tically significant.” Psychologist David Weeks, who com-
piled the research, speculated that lovemaking boosts
hormones that “reduce fatty tissue and increase lean
muscle, giving a more youthful appearance.”
a) What does “statistically significant” mean in this

context?
b) Explain in statistical terms why you might be skeptical

about Dr. Weeks’s conclusion. Propose an alternative
explanation for these results.

31. Smoking and Alzheimer’s. Medical studies indicate
that smokers are less likely to develop Alzheimer’s dis-
ease than people who never smoked.
a) Does this prove that smoking may offer some protec-

tion against Alzheimer’s? Explain.
b) Offer an alternative explanation for this association.
c) How would you conduct a study to investigate this?

32. Antacids. A researcher wants to compare the perform-
ance of three types of antacid in volunteers suffering from
acid reflux disease. Because men and women may react
differently to this medication, the subjects are split into
two groups, by sex. Subjects in each group are randomly
assigned to take one of the antacids or to take a sugar pill
made to look the same. The subjects will rate their level of
discomfort 30 minutes after eating.

a) What kind of design is this?
b) The experiment uses volunteers rather than a random

sample of all people suffering from acid reflux dis-
ease. Does this make the results invalid? Explain.

c) How may the use of the placebo confound this experi-
ment? Explain.

33. Sex and violence. Does the content of a television pro-
gram affect viewers’ memory of the products advertised
in commercials? Design an experiment to compare the
ability of viewers to recall brand names of items featured
in commercials during programs with violent content,
sexual content, or neutral content.

34. Pubs. In England, a Leeds University researcher said
that the local watering hole’s welcoming atmosphere
helps men get rid of the stresses of modern life and is
vital for their psychological well-being. Author of the
report, Dr. Colin Gill, said rather than complain,
women should encourage men to “pop out for a swift
half.” “Pub-time allows men to bond with friends and
colleagues,” he said. “Men need break-out time as
much as women and are mentally healthier for it.” Gill
added that men might feel unfulfilled or empty if they
had not been to the pub for a week. The report, com-
missioned by alcohol-free beer brand Kaliber, surveyed
900 men on their reasons for going to the pub. More
than 40% said they went for the conversation, with re-
laxation and a friendly atmosphere being the other
most common reasons. Only 1 in 10 listed alcohol as the
overriding reason.

Let’s examine this news story from a statistical perspective.
a) What are the W’s: Who, What, When, Where, Why?
b) What population does the researcher think the study

applies to?
c) What is the most important thing about the selection

process that the article does not tell us?
d) How do you think the 900 respondents were selected?

(Name a method of drawing a sample that is likely to
have been used.)

e) Do you think the report that only 10% of respondents
listed alcohol as an important reason for going to the
pub might be a biased result? Why?

35. Age and party. The Gallup Poll conducted a represen-
tative telephone survey during the first quarter of 1999.
Among its reported results was the following table
concerning the preferred political party affiliation of
respondents and their ages:

A
ge

Party

Republican Democratic Independent Total

18–29 241 351 409 1001

30–49 299 330 370 999

50–64 282 341 375 998

65+ 279 382 343 1004

Total 1101 1404 1497 4002
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a) What sampling strategy do you think the pollsters
used? Explain.

b) What percentage of the people surveyed were 
Democrats?

c) Do you think this is a good estimate of the percentage
of voters in the United States who are registered 
Democrats? Why or why not?

d) In creating this sample design, what question do you
think the pollsters were trying to answer?

36. Bias? Political analyst Michael Barone has written that
“conservatives are more likely than others to refuse to 
respond to polls, particularly those polls taken by media
outlets that conservatives consider biased” (The Weekly
Standard, March 10, 1997). The Pew Research Foundation
tested this assertion by asking the same questions in a na-
tional survey run by standard methods and in a more rig-
orous survey that was a true SRS with careful follow-up
to encourage participation. The response rate in the
“standard survey” was 42%. The response rate in the
“rigorous survey” was 71%.
a) What kind of bias does Barone claim may exist in

polls?
b) What is the population for these surveys?
c) On the question of political position, the Pew 

researchers report the following table:

Standard 
Survey

Rigorous 
Survey

Conservative 37% 35%

Moderate 40% 41%

Liberal 19% 20%

Bergman Cox Fontana Perl
Bowman DeLara Forester Rabkin
Burkhauser Delli-Bovi Frongillo Roufaiel
Castillo Dugan Furnas Swafford
Clancy Febo LePage Testut

What makes you think these results are incomplete?
d) The Pew researchers report that differences between

opinions expressed on the two surveys were not
statistically significant. Explain what “not statistically
significant” means in this context.

37. Save the grapes. Vineyard owners have problems with
birds that like to eat the ripening grapes. Some vineyards
use scarecrows to try to keep birds away. Others use net-
ting that covers the plants. Owners really would like to
know if either method works and, if so, which one is bet-
ter. One owner has offered to let you use his vineyard this
year for an experiment. Propose a design. Carefully indi-
cate how you would set up the experiment, specifying
the factor(s) and response variable.

38. Bats. It’s generally believed that baseball players can
hit the ball farther with aluminum bats than with the tra-
ditional wooden ones. Is that true? And, if so, how much
farther? Players on your local high school baseball team
have agreed to help you find out. Design an appropriate
experiment.

39. Knees. Research reported in the spring of 2002 cast
doubt on the effectiveness of arthroscopic knee surgery for
patients with arthritis. Patients suffering from arthritis pain
who volunteered to participate in the study were randomly
divided into groups. One group received arthroscopic knee

surgery. The other group underwent “placebo surgery”
during which incisions were made in their knees, but no
surgery was actually performed. Follow-up evaluations
over a period of 2 years found that differences in the
amount of pain relief experienced by the two groups were
not statistically significant. (NEJM 347:81–88 July 11, 2002)
a) Why did the researchers feel it was necessary to have

some of the patients undergo “placebo surgery”?
b) Because patients had to consent to participate in 

this experiment, the subjects were essentially self-
selected—a kind of voluntary response group. Explain
why that does not invalidate the findings of the 
experiment.

c) What does “statistically significant” mean in this 
context?

40. NBA draft lottery. Professional basketball teams
hold a “draft” each year in which they get to pick the
best available college and high school players. In an ef-
fort to promote competition, teams with the worst
records get to pick first, theoretically allowing them to
add better players. To combat the fear that teams with
no chance to make the playoffs might try to get better
draft picks by intentionally losing late-season games,
the NBA’s Board of Governors adopted a weighted lot-
tery system in 1990. Under this system, the 11 teams
that did not make the playoffs were eligible for the lot-
tery. The NBA prepared 66 cards, each naming one of
the teams. The team with the worst win-loss record was
named on 11 of the cards, the second-worst team on 10
cards, and so on, with the team having the best record
among the nonplayoff clubs getting only one chance at
having the first pick. The cards were mixed, then drawn
randomly to determine the order in which the teams
could draft players. (Since 1995, 13 teams have been in-
volved in the lottery, using a complicated system with
14 numbered Ping-Pong balls drawn in groups of four.)
Suppose there are two exceptional players available in
this year’s draft and your favorite team had the third-
worst record. Use a simulation to find out how likely it
is that your team gets to pick first or second. Describe
your simulation carefully.

41. Security. There are 20 first-class passengers and 120 coach
passengers scheduled on a flight. In addition to the usual
security screening, 10% of the passengers will be sub-
jected to a more complete search.
a) Describe a sampling strategy to randomly select those

to be searched.
b) Here is the first-class passenger list and a set of ran-

dom digits. Select two passengers to be searched, care-
fully demonstrating your process.

65436 71127 04879 41516 20451 02227 94769 23593

c) Explain how you would use a random number table
to select the coach passengers to be searched.
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42. Profiling? Among the 20 first-class passengers on the
flight described in Exercise 41, there were four business-
men from the Middle East. Two of them were the two
passengers selected to be searched. They complained of
profiling, but the airline claims that the selection was ran-
dom. What do you think? Support your conclusion with a
simulation.

43. Par 4. In theory, a golfer playing a par-4 hole tees off,
hitting the ball in the fairway, then hits an approach shot
onto the green. The first putt (usually long) probably
won’t go in, but the second putt (usually much shorter)
should. Sounds simple enough, but how many strokes
might it really take? Use a simulation to estimate a pretty
good golfer’s score based on these assumptions:
• The tee shot hits the fairway 70% of the time.
• A first approach shot lands on the green 80% of the time

from the fairway, but only 40% of the time otherwise.

• Subsequent approach shots land on the green 90% of
the time.

• The first putt goes in 20% of the time, and subsequent
putts go in 90% of the time.

44. The back nine. Use simulations to estimate more golf
scores, similar to the procedure in Exercise 43.
a) On a par 3, the golfer hopes the tee shot lands on the

green. Assume that the tee shot behaves like the first
approach shot described in Exercise 43.

b) On a par 5, the second shot will reach the green 10% of
the time and hit the fairway 60% of the time. If it does
not hit the green, the golfer must play an approach
shot as described in Exercise 43.

c) Create a list of assumptions that describe your
golfing ability, and then simulate your score on a
few holes. Explain your simulation clearly.
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CHAPTER

14
From Randomness 
to Probability

Early humans saw a world filled with random events. To help them make
sense of the chaos around them, they sought out seers, consulted oracles,
and read tea leaves. As science developed, we learned to recognize some
events as predictable. We can now forecast the change of seasons, tell

when eclipses will occur precisely, and even make a reasonably good guess at
how warm it will be tomorrow. But many other events are still essentially ran-
dom. Will the stock market go up or down today? When will the next car pass this
corner? And we now know from quantum mechanics that the universe is in some
sense random at the most fundamental levels of subatomic particles.

But we have also learned to understand randomness. The surprising fact is
that in the long run, even truly random phenomena settle down in a way that’s
consistent and predictable. It’s this property of random phenomena that makes
the next steps we’re about to take in Statistics possible.

Dealing with Random Phenomena
Every day you drive through the intersection at College and Main. Even though
it may seem that the light is never green when you get there, you know this can’t
really be true. In fact, if you try really hard, you can recall just sailing through the
green light once in a while.

What’s random here? The light itself is governed by a timer. Its pattern isn’t
haphazard. In fact, the light may even be red at precisely the same times each day.
It’s the pattern of your driving that is random. No, we’re certainly not insinuating
that you can’t keep the car on the road. At the precision level of the 30 seconds or so
that the light spends being red or green, the time you arrive at the light is random.
Even if you try to leave your house at exactly the same time every day, whether the
light is red or green as you reach the intersection is a random phenomenon.1

1 If you somehow managed to leave your house at precisely the same time every day and
there was no variation in the time it took you to get to the light, then there wouldn’t be any
randomness, but that’s not very realistic.
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Is the color of the light completely unpredictable? When you stop to think
about it, it’s clear that you do expect some kind of regularity in your long-run
experience. Some fraction of the time, the light will be green as you get to the
intersection. How can you figure out what that fraction is?

You might record what happens at the intersection each day and graph the
accumulated percentage of green lights like this:
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FIGURE 14.1
The overall percentage of
times the light is green settles
down as you see more 
outcomes.

The first day you recorded the light, it was green. Then on the next five days, it
was red, then green again, then green, red, and red. If you plot the percentage of
green lights against days, the graph would start at 100% (because the first time, the
light was green, so 1 out of 1, for 100%). Then the next day it was red, so the accumu-
lated percentage dropped to 50% (1 out of 2). The third day it was green again (2 out
of 3, or 67% green), then green (3 out of 4, or 75%), then red twice in a row (3 out of 5,
for 60% green, and then 3 out of 6, for 50%), and so on. As you collect a new data
value for each day, each new outcome becomes a smaller and smaller fraction of the
accumulated experience, so, in the long run, the graph settles down. As it settles
down, you can see that, in fact, the light is green about 35% of the time.

When talking about random phenomena such as this, it helps to define our
terms. You aren’t interested in the traffic light all the time. You pull up to the in-
tersection only once a day, so you care about the color of the light only at these
particular times.2 In general, each occasion upon which we observe a random
phenomenon is called a trial. At each trial, we note the value of the random phe-
nomenon, and call that the trial’s outcome. (If this language reminds you of
Chapter 11, that’s not unintentional.)

For the traffic light, there are really three possible outcomes: red, yellow, or
green. Often we’re more interested in a combination of outcomes rather than in the
individual ones. When you see the light turn yellow, what do you do? If you race
through the intersection, then you treat the yellow more like a green light. If you
step on the brakes, you treat it more like a red light. Either way, you might want to
group the yellow with one or the other. When we combine outcomes like that, the
resulting combination is an event.3 We sometimes talk about the collection of all
possible outcomes and call that event the sample space.4 We’ll denote the sample

Day Light % Green

1 Green 100

2 Red 50

3 Green 66.7

4 Green 75

5 Red 60

6 Red 50
o o o

A phenomenon consists 
of trials. Each trial has an
outcome. Outcomes combine
to make events.

2 Even though the randomness here comes from the uncertainty in our arrival time, we can
think of the light itself as showing a color at random.
3 Each individual outcome is also an event.
4 Mathematicians like to use the term “space” as a fancy name for a set. Sort of like refer-
ring to that closet colleges call a dorm room as “living space.” But remember that it’s really
just the set of all outcomes.
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Empirical Probability
For any event A,

in the long run.

P(A) =

# times A occurs
total # of trials

5 In case you were wondering, Jacob’s reputation was that he was every bit as nasty as this
quotation suggests. He and his brother, who was also a mathematician, fought publicly
over who had accomplished the most.

space S. (Some books are even fancier and use the Greek letter .) For the traffic
light, S = {red, green, yellow}.

The Law of Large Numbers
What’s the probability of a green light at College and Main? Based on the graph, it
looks like the relative frequency of green lights settles down to about 35%, so
saying that the probability is about 0.35 seems like a reasonable answer. But do
random phenomena always behave well enough for this to make sense? Perhaps
the relative frequency of an event can bounce back and forth between two values
forever, never settling on just one number.

Fortunately, a principle called the Law of Large Numbers (LLN) gives us the
guarantee we need. It simplifies things if we assume that the events are
independent. Informally, this means that the outcome of one trial doesn’t affect
the outcomes of the others. (We’ll see a formal definition of independent events in
the next chapter.) The LLN says that as the number of independent trials in-
creases, the long-run relative frequency of repeated events gets closer and closer to
a single value.

Although the LLN wasn’t proven until the 18th century, everyone expects the
kind of long-run regularity that the Law describes from everyday experience. In
fact, the first person to prove the LLN, Jacob Bernoulli, thought it was pretty ob-
vious, too, as his remark quoted in the margin shows.5

Because the LLN guarantees that relative frequencies settle down in the long
run, we can now officially give a name to the value that they approach. We call it
the probability of the event. If the relative frequency of green lights at that inter-
section settles down to 35% in the long run, we say that the probability of encoun-
tering a green light is 0.35, and we write . Because this definition
is based on repeatedly observing the event’s outcome, this definition of probabil-
ity is often called empirical probability.

The Nonexistent Law of Averages
Even though the LLN seems natural, it is often misunderstood because the idea
of the long run is hard to grasp. Many people believe, for example, that an out-
come of a random event that hasn’t occurred in many trials is “due” to occur.
Many gamblers bet on numbers that haven’t been seen for a while, mistakenly be-
lieving that they’re likely to come up sooner. A common term for this is the “Law
of Averages.” After all, we know that in the long run, the relative frequency will
settle down to the probability of that outcome, so now we have some “catching
up” to do, right?

Wrong. The Law of Large Numbers says nothing about short-run behavior.
Relative frequencies even out only in the long run. And, according to the LLN, the
long run is really long (infinitely long, in fact).

The so-called Law of Averages doesn’t exist at all. But you’ll hear people talk
about it as if it does. Is a good hitter in baseball who has struck out the last six
times due for a hit his next time up? If you’ve been doing particularly well in
weekly quizzes in Statistics class, are you due for a bad grade? No. This isn’t the
way random phenomena work. There is no Law of Averages for short runs.

The lesson of the LLN is that sequences of random events don’t compensate in
the short run and don’t need to do so to get back to the right long-run probability.

P (green) = 0.35

Æ

326 CHAPTER 14    From Randomness to Probability

“For even the most stupid of
men . . . is convinced that the
more observations have been
made, the less danger there is of
wandering from one’s goal.”

—Jacob Bernoulli, 1713, 
discoverer of the LLN

Don’t let yourself think that
there’s a Law of Averages
that promises short-term
compensation for recent
deviations from expected
behavior. A belief in such a
“Law”can lead to money lost
in gambling and to poor
business decisions.

“Slump? I ain’t in no slump. I
just ain’t hittin’.”

—Yogi Berra
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Coins, Keno, and the Law of Averages You’ve just flipped a fair coin and
seen six heads in a row. Does the coin “owe” you some tails? Suppose you spend that
coin and your friend gets it in change. When she starts flipping the coin, should she
expect a run of tails? Of course not. Each flip is a new event. The coin can’t “remem-
ber” what it did in the past, so it can’t “owe” any particular outcomes in the future.

Just to see how this works in practice, we ran a simulation of 100,000 flips of a
fair coin. We collected 100,000 random numbers, letting the numbers 0 to 4 repre-
sent heads and the numbers 5 to 9 represent tails. In our 100,000 “flips,” there
were 2981 streaks of at least 5 heads. The “Law of Averages” suggests that the next
flip after a run of 5 heads should be tails more often to even things out. Actually, the
next flip was heads more often than tails: 1550 times to 1431 times. That’s 51.9%
heads. You can perform a similar simulation easily on a computer. Try it!

Of course, sometimes an apparent drift from what we expect means that the
probabilities are, in fact, not what we thought. If you get 10 heads in a row, maybe
the coin has heads on both sides!

Keno is a simple casino game in which numbers from 1 to 80
are chosen. The numbers, as in most lottery games, are sup-
posed to be equally likely. Payoffs are made depending on how
many of those numbers you match on your card. A group of
graduate students from a Statistics department decided to take
a field trip to Reno. They (very discreetly) wrote down the out-
comes of the games for a couple of days, then drove back to
test whether the numbers were, in fact, equally likely. It turned
out that some numbers were more likely to come up than oth-
ers. Rather than bet on the Law of Averages and put their

money on the numbers that were “due,” the students put their faith in the LLN—
and all their (and their friends’) money on the numbers that had come up before.
After they pocketed more than $50,000, they were escorted off the premises and
invited never to show their faces in that casino again.

JUST CHECKING
1. One common proposal for beating the lottery is to note which numbers have come up lately, eliminate those from

consideration, and bet on numbers that have not come up for a long time. Proponents of this method argue that
in the long run, every number should be selected equally often, so those that haven’t come up are due. Explain
why this is faulty reasoning.

Modeling Probability 327

The Law of Averages in
Everyday Life
“Dear Abby: My husband and
I just had our eighth child.
Another girl, and I am really
one disappointed woman. I
suppose I should thank God
she was healthy, but, Abby,
this one was supposed to
have been a boy. Even the
doctor told me that the law of
averages was in our favor 100
to one.” (Abigail Van Buren,
1974. Quoted in Karl Smith,
The Nature of Mathematics. 6th
ed. Pacific Grove, CA:
Brooks/Cole, 1991, p. 589)

If the probability of an outcome doesn’t change and the events are independent,
the probability of any outcome in another trial is always what it was, no matter
what has happened in other trials.

Modeling Probability
Probability was first studied extensively by a group of French mathematicians
who were interested in games of chance.6 Rather than experiment with the games
(and risk losing their money), they developed mathematical models of theoretical
probability. To make things simple (as we usually do when we build models),
they started by looking at games in which the different outcomes were equally
likely. Fortunately, many games of chance are like that. Any of 52 cards is equally

6 Ok, gambling.

Activity: What Is
Probability? The best way to get
a feel for probabilities is to
experiment with them. We’ll use
this random-outcomes tool many
more times.

The Law of Large Numbers.
Watch the relative frequency of a
random event approach the true
probability in the long run.
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NOTATION ALERT:

We often use capital letters—
and usually from the beginning
of the alphabet—to denote
events. We always use P to
denote probability. So,

means “the probability of the
event A is 0.35.”

When being formal, use
decimals (or fractions) for the
probability values, but
sometimes, especially when
talking more informally, it’s
easier to use percentages.

P (A) = 0.35

Activity: Multiple Discrete
Outcomes. The world isn’t all
heads or tails. Experiment with
an event with 4 random
alternative outcomes.

Is that all there is to it? Finding the probability of any event when the out-
comes are equally likely is straightforward, but not necessarily easy. It gets hard
when the number of outcomes in the event (and in the sample space) gets big.
Think about flipping two coins. The sample space is S and each
outcome is equally likely. So, what’s the probability of getting exactly one head and
one tail? Let’s call that event A. Well, there are two outcomes in the event 
A out of the 4 possible equally likely ones in S, so or .

OK, now flip 100 coins. What’s the probability of exactly 67 heads? Well, first, how
many outcomes are in the sample space? S = {HHHHHHHHHHH . . . H, HH . . . T, . . .}
Hmm. A lot. In fact, there are 1,267,650,600,228,229,401,496,703,205,376
different outcomes possible when flipping 100 coins. To answer the question, we’d
still have to figure out how many ways there are to get 67 heads. That’s coming in
Chapter 17; stay tuned!

1
2P(A) =

2
4,=  {HT,TH}

=  {HH,HT,TH,TT}

likely to be the next one dealt from a well-shuffled deck. Each face of a die is
equally likely to land up (or at least it should be).

It’s easy to find probabilities for events that are made up of several equally
likely outcomes. We just count all the outcomes that the event contains. The prob-
ability of the event is the number of outcomes in the event divided by the total
number of possible outcomes. We can write

For example, the probability of drawing a face card (JQK) from a deck is

P(face card) =

# face cards
# cards

=

12
52

=

3
13

.

P(A) =

# outcomes in A
# of possible outcomes

.

328 CHAPTER 14    From Randomness to Probability

Don’t get trapped into thinking that random events are always equally
likely. The chance of winning a lottery—especially lotteries with very large
payoffs—is small. Regardless, people continue to buy tickets. In an attempt to
understand why, an interviewer asked someone who had just purchased a lot-
tery ticket, “What do you think your chances are of winning the lottery?” The
reply was, “Oh, about 50–50.” The shocked interviewer asked, “How do you
get that?” to which the response was, “Well, the way I figure it, either I win or I
don’t!”

The moral of this story is that events are not always equally likely.

Personal Probability
What’s the probability that your grade in this Statistics course will be an A? You
may be able to come up with a number that seems reasonable. Of course, no mat-
ter how confident or depressed you feel about your chances for success, your
probability should be between 0 and 1. How did you come up with this probabil-
ity? Is it an empirical probability? Not unless you plan on taking the course over
and over (and over . . .), calculating the proportion of times you get an A. And,
unless you assume the outcomes are equally likely, it will be hard to find the the-
oretical probability. But people use probability in a third sense as well.

We use the language of probability in everyday speech to express a degree of
uncertainty without basing it on long-run relative frequencies or mathematical
models. Your personal assessment of your chances of getting an A expresses your
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uncertainty about the outcome. That uncertainty may be based on how comfort-
able you’re feeling in the course or on your midterm grade, but it can’t be based
on long-run behavior. We call this third kind of probability a subjective or
personal probability.

Although personal probabilities may be based on experience, they’re not
based either on long-run relative frequencies or on equally likely events. So they
don’t display the kind of consistency that we’ll need probabilities to have. For that
reason, we’ll stick to formally defined probabilities. You should be alert to the dif-
ference.

The First Three Rules for Working 
with Probability

1. Make a picture.
2. Make a picture.
3. Make a picture.

We’re dealing with probabilities now, not data, but the three rules don’t
change. The most common kind of picture to make is called a Venn diagram. We’ll
use Venn diagrams throughout the rest of this chapter. Even experienced statisti-
cians make Venn diagrams to help them think about probabilities of compound
and overlapping events. You should, too.

Formal Probability
For some people, the phrase “50/50” means something
vague like “I don’t know” or “whatever.” But when we
discuss probabilities of outcomes, it takes on the pre-
cise meaning of equally likely. Speaking vaguely about
probabilities will get us into trouble, so whenever we
talk about probabilities, we’ll need to be precise.7 And
to do that, we’ll need to develop some formal rules8

about how probability works.

1. If the probability is 0, the event can’t occur, and like-
wise if it has probability 1, it always occurs. Even if you
think an event is very unlikely, its probability can’t be
negative, and even if you’re sure it will happen, its
probability can’t be greater than 1. So we require that

A probability is a number between 0 and 1.

For any event A, 0 P(A) 1.◊◊

John Venn (1834–1923) created the Venn diagram. His book
on probability, The Logic of Chance, was “strikingly original and
considerably influenced the development of the theory of Statis-
tics,” according to John Maynard Keynes, one of the luminaries
of Economics.

Surprising Probabilities
We’ve been careful to discuss probabilities only for
situations in which the outcomes were finite, or even
countably infinite. But if the outcomes can take on any
numerical value at all (we say they are continuous), things
can get surprising. For example, what is the probability
that a randomly selected child will be exactly 3 feet tall?
Well, if we mean 3.00000 . . . feet, the answer is zero. No
randomly selected child—even one whose height would
be recorded as 3 feet, will be exactly 3 feet tall (to an
infinite number of decimal places). But, if you’ve grown
taller than 3 feet, there must have been a time in your life
when you actually were exactly 3 feet tall, even if only for a
second. So this is an outcome with probability 0 that not
only has happened—it has happened to you.

We’ve seen another example of this already in Chapter 6
when we worked with the Normal model. We said that the
probability of any specific value—say, z 0.5—is zero.The
model gives a probability for any interval of values, such as
0.49 z 0.51.The probability is smaller if we ask for 0.499 
z 0.501, and smaller still for 0.49999999 z 0.50000001.
Well, you get the idea. Continuous probabilities are useful
for the mathematics behind much of what we’ll do, but it’s
easier to deal with probabilities for countable outcomes.

<<<
<<<

=

7 And to be precise, we will be talking only about sample spaces
where we can enumerate all the outcomes. Mathematicians call
this a countable number of outcomes.
8 Actually, in mathematical terms, these are axioms—state-
ments that we assume to be true of probability. We’ll derive
other rules from these in the next chapter.
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NOTATION ALERT:

We write as 
The symbol means “union,”
representing the outcomes in
event A or event B (or both).
The symbol means
“intersection,”representing
outcomes that are in both event
A and event B. We write P(A
and B) as P(AA ¨ B).

¨

´

P(A ´ B).P(A or B)

2. If a random phenomenon has only one possible outcome, it’s not very inter-
esting (or very random). So we need to distribute the probabilities among all
the outcomes a trial can have. How can we do that so that it makes sense?
For example, consider what you’re doing as you read this book. The possible
outcomes might be

A: You read to the end of this chapter before stopping.
B: You finish this section but stop reading before the end of the chapter.
C: You bail out before the end of this section.

When we assign probabilities to these outcomes, the first thing to be sure of is
that we distribute all of the available probability. Something always occurs,
so the probability of the entire sample space is 1.

Making this more formal gives the Probability Assignment Rule.

The set of all possible outcomes of a trial 
must have probability 1.

3. Suppose the probability that you get to class on time is 0.8. What’s the proba-
bility that you don’t get to class on time? Yes, it’s 0.2. The set of outcomes that
are not in the event A is called the complement of A, and is denoted AC. This
leads to the Complement Rule:

The probability of an event occurring 
is 1 minus the probability that it doesn’t occur.

P(A) = 1 � P(AC)

P(S) = 1

330 CHAPTER 14    From Randomness to Probability

Ac

A

The set A and its complement
AC. Together, they make up the
entire sample space S.

Applying the Complement RuleFOR EXAMPLE

Recap: We opened the chapter by looking at the traffic light at the corner of College and Main, observing that when we arrive at
that intersection, the light is green about 35% of the time.

Question: If , what’s the probability the light isn’t green when you get to College and Main?

“Not green” is the complement of “green,” so 

There’s a 65% chance I won’t have a green light.

= 1 - 0.35 = 0.65
P(not green) = 1 - P(green)

P(green) = 0.35

B

A

Two disjoint sets, A and B.

4. Suppose the probability that (A) a randomly selected student is a sophomore
is 0.20, and the probability that (B) he or she is a junior is 0.30. What is the
probability that the student is either a sophomore or a junior, written

If you guessed 0.50, you’ve deduced the Addition Rule, which
says that you can add the probabilities of events that are disjoint. To see
whether two events are disjoint, we take them apart into their component
outcomes and check whether they have any outcomes in common. Disjoint
(or mutually exclusive) events have no outcomes in common. The Addition
Rule states,

For two disjoint events A and B, the probability that one or the other 
occurs is the sum of the probabilities of the two events.

P(A ´ B) = P(A) + P(B), pprovided that A and B are disjoint.

P(A ´ B)?
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Because sample space outcomes are disjoint, we have an easy way to
check whether the probabilities we’ve assigned to the possible outcomes are
legitimate. The Probability Assignment Rule tells us that the sum of the
probabilities of all possible outcomes must be exactly 1. No more, no less. For
example, if we were told that the probabilities of selecting at random a fresh-
man, sophomore, junior, or senior from all the undergraduates at a school
were 0.25, 0.23, 0.22, and 0.20, respectively, we would know that something
was wrong. These “probabilities” sum to only 0.90, so this is not a legitimate
probability assignment. Either a value is wrong, or we just missed some pos-
sible outcomes, like “pre-freshman” or “postgraduate” categories that soak
up the remaining 0.10. Similarly, a claim that the probabilities were 0.26, 0.27,
0.29, and 0.30 would be wrong because these “probabilities” sum to more
than 1.

But be careful: The Addition Rule doesn’t work for events that aren’t
disjoint. If the probability of owning an MP3 player is 0.50 and the probabil-
ity of owning a computer is 0.90, the probability of owning either an MP3
player or a computer may be pretty high, but it is not 1.40! Why can’t you add
probabilities like this? Because these events are not disjoint. You can own
both. In the next chapter, we’ll see how to add probabilities for events like
these, but we’ll need another rule.

5. Suppose your job requires you to fly from Atlanta to Houston every Monday
morning. The airline’s Web site reports that this flight is on time 85% of the
time. What’s the chance that it will be on time two weeks in a row? That’s the
same as asking for the probability that your flight is on time this week and it’s
on time again next week. For independent events, the answer is very simple.
Remember that independence means that the outcome of one event doesn’t
influence the outcome of the other. What happens with your flight this week
doesn’t influence whether it will be on time next week, so it’s reasonable to
assume that those events are independent. The Multiplication Rule says that
for independent events, to find the probability that both events occur, we just
multiply the probabilities together. Formally,

For two independent events A and B, the probability that both A and B 
occur is the product of the probabilities of the two events.

A and B are independent.
P(A  ̈B) = P(A) * P(B), provided that

Applying the Addition RuleFOR EXAMPLE

Recap: When you get to the light at College and Main, it’s either red, green, or yellow. We know that 

Question: Suppose we find out that P(yellow) is about 0.04. What’s the probability the light is red?

To find the probability that the light is green or yellow, I can use the Addition Rule because these are disjoint events:
The light can’t be both green and yellow at the same time.

Red is the only remaining alternative, and the probabilities must add up to 1, so

 = 1 - 0.39 = 0.61
 = 1 - P(green ´ yellow)

 P(red) = P(not (green ´ yellow)

P(green ´ yellow) = 0.35 + 0.04 = 0.39

P(green) = 0.35.

B

A

A ��B

Two sets A and B that are not
disjoint. The event is
their intersection.

(A ¨ B)

“Baseball is 90% mental. The
other half is physical.”

—Yogi Berra

Activity: Addition Rule for
Disjoint Events. Experiment with
disjoint events to explore the
Addition Rule.
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This rule can be extended to more than two independent events. What’s the
chance of your flight being on time for a month—four Mondays in a row? We
can multiply the probabilities of it happening each week:

or just over 50–50. Of course, to calculate this probability, we have used the
assumption that the four events are independent.

Many Statistics methods require an Independence Assumption, but
assuming independence doesn’t make it true. Always Think about whether
that assumption is reasonable before using the Multiplication Rule.

0.85 * 0.85 * 0.85 * 0.85 = 0.522

332 CHAPTER 14    From Randomness to Probability

Applying the Multiplication Rule (and others)FOR EXAMPLE

Recap: We’ve determined that the probability that we encounter a green light at the corner of College and Main is 0.35, a yellow light 0.04, and a red
light 0.61. Let’s think about your morning commute in the week ahead.

Question: What’s the probability you find the light red both Monday and Tuesday?

Because the color of the light I see on Monday doesn’t influence the color I’ll see on Tuesday, these are independent
events; I can use the Multiplication Rule:

There’s about a 37% chance I’ll hit red lights both Monday and Tuesday mornings.

Question: What’s the probability you don’t encounter a red light until Wednesday?

For that to happen, I’d have to see green or yellow on Monday, green or yellow on Tuesday, and then red on Wednesday.
I can simplify this by thinking of it as not red on Monday and Tuesday and then red on Wednesday.

There’s about a 9% chance that this week I’ll hit my first red light there on Wednesday morning.

Question: What’s the probability that you’ll have to stop at least once during the week?

Having to stop at least once means that I have to stop for the light either 1, 2, 3, 4, or 5 times next week. It’s easier
to think about the complement: never having to stop at a red light. Having to stop at least once means that I didn’t
make it through the week with no red lights.

There’s over a 99% chance I’ll hit at least one red light sometime this week.

Note that the phrase “at least” is often a tip-off to think about the complement. Something that happens at
least once does happen. Happening at least once is the complement of not happening at all, and that’s easier
to find.

 = 0.991
 = 1 - 0.0090
 = 1 - (0.39)(0.39)(0.39)(0.39)(0.39)
 = 1 - P(not red ¨ not red ¨ not red ¨ not red ¨ not red)
 = 1 - P(no red lights for 5 days in a row)

P(having to stop at the light at least once in 5 days)

= 0.092781
= (0.39)(0.39)(0.61)
= P(not red) * P(not red) * P(red) P (not red Monday ¨ not red Tuesday ¨ red Wednesday)

 P(not red) = 1 - P(red) = 1 - 0.61 = 0.39, so

 = 0.3721
 = (0.61)(0.61)

 P(red Monday ¨ red Tuesday) = P(Red) * P(red)

In informal English, you may
see “some” used to mean 
“at least one.” “What’s the
probability that some of the
eggs in that carton are
broken?” means at least one.

Activity: Multiplication
Rule for Independent Events.
Experiment with independent
random events to explore the
Multiplication Rule.

Activity: Probabilities of
Compound Events. The Random
tool also lets you experiment with
Compound random events to see
if they are independent.
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JUST CHECKING
2. Opinion polling organizations contact their respondents by telephone. Random telephone numbers are gener-

ated, and interviewers try to contact those households. In the 1990s this method could reach about 69% of U.S.
households. According to the Pew Research Center for the People and the Press, by 2003 the contact rate had 
risen to 76%. We can reasonably assume each household’s response to be independent of the others. What’s the
probability that . . .

The five rules we’ve seen can be used in a number of different combinations to answer a surpris-
ing number of questions. Let’s try one to see how we might go about it.

In 2001, Masterfoods, the manufacturers of M&M’s® milk chocolate candies, decided to add
another color to the standard color lineup of brown, yellow, red, orange, blue, and green. To de-
cide which color to add, they surveyed people in nearly every country of the world and asked
them to vote among purple, pink, and teal.The global winner was purple! 

In the United States, 42% of those who voted said purple, 37% said teal, and only 19% said
pink. But in Japan the percentages were 38% pink, 36% teal, and only 16% purple. Let’s use Japan’s
percentages to ask some questions:

1. What’s the probability that a Japanese M&M’s survey respondent selected at random pre-
ferred either pink or teal?

2. If we pick two respondents at random, what’s the probability that they both selected purple?
3. If we pick three respondents at random, what’s the probability that at least one preferred 

purple?

ProbabilitySTEP–BY–STEP EXAMPLE

The M&M’s Web site reports the proportions of
Japanese votes by color. These give the proba-
bility of selecting a voter who preferred each of
the colors:

 P(purple) = 0.16
 P(teal) = 0.36
 P(pink) = 0.38

The probability of an event is its long-term
relative frequency. It can be determined in
several ways: by looking at many replica-
tions of an event, by deducing it from
equally likely events, or by using some
other information. Here, we are told the
relative frequencies of the three responses.

Each is between 0 and 1, but they don’t all add
up to 1. The remaining 10% of the voters must
have not expressed a preference or written in
another color. I’ll put them together into “no
preference” and add .

With this addition, I have a legitimate assign-
ment of probabilities.

P(no preference) = 0.10

Make sure the probabilities are legitimate.
Here, they’re not. Either there was a mis-
take, or the other voters must have
chosen a color other than the three given.
A check of the reports from other coun-
tries shows a similar deficit, so probably
we’re seeing those who had no preference
or who wrote in another color.

a) the interviewer successfully contacts the next
household on her list?

b) the interviewer successfully contacts both of the
next two households on her list?

c) the interviewer’s first successful contact is the
third household on the list?

d) the interviewer makes at least one successful con-
tact among the next five households on the list?
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The events “Pink” and “Teal” are individual 
outcomes (a respondent can’t choose both 
colors), so they are disjoint. I can apply the 
Addition Rule.

Plan Decide which rules to use and
check the conditions they require.

 = 0.38 + 0.36 = 0.74
 P(pink ´ teal) = P(pink) + P(teal)Mechanics Show your work.

Question 1. What’s the probability that a Japanese M&M’s survey respondent selected at 
random preferred either pink or teal?

The probability that the respondent said pink
or teal is 0.74.

Conclusion Interpret your results in the
proper context.

Ç Independence Assumption: It’s unlikely
that the choice made by one random re-
spondent affected the choice of the other,
so the events seem to be independent. I
can use the Multiplication Rule.

Plan The word “both” suggests we want
P(A and B), which calls for the Multiplica-
tion Rule. Think about the assumption.

P(both purple)

5 P(first respondent picks purple
second respondent picks purple)

5 P(first respondent picks purple) 3

P(second respondent picks purple)
5 0.16 3 0.16 5 0.0256

¨

Mechanics Show your work.
For both respondents to pick purple, each
one has to pick purple.

Question 2. If we pick two respondents at random, what’s the probability that they both said
purple?

The probability that both respondents pick pur-
ple is 0.0256.

Conclusion Interpret your results in the
proper context.

BOCK_C14_0321570448 pp3.qxd  12/1/08  3:23 PM  Page 334



What Can Go Wrong? 335

Question 3. If we pick three respondents at random, what’s the probability that at least one 
preferred purple?

5 1 2 P(not purple not
purple not purple).

Ç Independence Assumption: These are 
independent events because they are
choices by three random respondents. 
I can use the Multiplication Rule.

¨

¨

= 1 - P(none picked purple).
= P({none picked purple}C)

P(at least one picked purple)Plan The phrase “at least . . .” often
flags a question best answered by looking
at the complement, and that’s the best ap-
proach here. The complement of “At least
one preferred purple” is “None of them 
preferred purple.”

Think about the assumption.

= 0.4073
= 1 - 0.5927
= 1 - (0.84)(0.84)(0.84)

purple x  not purple)
= 1 - P(not purple x  not

 = 1 - P(none picked purple)
P(at least one picked purple)

 = 1 - 0.16 = 0.84
 P(not purple) = 1 - P(purple)Mechanics First we find P(not purple)

with the Complement Rule.

There’s about a 40.7% chance that at least
one of the respondents picked purple.

Conclusion Interpret your results in the
proper context.

WHAT CAN GO WRONG?
u Beware of probabilities that don’t add up to 1. To be a legitimate probability assignment,

the sum of the probabilities for all possible outcomes must total 1. If the sum is less than
1, you may need to add another category (“other”) and assign the remaining probability
to that outcome. If the sum is more than 1, check that the outcomes are disjoint. If they’re
not, then you can’t assign probabilities by just counting relative frequencies.

u Don’t add probabilities of events if they’re not disjoint. Events must be disjoint to use the
Addition Rule. The probability of being under 80 or a female is not the probability of
being under 80 plus the probability of being female. That sum may be more than 1.

u Don’t multiply probabilities of events if they’re not independent. The probability of selecting
a student at random who is over tall and on the basketball team is not the prob-
ability the student is over tall times the probability he’s on the basketball team.
Knowing that the student is over changes the probability of his being on the
basketball team. You can’t multiply these probabilities. The multiplication of proba-
bilities of events that are not independent is one of the most common errors people
make in dealing with probabilities.

u Don’t confuse disjoint and independent. Disjoint events can’t be independent. If A = {you
get an A in this class} and B = {you get a B in this class}, A and B are disjoint. Are they
independent? If you find out that A is true, does that change the probability of B? You
bet it does! So they can’t be independent. we’ll return to this issue in the next chapter.

6¿10–

6¿10–

6¿10–

Next we calculate P(none picked purple)
by using the Multiplication Rule.

Then we can use the Complement Rule to
get the probability we want.
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CONNECTIONS
We saw in the previous three chapters that randomness plays a critical role in gathering data. That
fact alone makes it important that we understand how random events behave. The rules and con-
cepts of probability give us a language to talk and think about random phenomena. From here on,
randomness will be fundamental to how we think about data, and probabilities will show up in
every chapter.

We began thinking about independence back in Chapter 3 when we looked at contingency ta-
bles and asked whether the distribution of one variable was the same for each category of another.
Then, in Chapter 12, we saw that independence was fundamental to drawing a Simple Random
Sample. For computing compound probabilities, we again ask about independence. And we’ll con-
tinue to think about independence throughout the rest of the book.

Our interest in probability extends back to the start of the book. We’ve talked about “relative fre-
quencies” often. But—let’s be honest—that’s just a casual term for probability. For example, you
can now rephrase the 68–95–99.7 Rule to talk about the probability that a random value selected
from a Normal model will fall within 1, 2, or 3 standard deviations of the mean.

Why not just say “probability” from the start? Well, we didn’t need any of the formal rules of
this chapter (or the next one), so there was no point to weighing down the discussion with those
rules. And “relative frequency” is the right intuitive way to think about probability in this course,
so you’ve been thinking right all along.

Keep it up.

WHAT HAVE WE LEARNED?

We’ve learned that probability is based on long-run relative frequencies. We’ve thought about the
Law of Large Numbers and noted that it speaks only of long-run behavior. Because the long run is
a very long time, we need to be careful not to misinterpret the Law of Large Numbers. Even when
we’ve observed a string of heads, we shouldn’t expect extra tails in subsequent coin flips.

Also, we’ve learned some basic rules for combining probabilities of outcomes to find probabili-
ties of more complex events. These include

u the Probability Assignment Rule,
u the Complement Rule,
u the Addition Rule for disjoint events, and
u the Multiplication Rule for independent events.

Terms
Random phenomenon 324. A phenomenon is random if we know what outcomes could happen, but not which particular

values will happen.

Trial 325. A single attempt or realization of a random phenomenon.

Outcome 325. The outcome of a trial is the value measured, observed, or reported for an individual instance
of that trial.

Event 325. A collection of outcomes. Usually, we identify events so that we can attach probabilities to
them. We denote events with bold capital letters such as A, B, or C.

Sample Space 325. The collection of all possible outcome values. The sample space has a probability of 1.

Law of Large Numbers 326. The Law of Large Numbers states that the long-run relative frequency of repeated independ-
ent events gets closer and closer to the true relative frequency as the number of trials increases.

Independence (informally) 326. Two events are independent if learning that one event occurs does not change the probability
that the other event occurs.
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Probability 326. The probability of an event is a number between 0 and 1 that reports the likelihood of that
event’s occurrence. We write P(A) for the probability of the event A.

Empirical probability 326. When the probability comes from the long-run relative frequency of the event’s occurrence, it
is an empirical probability.

Theoretical probability 327. When the probability comes from a model (such as equally likely outcomes), it is called a the-

oretical probability.

Personal probability 328. When the probability is subjective and represents your personal degree of belief, it is called a
personal probability.

The Probability 330. The probability of the entire sample space must be 1. P(S) = 1.
Assignment Rule

Complement Rule 330. The probability of an event occurring is 1 minus the probability that it doesn’t occur.

Disjoint (Mutually exclusive) 330. Two events are disjoint if they share no outcomes in common. If A and B are disjoint, then
knowing that A occurs tells us that B cannot occur. Disjoint events are also called “mutually
exclusive.”

Addition Rule 330. If A and B are disjoint events, then the probability of A or B is

Legitimate probability 331. An assignment of probabilities to outcomes is legitimate if
assignment u each probability is between 0 and 1 (inclusive).

u the sum of the probabilities is 1.

Multiplication Rule 331. If A and B are independent events, then the probability of A and B is

Independence Assumption 332. We often require events to be independent. (So you should think about whether this assump-
tion is reasonable.)

Skills
u Understand that random phenomena are unpredictable in the short term but show long-run

regularity.

u Be able to recognize random outcomes in a real-world situation.

u Know that the relative frequency of a random event settles down to a value called the (empirical)
probability. Know that this is guaranteed for independent events by the Law of Large Numbers.

u Know the basic definitions and rules of probability.

u Recognize when events are disjoint and when events are independent. Understand the difference
and that disjoint events cannot be independent.

u Be able to use the facts about probability to determine whether an assignment of probabilities is
legitimate. Each probability must be a number between 0 and 1, and the sum of the probabili-
ties assigned to all possible outcomes must be 1.

u Know how and when to apply the Addition Rule. Know that events must be disjoint for the Addi-
tion Rule to apply.

u Know how and when to apply the Multiplication Rule. Know that events must be independent
for the Multiplication Rule to apply. Be able to use the Multiplication Rule to find probabilities for
combinations of independent events.

u Know how to use the Complement Rule to make calculating probabilities simpler. Recognize that
probabilities of “at least. . .” are likely to be simplified in this way.

u Be able to use statements about probability in describing a random phenomenon. You will need
this skill soon for making statements about statistical inference.

u Know and be able to use the terms “sample space”, “disjoint events”, and “independent events”
correctly.

P(A ¨ B) = P(A) * P(B).

P(A ´ B) = P(A) + P(B).

P(A) = 1 - P(AC)
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EXERCISES

1. Sample spaces. For each of the following, list the sam-
ple space and tell whether you think the events are
equally likely:
a) Toss 2 coins; record the order of heads and tails.
b) A family has 3 children; record the number of boys.
c) Flip a coin until you get a head or 3 consecutive tails;

record each flip.
d) Roll two dice; record the larger number.

2. Sample spaces. For each of the following, list the
sample space and tell whether you think the events are
equally likely:
a) Roll two dice; record the sum of the numbers.
b) A family has 3 children; record each child’s sex in

order of birth.
c) Toss four coins; record the number of tails.
d) Toss a coin 10 times; record the length of the longest

run of heads.

3. Roulette. A casino claims that its roulette wheel is truly
random. What should that claim mean?

4. Rain. The weather reporter on TV makes predictions
such as a 25% chance of rain. What do you think is the
meaning of such a phrase?

5. Winter. Comment on the following quotation:

“What I think is our best determination is it will be a colder
than normal winter,” said Pamela Naber Knox, a Wisconsin
state climatologist. “I’m basing that on a couple of different
things. First, in looking at the past few winters, there has been
a lack of really cold weather. Even though we are not supposed
to use the law of averages, we are due.” (Associated Press, fall
1992, quoted by Schaeffer et al.)

6. Snow. After an unusually dry autumn, a radio an-
nouncer is heard to say, “Watch out! We’ll pay for these
sunny days later on this winter.” Explain what he’s trying
to say, and comment on the validity of his reasoning.

7. Cold streak. A batter who had failed to get a hit in
seven consecutive times at bat then hits a game-winning
home run. When talking to reporters afterward, he says
he was very confident that last time at bat because he
knew he was “due for a hit.” Comment on his reasoning.

8. Crash. Commercial airplanes have an excellent safety
record. Nevertheless, there are crashes occasionally, with
the loss of many lives. In the weeks following a crash,
airlines often report a drop in the number of passengers,
probably because people are afraid to risk flying.
a) A travel agent suggests that since the law of averages

makes it highly unlikely to have two plane crashes
within a few weeks of each other, flying soon after a
crash is the safest time. What do you think?

b) If the airline industry proudly announces that it has
set a new record for the longest period of safe flights,
would you be reluctant to fly? Are the airlines due to
have a crash?

9. Fire insurance. Insurance companies collect annual
payments from homeowners in exchange for paying to
rebuild houses that burn down.
a) Why should you be reluctant to accept a $300 pay-

ment from your neighbor to replace his house should
it burn down during the coming year?

b) Why can the insurance company make that offer?

10. Jackpot. On January 20, 2000, the International Gaming
Technology company issued a press release:

(LAS VEGAS, Nev.)—Cynthia Jay was smiling ear to ear as
she walked into the news conference at The Desert Inn Resort
in Las Vegas today, and well she should. Last night, the 
37-year-old cocktail waitress won the world’s largest slot 
jackpot—$34,959,458—on a Megabucks machine. She said 
she had played $27 in the machine when the jackpot hit.
Nevada Megabucks has produced 49 major winners in its 
14-year history. The top jackpot builds from a base amount 
of $7 million and can be won with a 3-coin ($3) bet.

a) How can the Desert Inn afford to give away millions
of dollars on a $3 bet?

b) Why did the company issue a press release? Wouldn’t
most businesses want to keep such a huge loss quiet?

11. Spinner. The plastic arrow on a spinner for a child’s
game stops rotating to point at a color that will determine
what happens next. Which of the following probability
assignments are possible?

Probabilities of . . .
Red Yellow Green Blue

a) 0.25 0.25 0.25 0.25
b) 0.10 0.20 0.30 0.40
c) 0.20 0.30 0.40 0.50
d) 0 0 1.00 0
e) 0.10 0.20 1.20 -1.50

12. Scratch off. Many stores run “secret sales”: Shoppers
receive cards that determine how large a discount they
get, but the percentage is revealed by scratching off that
black stuff (what is that?) only after the purchase has 
been totaled at the cash register. The store is required 
to reveal (in the fine print) the distribution of discounts
available. Which of these probability assignments are 
legitimate?

Probabilities of . . .
10% off 20% off 30% off 50% off

a) 0.20 0.20 0.20 0.20
b) 0.50 0.30 0.20 0.10
c) 0.80 0.10 0.05 0.05
d) 0.75 0.25 0.25 -0.25
e) 1.00 0 0 0
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13. Vehicles. Suppose that 46% of families living in a
certain county own a car and 18% own an SUV. The
Addition Rule might suggest, then, that 64% of families
own either a car or an SUV. What’s wrong with that
reasoning?

14. Homes. Funding for many schools comes from taxes
based on assessed values of local properties. People’s
homes are assessed higher if they have extra features
such as garages and swimming pools. Assessment
records in a certain school district indicate that 37% of 
the homes have garages and 3% have swimming pools.
The Addition Rule might suggest, then, that 40% of resi-
dences have a garage or a pool. What’s wrong with that
reasoning?

15. Speeders. Traffic checks on a certain section of high-
way suggest that 60% of drivers are speeding there. Since

, the Multiplication Rule might suggest
that there’s a 36% chance that two vehicles in a row are
both speeding. What’s wrong with that reasoning?

16. Lefties. Although it’s hard to be definitive in clas-
sifying people as right- or left-handed, some studies sug-
gest that about 14% of people are left-handed. Since

, the Multiplication Rule might sug-
gest that there’s about a 2% chance that a brother and a
sister are both lefties. What’s wrong with that reasoning?

17. College admissions. For high school students gradu-
ating in 2007, college admissions to the nation’s most
selective schools were the most competitive in memory.
(The New York Times, “A Great Year for Ivy League
Schools, but Not So Good for Applicants to Them,” 
April 4, 2007). Harvard accepted about 9% of its appli-
cants, Stanford 10%, and Penn 16%. Jorge has applied to
all three. Assuming that he’s a typical applicant, he fig-
ures that his chances of getting into both Harvard and
Stanford must be about 0.9%.
a) How has he arrived at this conclusion?
b) What additional assumption is he making?
c) Do you agree with his conclusion?

18. College admissions II. In Exercise 17, we saw that 
in 2007 Harvard accepted about 9% of its applicants,
Stanford 10%, and Penn 16%. Jorge has applied to all
three. He figures that his chances of getting into at least
one of the three must be about 35%.
a) How has he arrived at this conclusion?
b) What assumption is he making?
c) Do you agree with his conclusion?

19. Car repairs. A consumer organization estimates that
over a 1-year period 17% of cars will need to be repaired
once, 7% will need repairs twice, and 4% will require
three or more repairs. What is the probability that a car
chosen at random will need
a) no repairs?
b) no more than one repair?
c) some repairs?

20. Stats projects. In a large Introductory Statistics lecture
hall, the professor reports that 55% of the students en-
rolled have never taken a Calculus course, 32% have

0.14 * 0.14 = 0.0196

0.6 * 0.6 = 0.36

taken only one semester of Calculus, and the rest have
taken two or more semesters of Calculus. The professor
randomly assigns students to groups of three to work on
a project for the course. What is the probability that the
first groupmate you meet has studied
a) two or more semesters of Calculus?
b) some Calculus?
c) no more than one semester of Calculus?

21. More repairs. Consider again the auto repair rates de-
scribed in Exercise 19. If you own two cars, what is the
probability that
a) neither will need repair?
b) both will need repair?
c) at least one car will need repair?

22. Another project. You are assigned to be part of a group
of three students from the Intro Stats class described in
Exercise 20. What is the probability that of your other two
groupmates,
a) neither has studied Calculus?
b) both have studied at least one semester of Calculus?
c) at least one has had more than one semester of 

Calculus?

23. Repairs, again. You used the Multiplication Rule 
to calculate repair probabilities for your cars in 
Exercise 21.
a) What must be true about your cars in order to make

that approach valid?
b) Do you think this assumption is reasonable? 

Explain.

24. Final project. You used the Multiplication Rule to 
calculate probabilities about the Calculus background of
your Statistics groupmates in Exercise 22.
a) What must be true about the groups in order to make

that approach valid?
b) Do you think this assumption is reasonable? 

Explain.

25. Energy 2007. A Gallup poll in March 2007 asked 1005
U.S. adults whether increasing domestic energy produc-
tion or protecting the environment should be given a
higher priority. Here are the results:

Response Number

Increase production 342
Protect environment 583
Equally important 30
No opinion 50

Total 1005

If we select a person at random from this sample of 1005
adults,
a) what is the probability that the person responded 

“Increase production”?
b) what is the probability that the person responded

“Equally important” or had no opinion?
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26. Failing fathers? A Pew Research poll in 2007 asked
2020 U.S. adults whether fathers today were doing as
good a job of fathering as fathers of 20–30 years ago.
Here’s how they responded:
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a) What is the probability (in 2003) of obtaining an in-
terview with the next household on the sample list?
(To obtain an interview, an interviewer must both
contact the household and then get agreement for
the interview.)

b) Was it more likely to obtain an interview from a ran-
domly selected household in 1997 or in 2003?

31. M&M’s. The Masterfoods company says that before the
introduction of purple, yellow candies made up 20% of
their plain M&M’s, red another 20%, and orange, blue,
and green each made up 10%. The rest were brown.
a) If you pick an M&M at random, what is the probabil-

ity that
1) it is brown?
2) it is yellow or orange?
3) it is not green?
4) it is striped?

b) If you pick three M&M’s in a row, what is the proba-
bility that
1) they are all brown?
2) the third one is the first one that’s red?
3) none are yellow?
4) at least one is green?

32. Blood. The American Red Cross says that about 45% of
the U.S. population has Type O blood, 40% Type A, 11%
Type B, and the rest Type AB.
a) Someone volunteers to give blood. What is the 

probability that this donor
1) has Type AB blood?
2) has Type A or Type B?
3) is not Type O?

b) Among four potential donors, what is the probability
that
1) all are Type O?
2) no one is Type AB?
3) they are not all Type A?
4) at least one person is Type B?

33. Disjoint or independent? In Exercise 31 you calcu-
lated probabilities of getting various M&M’s. Some of
your answers depended on the assumption that the out-
comes described were disjoint; that is, they could not both
happen at the same time. Other answers depended on the
assumption that the events were independent; that is, the
occurrence of one of them doesn’t affect the probability of
the other. Do you understand the difference between dis-
joint and independent?
a) If you draw one M&M, are the events of getting a red

one and getting an orange one disjoint, independent,
or neither?

b) If you draw two M&M’s one after the other, are the
events of getting a red on the first and a red on the
second disjoint, independent, or neither?

c) Can disjoint events ever be independent? Explain.

34. Disjoint or independent? In Exercise 32 you calcu-
lated probabilities involving various blood types. Some of
your answers depended on the assumption that the out-
comes described were disjoint; that is, they could not both
happen at the same time. Other answers depended on the
assumption that the events were independent; that is, the
occurrence of one of them doesn’t affect the probability of

If we select a respondent at random from this sample of
2020 adults,
a) what is the probability that the selected person re-

sponded “Worse”?
b) what is the probability that the person responded the

“Same” or “Better”?

27. More energy. Exercise 25 shows the results of a Gallup
Poll about energy. Suppose we select three people at ran-
dom from this sample.
a) What is the probability that all three responded “Pro-

tect the environment”?
b) What is the probability that none responded “Equally

important”?
c) What assumption did you make in computing these

probabilities?
d) Explain why you think that assumption is reasonable.

28. Fathers revisited. Consider again the results of the
poll about fathering discussed in Exercise 26. If we select
two people at random from this sample,
a) what is the probability that both think fathers are bet-

ter today?
b) what is the probability that neither thinks fathers are

better today?
c) what is the probability that one person thinks fathers

are better today and the other doesn’t?
d) What assumption did you make in computing these

probabilities?
e) Explain why you think that assumption is reasonable.

29. Polling. As mentioned in the chapter, opinion-polling
organizations contact their respondents by sampling ran-
dom telephone numbers. Although interviewers now can
reach about 76% of U.S. households, the percentage of
those contacted who agree to cooperate with the survey
has fallen from 58% in 1997 to only 38% in 2003 (Pew
Research Center for the People and the Press). Each
household, of course, is independent of the others.
a) What is the probability that the next household on the

list will be contacted but will refuse to cooperate?
b) What is the probability (in 2003) of failing to contact a

household or of contacting the household but not get-
ting them to agree to the interview?

c) Show another way to calculate the probability in part b.

30. Polling, part II. According to Pew Research, the con-
tact rate (probability of contacting a selected household)
was 69% in 1997 and 76% in 2003. However, the coopera-
tion rate (probability of someone at the contacted house-
hold agreeing to be interviewed) was 58% in 1997 and
dropped to 38% in 2003.

Response Number

Better 424
Same 566
Worse 950
No Opinion 80

Total 2020
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the other. Do you understand the difference between dis-
joint and independent?
a) If you examine one person, are the events that the

person is Type A and that the person is Type B
disjoint, independent, or neither?

b) If you examine two people, are the events that the first
is Type A and the second Type B disjoint, independ-
ent, or neither?

c) Can disjoint events ever be independent? Explain.

35. Dice. You roll a fair die three times. What is the proba-
bility that
a) you roll all 6’s?
b) you roll all odd numbers?
c) none of your rolls gets a number divisible by 3?
d) you roll at least one 5?
e) the numbers you roll are not all 5’s?

36. Slot machine. A slot machine has three wheels that
spin independently. Each has 10 equally likely symbols: 
4 bars, 3 lemons, 2 cherries, and a bell. If you play, what 
is the probability that
a) you get 3 lemons?
b) you get no fruit symbols?
c) you get 3 bells (the jackpot)?
d) you get no bells?
e) you get at least one bar (an automatic loser)?

37. Champion bowler. A certain bowler can bowl a strike
70% of the time. What’s the probability that she
a) goes three consecutive frames without a strike?
b) makes her first strike in the third frame?
c) has at least one strike in the first three frames?
d) bowls a perfect game (12 consecutive strikes)?

38. The train. To get to work, a commuter must cross train
tracks. The time the train arrives varies slightly from day
to day, but the commuter estimates he’ll get stopped on
about 15% of work days. During a certain 5-day work
week, what is the probability that he
a) gets stopped on Monday and again on Tuesday?
b) gets stopped for the first time on Thursday?
c) gets stopped every day?
d) gets stopped at least once during the week?

39. Voters. Suppose that in your city 37% of the voters are
registered as Democrats, 29% as Republicans, and 11% as
members of other parties (Liberal, Right to Life, Green,
etc.). Voters not aligned with any official party are termed
“Independent.” You are conducting a poll by calling reg-
istered voters at random. In your first three calls, what is
the probability you talk to
a) all Republicans?
b) no Democrats?
c) at least one Independent?

40. Religion. Census reports for a city indicate that 62% 
of residents classify themselves as Christian, 12% as
Jewish, and 16% as members of other religions (Muslims,
Buddhists, etc.). The remaining residents classify them-
selves as nonreligious. A polling organization seeking
information about public opinions wants to be sure to
talk with people holding a variety of religious views, and
makes random phone calls. Among the first four people
they call, what is the probability they reach

a) all Christians?
b) no Jews?
c) at least one person who is nonreligious?

41. Tires. You bought a new set of four tires from a manu-
facturer who just announced a recall because 2% of those
tires are defective. What is the probability that at least
one of yours is defective?

42. Pepsi. For a sales promotion, the manufacturer places
winning symbols under the caps of 10% of all Pepsi bot-
tles. You buy a six-pack. What is the probability that you
win something?

43. 9/11? On September 11, 2002, the first anniversary of
the terrorist attack on the World Trade Center, the New
York State Lottery’s daily number came up 9–1–1. An
interesting coincidence or a cosmic sign?

a) What is the probability that the winning three 
numbers match the date on any given day?

b) What is the probability that a whole year passes 
without this happening?

c) What is the probability that the date and winning lot-
tery number match at least once during any year?

d) If every one of the 50 states has a three-digit lottery,
what is the probability that at least one of them will
come up 9–1–1 on September 11?

44. Red cards. You shuffle a deck of cards and then start
turning them over one at a time. The first one is red. So is
the second. And the third. In fact, you are surprised to get
10 red cards in a row. You start thinking, “The next one is
due to be black!”
a) Are you correct in thinking that there’s a higher 

probability that the next card will be black than red?
Explain.

b) Is this an example of the Law of Large Numbers?
Explain.

JUST CHECKING 
Answers

1. The LLN works only in the long run, not in the short
run. The random methods for selecting lottery num-
bers have no memory of previous picks, so there is no
change in the probability that a certain number will
come up.

2. a) 0.76

b)

c)

d) 1 - (1 - 0.76)5
= 0.9992

(1 - 0.76)2(0.76) = 0.043776

0.76(0.76) = 0.5776

BOCK_C14_0321570448 pp3.qxd  12/1/08  3:23 PM  Page 341



342

CHAPTER

15
Probability 
Rules!

Pull a bill from your wallet or pocket without looking at it. An outcome of
this trial is the bill you select. The sample space is all the bills in circulation:

1 These are
all the possible outcomes. (In spite of what you may have seen in bank rob-

bery movies, there are no $500 or $1000 bills.)
We can combine the outcomes in different ways to make many different

events. For example, the event represents selecting a $1, $5, or
$10 bill. The event is the collec-
tion of outcomes (Don’t look! Can you name them?): $10 (Hamilton), $100
(Franklin) . The event is
the set of outcomes 

Notice that these outcomes are not equally likely. You’d no doubt be more
surprised (and pleased) to pull out a $100 bill than a $1 bill—it’s not very likely,
though. You probably carry many more $1 than $100 bills, but without informa-
tion about the probability of each outcome, we can’t calculate the probability of
an event.

The probability of the event C (getting a bill worth more than $12) is not 3/7.
There are 7 possible outcomes, and 3 of them exceed $12, but they are not equally
likely. (Remember the probability that your lottery ticket will win rather than lose
still isn’t 1/2.)

The General Addition Rule
Now look at the bill in your hand. There are images of famous buildings in 
the center of the backs of all but two bills in circulation. The $1 bill has the word
ONE in the center, and the $2 bill shows the signing of the Declaration of 
Independence.

5$20, $50, $1006.
C = 5enough money to pay for a $12 meal with one bill66

5
B = 5a bill that does not have a president on it6

A = 5$1, $5, $106

S = 5$1 bill, $2 bill, $5 bill, $10 bill, $20 bill, $50 bill, $100 bill6.

1 Well, technically, the sample space is all the bills in your pocket. You may be quite sure
there isn’t a $100 bill in there, but we don’t know that, so humor us that it’s at least possible
that any legal bill could be there.
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What’s the probability of randomly selecting 
or ? We know 

and But is not simply the sum
, because the events A and B are not disjoint. The $5 bill is in both

sets. So what can we do? We’ll need a new probability rule.
As the diagrams show, we can’t use the Addition Rule and add the two prob-

abilities because the events are not disjoint; they overlap. There’s an outcome (the
$5 bill) in the intersection of A and B. The Venn diagram represents the sample
space. Notice that the $2 bill has neither a building nor an odd denomination, so
it sits outside both circles.

The $5 bill plays a crucial role here because it is both odd and has a building
on the reverse. It’s in both A and B, which places it in the intersection of the two
circles. The reason we can’t simply add the probabilities of A and B is that we’d
count the $5 bill twice.

If we did add the two probabilities, we could compensate by subtracting out
the probability of that $5 bill. So,

P(odd number value or building)

This method works in general. We add the probabilities of two events and then
subtract out the probability of their intersection. This approach gives us the
General Addition Rule, which does not require disjoint events:

P (A ´ B) = P (A) + P (B) - P (A ¨ B).

 = P($1, $5) + P($5, $10, $20, $50, $100) - P($5).
 = P(odd number value) + P(building) - P(odd number value and building)

P(A) + P(B)
P(A or B)B = 5$5, $10, $20, $50, $1006.5$1, $56

AA =B = 5a bill with a building on the reverse6numbered value6
A = 5a bill with an odd-

B

A

A and B

Events A and B and their intersection.

$50

$100

$20
$10

$5

$1

$2

A

B

Denominations of bills that are odd (A)
or that have a building on the reverse
side (B). The two sets both include the
$5 bill, and both exclude the $2 bill.

Using the General Addition RuleFOR EXAMPLE

A survey of college students found that 56% live in a campus residence hall, 62% participate in a campus meal program, and 42% do both.

Question: What’s the probability that a randomly selected student either lives or eats on campus?

Let and 

There’s a 76% chance that a randomly selected college student either lives or eats on campus.

= 0.76
= 0.56 + 0.62 - 0.42
= P(L) + P(M) - P(L ¨ M)

P(a student either lives or eats on campus) = P(L ´ M)
M = {student has a campus meal plan}.L = {student lives on campus}

Would you like dessert or coffee? Natural language can be ambiguous. In
this question, is the answer one of the two alternatives, or simply “yes”? Must you
decide between them, or may you have both? That kind of ambiguity can confuse
our probabilities.

Suppose we had been asked a different question: What is the probability that the
bill we draw has either an odd value or a building but not both? Which bills are we
talking about now? The set we’re interested in would be 
We don’t include the $5 bill in the set because it has both characteristics.

Why isn’t this the same answer as before? The problem is that when we say the
word “or,” we usually mean either one or both. We don’t usually mean the exclusive

5$1, $10, $20, $50, $1006.
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version of “or” as in, “Would you like the steak or the vegetarian entrée?” Ordinarily
when we ask for the probability that A or B occurs, we mean A or B or both. And we
know that probability is The General Addition Rule
subtracts the probability of the outcomes in A and B because we’ve counted those
outcomes twice. But they’re still there.

If we really mean A or B but NOT both, we have to get rid of the outcomes in
So

Now we’ve subtracted twice—once because we don’t 
want to double-count these events and a second time because we really didn’t want
to count them at all.

Confused? Make a picture. It’s almost always easier to think about such situa-
tions by looking at a Venn diagram.

P(A ¨ B)-  2 * P(A ¨ B).
P(A or B but not both) = P(A ´ B) - P(A ¨ B) = P(A) + P(B){A and B}.

P1A2 + P1B2 - P1A and B2.

Using Venn diagramsFOR EXAMPLE

Recap: We return to our survey of college students: 56% live on campus, 62% have a campus meal program, and 42% do both.

Questions: Based on a Venn diagram, what is the probability that a randomly selected student

a) lives off campus and doesn’t have a meal program?
b) lives in a residence hall but doesn’t have a meal program?

Let and In the
Venn diagram, the intersection of the circles is Since 

. Also, . Now,
, leaving for the region outside both 

circles.
Now . . .

P(on campus and no meal program) = P(L ¨ MC) = 0.14
P(off campus and no meal program) = P(LC

¨ MC) = 0.24

1 - 0.76 = 0.240.20 = 0.760.14 + 0.42 +

P(LC
¨ M) = 0.62 - 0.42 = 0.200.14P(L ¨ MC) = 0.56 - 0.42 =

P(L) = 0.56,P(L ¨ M) = 0.42.
meal plan6.M = 5student has a campusL = {student lives on campus}

ML

0.14 0.200.42

0.24

JUST CHECKING
1. Back in Chapter 1 we suggested that you sample some pages of this book at random to see whether they held a

graph or other data display. We actually did just that. We drew a representative sample and found the following:

48% of pages had some kind of data display,

27% of pages had an equation, and

7% of pages had both a data display and an equation.

a) Display these results in a Venn diagram.
b) What is the probability that a randomly selected sample page had neither a data display nor an equation?
c) What is the probability that a randomly selected sample page had a data display but no equation?
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Police report that 78% of drivers stopped on suspicion of drunk driving are given a breath test,
36% a blood test, and 22% both tests.

Question: What is the probability that a randomly selected DWI suspect is given
1. a test?
2. a blood test or a breath test, but not both?
3. neither test?

Using the General Addition RuleSTEP-BY-STEP EXAMPLE

Let .
Let .

I know that

So

= 0.08

 P(AC
¨ BC) = 1 - (0.56 + 0.22 + 0.14)

 P(B ¨ AC) = 0.36 - 0.22 = 0.14

P(A ¨ BC) = 0.78 - 0.22 = 0.56

P(A ¨ B) = 0.22
P(B) = 0.36

P(A) = 0.78

B = {suspect is given a blood test}
A = {suspect is given a breath test}Plan Define the events we’re interested in.

There are no conditions to check; the Gen-
eral Addition Rule works for any events!

Plot Make a picture, and use the given
probabilities to find the probability for
each region.

The blue region represents A but not B.
The green intersection region represents
A and B. Note that since and

, the probability of A but
not B must be .

The yellow region is B but not A.

The gray region outside both circles rep-
resents the outcome neither A nor B. All
the probabilities must total 1, so you can
determine the probability of that region
by subtraction.

Now, figure out what you want to know.
The probabilities can come from the dia-
gram or a formula. Sometimes translating
the words to equations is the trickiest step.

0.78 - 0.22 = 0.56
P(A ¨ B) = 0.22

P(A) = 0.78

OR

P(A ´ B) = 0.56 + 0.22 + 0.14 = 0.92

= 0.92
= 0.78 + 0.36 - 0.22

P(A ´ B) = P(A) + P(B) - P(A ¨ B)Mechanics The probability the suspect
is given a test is We can use the
General Addition Rule, or we can add the
probabilities seen in the diagram.

P(A ´ B).

0.56

0.22

0.14

0.08

A B

Question 1. What is the probability that the suspect is given a test?

Conclusion Don’t forget to interpret
your result in context.

92% of all suspects are given a test.
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Goals

Grades Popular Sports Total

Se
x

Boy 117 50 60 227
Girl 130 91 30 251

Total 247 141 90 478

346 CHAPTER 15    Probability Rules!

OR

 = 0.56 + 0.14 = 0.70
 P(A or B but NOT both) = P(A ¨ BC) + P(B ¨ AC)

 = 0.92 - 0.22 = 0.70
 P(A or B but NOT both) = P(A ´ B) - P(A ¨ B)Mechanics We can use the rule, or just

add the appropriate probabilities seen in
the Venn diagram.

Question 2. What is the probability that the suspect gets either a blood test or a breath test
but NOT both?

70% of the suspects get exactly one of the
tests.

Conclusion Interpret your result in 
context.

Question 3. What is the probability that the suspect gets neither test?

OR
P(AC

¨ BC) = 0.08

 = 1 - 0.92 = 0.08
 = 1 - P(A ´ B)

 P(neither test) = 1 - P(either test)Mechanics Getting neither test is the
complement of getting one or the other.
Use the Complement Rule or just notice
that “neither test” is represented by the
region outside both circles.

Only 8% of the suspects get no test.Conclusion Interpret your result in
context.

It Depends . . .
Two psychologists surveyed 478 children in grades 4, 5, and 6 in elementary
schools in Michigan. They stratified their sample, drawing roughly 1/3 from ru-
ral, 1/3 from suburban, and 1/3 from urban schools. Among other questions, they
asked the students whether their primary goal was to get good grades, to be pop-
ular, or to be good at sports. One question of interest was whether boys and girls
at this age had similar goals.

Here’s a contingency table giving counts of the students by their goals and sex:

Table 15.1

The distribution of
goals for boys and
girls.
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We looked at contingency tables and graphed conditional distributions back in
Chapter 3. The pie charts show the relative frequencies with which boys and girls
named the three goals. It’s only a short step from these relative frequencies to
probabilities.

Let’s focus on this study and make the sample space just the set of these 478
students. If we select a student at random from this study, the probability we select
a girl is just the corresponding relative frequency (since we’re equally likely to
select any of the 478 students). There are 251 girls in the data out of a total of 478,
giving a probability of

The same method works for more complicated events like intersections. For ex-
ample, what’s the probability of selecting a girl whose goal is to be popular? Well,
91 girls named popularity as their goal, so the probability is

The probability of selecting a student whose goal is to excel at sports is

What if we are given the information that the selected student is a girl? Would
that change the probability that the selected student’s goal is sports? You bet it
would! The pie charts show that girls are much less likely to say their goal is to
excel at sports than are boys. When we restrict our focus to girls, we look only at
the girls’ row of the table. Of the 251 girls, only 30 of them said their goal was to
excel at sports.

We write the probability that a selected student wants to excel at sports given
that we have selected a girl as

For boys, we look at the conditional distribution of goals given “boy” shown 
in the top row of the table. There, of the 227 boys, 60 said their goal was to ex-
cel at sports. So, , more than twice the girls’
probability.

In general, when we want the probability of an event from a conditional distri-
bution, we write and pronounce it “the probability of B given A.” A prob-
ability that takes into account a given condition such as this is called a conditional
probability.

Let’s look at what we did. We worked with the counts, but we could work
with the probabilities just as well. There were 30 students who both were girls
and had sports as their goal, and there are 251 girls. So we found the probability
to be 30/251. To find the probability of the event B given the event A, we restrict
our attention to the outcomes in A. We then find in what fraction of those out-
comes B also occurred. Formally, we write:

Thinking this through, we can see that it’s just what we’ve been doing, but now
with probabilities rather than with counts. Look back at the girls for whom sports
was the goal. How did we calculate 

The rule says to use probabilities. It says to find The result is
the same whether we use counts or probabilities because the total number in the
sample cancels out:

=

30
251

. 
P(sports ¨ girl)

P(girl)
=

30>478

251>478

P(A ¨ B)>P(A).
P(sports ƒ  girl)?

P1B ƒ  A2 =

P1A ¨ B2

P1A2
.

P1B ƒ  A2

P (sports ƒ  boy) = 60>227 = 0.264

P (sports ƒ  girl) = 30>251 = 0.120

P (sports) = 90>478 = 0.188

P (girl ¨ popular) = 91>478 = 0.190

P (girl) = 251>478 = 0.525

Activity: Birthweights and
Smoking. Does smoking increase
the chance of having a baby with
low birth weight?

Grades
Popular
Sports

Boys

Girls

FIGURE 15.1
The distribution of goals for boys
and girls.

NOTATION ALERT:

P(B A) is the conditional
probability of B given A.

ƒ
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To use the formula for conditional probability, we’re supposed to insist on one re-
striction. The formula doesn’t work if P(A) is 0. After all, we can’t be “given” the
fact that A was true if the probability of A is 0!

Let’s take our rule out for a spin. What’s the probability that we have se-
lected a girl given that the selected student’s goal is popularity? Applying the
rule, we get

 =

91>478

141>478
=

91
141

.

 P(girl ƒ  popular) =

P(girl ¨ popular)

P(popular)

Finding a conditional probabilityFOR EXAMPLE

Recap: Our survey found that 56% of college students live on campus, 62% have a campus meal program, and 42% do both.

Question: While dining in a campus facility open only to students with meal plans, you meet someone interesting. What is the probability that your
new acquaintance lives on campus?

Let and .

There’s a probability of about 0.677 that a student with a meal plan lives on campus.

 L 0.677

 =

0.42
0.62

 =

P(L ¨ M)
P(M)

 P(student lives on campus given that the student has a meal plan) = P(L ƒ  M)
M = {student has a campus meal plan}L = {student lives on campus}

The General Multiplication Rule
Remember the Multiplication Rule for the probability of A and B? It said

Now we can write a more general rule that doesn’t require independence. In
fact, we’ve already written it down. We just need to rearrange the equation 
a bit.

The equation in the definition for conditional probability contains the proba-
bility of A and B. Rewriting the equation gives

This is a General Multiplication Rule for compound events that does not require
the events to be independent. Better than that, it even makes sense. The probabil-
ity that two events, A and B, both occur is the probability that event A occurs mul-
tiplied by the probability that event B also occurs—that is, by the probability that
event B occurs given that event A occurs.

Of course, there’s nothing special about which set we call A and which one
we call B. We should be able to state this the other way around. And indeed we
can. It is equally true that

P(A ¨ B) = P(B) * P(A ƒ  B).

P(A ¨ B) = P(A) * P(B ƒ  A).

P(A ¨ B) = P(A) * P(B) when A and B are independent.

Activity: The General
Multiplication Rule. The best
way to understand the General
Multiplication Rule is with an
experiment.

Activity: Conditional
Probability. Simulation is great
for seeing conditional
probabilities at work.
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Independence
Let’s return to the question of just what it means for events to be independent.
We’ve said informally that what we mean by independence is that the outcome of
one event does not influence the probability of the other. With our new notation
for conditional probabilities, we can write a formal definition: Events A and B are
independent whenever

Now we can see that the Multiplication Rule for independent events we saw in
Chapter 14 is just a special case of the General Multiplication Rule. The general
rule says

whether the events are independent or not. But when events A and B are inde-
pendent, we can write for and we get back our simple rule:

Sometimes people use this statement as the definition of independent events, but
we find the other definition more intuitive. Either way, the idea is that for inde-
pendent events, the probability of one doesn’t change when the other occurs.

Is the probability of having good grades as a goal independent of the sex of
the responding student? Looks like it might be. We need to check whether

To two decimal place accuracy, it looks like we can consider choosing good grades
as a goal to be independent of sex.

On the other hand, is 90/478, or about 18.8%, but is
Because these probabilities aren’t equal, we can be pretty sure

that choosing success in sports as a goal is not independent of the student’s sex.
60>227 = 26.4%.

P (sports ƒ  boy)P (sports)

130
251

= 0.52 � 247
478

= 0.52

P(grades ƒ  girl) = P(grades)

P (A ¨ B) = P(A) * P(B).

P (B ƒ  A)P(B)

P(A ¨ B) = P(A) * P(B ƒ  A).

P (B ƒ  A) = P(B).

If we had to pick one idea in
this chapter that you should
understand and remember,
it’s the definition and
meaning of independence.
We’ll need this idea in every
one of the chapters that
follow.

Activity: Independence.
Are Smoking and Low Birthweight
independent?

In earlier chapters we said
informally that two events
were independent if learning
that one occurred didn’t
change what you thought
about the other occurring.
Now we can be more 
formal. Events A and B are
independent if (and only if)
the probability of A is the
same when we are given that
B has occurred.That is,

Although sometimes
your intuition is enough, now
that we have the formal rule,
use it whenever you can.

P(A) = P(A ƒ  B).

Checking for independenceFOR EXAMPLE

Recap: Our survey told us that 56% of college students live on campus, 62% have a campus meal program, and 42% do both.

Question: Are living on campus and having a meal plan independent? Are they disjoint?

Let and If these events are independent, then
knowing that a student lives on campus doesn’t affect the probability that he or she has a meal plan. I’ll check to see
if

Because , the events are not independent; students who live on campus are more likely to have meal
plans. Living on campus and having a meal plan are not disjoint either; in fact, 42% of college students do both.

0.75 Z 0.62

 = 0.75, but P(M) = 0.62.

 =

0.42
0.56

 P(M ƒ  L) =

P(L ¨ M)
P(L)

P(M ƒ  L) = P(M):

M = {student has a campus meal plan}.L = {student lives on campus}
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Independent � Disjoint
Are disjoint events independent? These concepts seem to have similar ideas of
separation and distinctness about them, but in fact disjoint events cannot be inde-
pendent.2 Let’s see why. Consider the two disjoint events {you get an A in this
course} and {you get a B in this course}. They’re disjoint because they have no out-
comes in common. Suppose you learn that you did get an A in the course. Now
what is the probability that you got a B? You can’t get both grades, so it must be 0.

Think about what that means. Knowing that the first event (getting an A) oc-
curred changed your probability for the second event (down to 0). So these events
aren’t independent.

Mutually exclusive events can’t be independent. They have no outcomes in
common, so if one occurs, the other doesn’t. A common error is to treat disjoint
events as if they were independent and apply the Multiplication Rule for inde-
pendent events. Don’t make that mistake.

Activity: Hot Hand
Simulation. Can you tell the
difference between real and
simulated sequences of basketball
shot hits and misses?

Video: Is There a Hot
Hand in Basketball? Most
coaches and fans believe that
basketball players sometimes get
“hot” and make more of their
shots. What do the conditional
probabilities say?

A

B

FIGURE 15.2
Because these events are mutually ex-
clusive, learning that A happened tells
us that B didn’t. The probability of B
has changed from whatever it was to
zero. So the disjoint events A and B
are not independent.

JUST CHECKING
2. The American Association for Public Opinion Research (AAPOR) is an association of about 1600 individuals who

share an interest in public opinion and survey research. They report that typically as few as 10% of random phone
calls result in a completed interview. Reasons are varied, but some of the most common include no answer, refusal
to cooperate, and failure to complete the call.

Which of the following events are independent, which are disjoint, and which are neither independent nor
disjoint?
a) A = Your telephone number is randomly selected. B = You’re not at home at dinnertime when they call.
b) A = As a selected subject, you complete the interview. B = As a selected subject, you refuse to cooperate.
c) A = You are not at home when they call at 11 a.m. B = You are employed full-time.

Depending on Independence
It’s much easier to think about independent events than to deal with conditional
probabilities. It seems that most people’s natural intuition for probabilities breaks
down when it comes to conditional probabilities. Someone may estimate the
probability of a compound event by multiplying the probabilities of its compo-
nent events together without asking seriously whether those probabilities are 
independent.

For example, experts have assured us that the probability of a major commer-
cial nuclear plant failure is so small that we should not expect such a failure to oc-
cur even in a span of hundreds of years. After only a few decades of commercial
nuclear power, however, the world has seen two failures (Chernobyl and Three
Mile Island). How could the estimates have been so wrong?

2 Well, technically two disjoint events can be independent, but only if the probability of one
of the events is 0. For practical purposes, though, we can ignore this case. After all, as stat-
isticians we don’t anticipate having data about things that never happen.
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One simple part of the failure calculation is to test a particular valve and
determine that valves such as this one fail only once in, say, 100 years of normal
use. For a coolant failure to occur, several valves must fail. So we need the
compound probability, P(valve 1 fails and valve 2 fails and . . .). A simple risk as-
sessment might multiply the small probability of one valve failure together as
many times as needed.

But if the valves all came from the same manufacturer, a flaw in one might be
found in the others. And maybe when the first fails, it puts additional pressure on
the next one in line. In either case, the events aren’t independent and so we can’t
simply multiply the probabilities together.

Whenever you see probabilities multiplied together, stop and ask whether
you think they are really independent.

Tables and Conditional Probability
One of the easiest ways to think about conditional probabilities is with contin-
gency tables. We did that earlier in the chapter when we began our discussion.
But sometimes we’re given probabilities without a table. You can often construct
a simple table to correspond to the probabilities.

For instance, in the drunk driving example, we were told that 78% of sus-
pect drivers get a breath test, 36% a blood test, and 22% both. That’s enough
information. Translating percentages to probabilities, what we know looks 
like this:

Notice that the 0.78 and 0.36 are marginal probabilities and so they go into
the margins. The 0.22 is the probability of getting both tests—a breath test and
a blood test—so that’s a joint probability. Those belong in the interior of the
table.

Because the cells of the table show disjoint events, the probabilities always
add to the marginal totals going across rows or down columns. So, filling in the
rest of the table is quick:

Compare this with the Venn diagram. Notice which entries in the table 
match up with the sets in this diagram. Whether a Venn diagram or a table is better
to use will depend on what you are given and the questions you’re being asked.
Try both.

0.56

0.22

0.14

0.08

A B

Breath Test

B
lo

o
d
 T

es
t

Yes No Total

Yes 0.22 0.36
No

Total 0.78 1.00

Breath Test

B
lo

o
d
 T

es
t

Yes No Total

Yes 0.22 0.14 0.36
No 0.56 0.08 0.64

Total 0.78 0.22 1.00
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Let’s take another look at the drunk driving situation. Police report that 78% of drivers are given a
breath test, 36% a blood test, and 22% both tests.

Questions: 1. Are giving a DWI suspect a blood test and a breath test mutually exclusive?
2. Are giving the two tests independent?

Are the Events Disjoint? Independent?STEP-BY-STEP EXAMPLE

Let 
Let .

I know that

 P(A ¨ B) = 0.22
 P(B) = 0.36
 P(A) = 0.78

B = {suspect is given a blood test}
A = {suspect is given a breath test}Plan Define the events we’re interested in.

State the given probabilities.

Since some suspects are
given both tests, . The events
are not mutually exclusive.

P1A ¨ B) Z O
P1A ¨ B) = 0.22.Mechanics Disjoint events cannot both

happen at the same time, so check to see
if P1A ¨ B2 = 0.

Question 1. Are giving a DWI suspect a blood test and a breath test mutually exclusive?

22% of all suspects get both tests, so a breath
test and a blood test are not disjoint events.

Conclusion State your conclusion in
context.

Plan Make a table.

Question 2. Are the two tests independent?

 P(B ƒ  A) Z P(B)
 P(B) = 0.36

 P(B ƒ  A) =

P(A ¨ B)
P(A)

=

0.22
0.78

L 0.28
Mechanics Does getting a breath test
change the probability of getting a blood
test? That is, does ?

Because the two probabilities are not the
same, the events are not independent.

P1B ƒ  A2 = P1B2

Breath Test

Bl
oo

d 
Te

st

Yes No Total

Yes 0.22 0.14 0.36
No 0.56 0.08 0.64
Total 0.78 0.22 1.00
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Drawing Without Replacement
Room draw is a process for assigning dormitory rooms to students who live on
campus. Sometimes, when students have equal priority, they are randomly as-
signed to the currently available dorm rooms. When it’s time for you and your
friend to draw, there are 12 rooms left. Three are in Gold Hall, a very desirable
dorm with spacious wood-paneled rooms. Four are in Silver Hall, centrally lo-
cated but not quite as desirable. And five are in Wood Hall, a new dorm with
cramped rooms, located half a mile from the center of campus on the edge of
the woods.

You get to draw first, and then your friend will draw. Naturally, you would
both like to score rooms in Gold. What are your chances? In particular, what’s the
chance that you both can get rooms in Gold?

When you go first, the chance that you will draw one of the Gold rooms is
3/12. Suppose you do. Now, with you clutching your prized room assignment,
what chance does your friend have? At this point there are only 11 rooms left and
just 2 left in Gold, so your friend’s chance is now 2/11.

Using our notation, we write

The reason the denominator changes is that we draw these rooms without replace-
ment. That is, once one is drawn, it doesn’t go back into the pool.

We often sample without replacement. When we draw from a very large pop-
ulation, the change in the denominator is too small to worry about. But when
there’s a small population to draw from, as in this case, we need to take note and
adjust the probabilities.

P1friend draws Gold ƒ  you draw Gold2 = 2>11.

Overall, 36% of the drivers get blood tests, but
only 28% of those who get a breath test do.
Since suspects who get a breath test are less
likely to have a blood test, the two events are
not independent.

Conclusion Interpret your results in
context.

JUST CHECKING
3. Remember our sample of pages in this book from the earlier Just Checking . . . ?

48% of pages had a data display.

27% of pages had an equation, and

7% of pages had both a data display and an equation.

a) Make a contingency table for the variables display and equation.
b) What is the probability that a randomly selected sample page with an equation also had a data display?
c) Are having an equation and having a data display disjoint events?
d) Are having an equation and having a data display independent events?
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What are the chances that both of you will luck out? Well, now we’ve calcu-
lated the two probabilities we need for the General Multiplication Rule, so we
can write:

In this instance, it doesn’t matter who went first, or even if the rooms were drawn
simultaneously. Even if the room draw was accomplished by shuffling cards con-
taining the names of the dormitories and then dealing them out to 12 applicants
(rather than by each student drawing a room in turn), we can still think of the cal-
culation as having taken place in two steps:

 = 3>12 * 2>11 = 1>22 = 0.045
 = P(you draw Gold) * P(friend draws Gold ƒ  you draw Gold)
 P(you draw Gold ¨ friend draws Gold)

3/12 2/11
Gold Gold⎟ Gold

Diagramming conditional probabilities leads to a more general way of help-
ing us think with pictures—one that works for calculating conditional probabili-
ties even when they involve different variables.

Tree Diagrams
For men, binge drinking is defined as having five or more drinks in a row, and for
women as having four or more drinks in a row. (The difference is because of the
average difference in weight.) According to a study by the Harvard School of Pub-
lic Health (H. Wechsler, G. W. Dowdall, A. Davenport, and W. DeJong, “Binge
Drinking on Campus: Results of a National Study”), 44% of college students en-
gage in binge drinking, 37% drink moderately, and 19% abstain entirely. Another
study, published in the American Journal of Health Behavior, finds that among binge
drinkers aged 21 to 34, 17% have been involved in an alcohol-related automobile
accident, while among non-bingers of the same age, only 9% have been involved
in such accidents.

What’s the probability that a randomly selected college student will be a
binge drinker who has had an alcohol-related car accident?

To start, we see that the probability of selecting a binge drinker is about 44%.
To find the probability of selecting someone who is both a binge drinker and a
driver with an alcohol-related accident, we would need to pull out the General
Multiplication Rule and multiply the probability of one of the events by the con-
ditional probability of the other given the first.

Or we could make a picture. Which would you prefer?
We thought so.
The kind of picture that helps us think through this kind of reasoning is

called a tree diagram, because it shows sequences of events, like those we
had in room draw, as paths that look like branches of a tree. It is a good idea
to make a tree diagram almost any time you plan to use the General Multipli-
cation Rule. The number of different paths we can take can get large, so
we usually draw the tree starting from the left and growing vine-like across
the page, although sometimes you’ll see them drawn from the bottom up or
top down.

“Why,” said the Dodo, “the best
way to explain it is to do it.”

—Lewis Carroll
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Notice that we cover all possible outcomes with the branches. The probabilities
add up to one. But we’re also interested in car accidents. The probability of having
an alcohol-related accident depends on one’s drinking behavior. Because the proba-
bilities are conditional, we draw the alternatives separately on each branch of the tree:

Binge
.44

.19
Abstain

Moderate
.37

FIGURE 15.3
We can diagram the three outcomes of
drinking and indicate their respective
probabilities with a simple tree diagram.

B
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ge

.44

.17

.83

A
bstain

.19

Moderate
.37

None

Acci
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t Binge 
and
Accident

Binge 
and
None

Moderate 
and
Accident

Moderate 
and
None

Abstain 
and
Accident

Abstain
and
None

.09

.91None

Acci
den

t

0

1.0None

Acci
den

t

FIGURE 15.4
Extending the tree diagram, we can show
both drinking and accident outcomes.
The accident probabilities are conditional
on the drinking outcomes, and they
change depending on which branch we
follow. Because we are concerned only
with alcohol-related accidents, the condi-
tional probability P(accident abstinence)
must be 0.

ƒ

The first branch of our tree separates students according to their drinking
habits. We label each branch of the tree with a possible outcome and its corre-
sponding probability.

On each of the second set of branches, we write the possible outcomes associated
with having an alcohol-related car accident (having an accident or not) and the as-
sociated probability. These probabilities are different because they are conditional de-
pending on the student’s drinking behavior. (It shouldn’t be too surprising that
those who binge drink have a higher probability of alcohol-related accidents.) The
probabilities add up to one, because given the outcome on the first branch, these
outcomes cover all the possibilities. Looking back at the General Multiplication
Rule, we can see how the tree depicts the calculation. To find the probability that a
randomly selected student will be a binge drinker who has had an alcohol-related
car accident, we follow the top branches. The probability of selecting a binger is
0.44. The conditional probability of an accident given binge drinking is 0.17. The
General Multiplication Rule tells us that to find the joint probability of being a binge
drinker and having an accident, we multiply these two probabilities together:

 = 0.44 * 0.17 = 0.075
 P(binge ¨ accident) = P(binge) * P(accident ƒ  binge)
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And we can do the same for each combination of outcomes:

Bin
ge

.44

.17

.83

A
bstain

.19

Moderate
.37

None

Acci
dent

None

Acci
dent

None

Acci
dent

.09

.91

0

1.0

Binge 
and 
Accident
Binge 
and 
None

Moderate 
and 
Accident

Moderate 
and 
None

Abstain 
and 
Accident

Abstain 
and 
None

0.075

0.365

0.033

0.337

0

0.190

FIGURE 15.5
We can find the probabilities of compound
events by multiplying the probabilities along
the branch of the tree that leads to the event,
just the way the General Multiplication Rule
specifies.

The probability of abstaining and having
an alcohol-related accident is, of course, zero.

All the outcomes at the far right are disjoint because at each branch of the tree
we chose between disjoint alternatives. And they are all the possibilities, so the
probabilities on the far right must add up to one. Always check!

Because the final outcomes are disjoint, we can add up their probabilities to get
probabilities for compound events. For example, what’s the probability that a se-
lected student has had an alcohol-related car accident? We simply find all the out-
comes on the far right in which an accident has happened. There are three and we
can add their probabilities: —almost an 11% chance.

Reversing the Conditioning
If we know a student has had an alcohol-related accident, what’s the probability
that the student is a binge drinker? That’s an interesting question, but we can’t
just read it from the tree. The tree gives us but we want

—conditioning in the other direction. The two probabilities are
definitely not the same. We have reversed the conditioning.

We may not have the conditional probability we want, but we do know every-
thing we need to know to find it. To find a conditional probability, we need the
probability that both events happen divided by the probability that the given
event occurs. We have already found the probability of an alcohol-related acci-
dent: .

The joint probability that a student is both a binge drinker and someone
who’s had an alcohol-related accident is found at the top branch: 0.075. We’ve re-
stricted the Who of the problem to the students with alcohol-related accidents, so
we divide the two to find the conditional probability:

The chance that a student who has an alcohol-related car accident is a binge
drinker is more than 69%! As we said, reversing the conditioning is rarely intuitive,
but tree diagrams help us keep track of the calculation when there aren’t too many
alternatives to consider.

 =

0.075
0.108

= 0.694

 P(binge ƒ  accident) =

P(binge ¨ accident)

P(accident)

0.075 + 0.033 + 0 = 0.108

P(binge  ƒ   accident)
P(accident ƒ  binge),

0.075 + 0.033 + 0 = 0.108
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When the authors were in college, there were only three requirements for graduation that were
the same for all students: You had to be able to tread water for 2 minutes, you had to learn a for-
eign language, and you had to be free of tuberculosis. For the last requirement, all freshmen had
to take a TB screening test that consisted of a nurse jabbing what looked like a corncob holder into
your forearm.You were then expected to report back in 48 hours to have it checked. If you were
healthy and TB-free, your arm was supposed to look as though you’d never had the test.

Sometime during the 48 hours, one of us had a reaction. When he finally saw the nurse, his
arm was about 50% bigger than normal and a very unhealthy red. Did he have TB? The nurse had
said that the test was about 99% effective, so it seemed that the chances must be pretty high that
he had TB. How high do you think the chances were? Go ahead and guess. Guess low.

We’ll call TB the event of actually having TB and + the event of testing positive. To start a tree,
we need to know P(TB), the probability of having TB.3 We also need to know the conditional proba-
bilities and . Diagnostic tests can make two kinds of errors. They can give a
positive result for a healthy person (a false positive) or a negative result for a sick person (a false neg-
ative). Being 99% accurate usually means a false-positive rate of 1%. That is, someone who doesn’t
have the disease has a 1% chance of testing positive anyway. We can write .

Since a false negative is more serious (because a sick person might not get treatment), tests are
usually constructed to have a lower false-negative rate. We don’t know exactly, but let’s assume a
0.1% false-negative rate. So only 0.1% of sick people test negative. We can write .P1� ƒ  TB2 = 0.001

P1� ƒ  TBC2 = 0.01

P1� ƒ  TBC2P1� ƒ  TB2

Reversing the ConditioningSTEP-BY-STEP EXAMPLE

I know that and 
. I also know that
.

I’m interested in the probability that the author
had TB given that he tested positive: .P(TB ƒ �)

P(TB) = 0.00005
P(� ƒ  TB) = 0.001

P(� ƒ  TBC) = 0.01

 � = {testing negative}
 � = {testing positive} and

 Let TB = {having TB} and TBC
= {no TB}Plan Define the events we’re interested

in and their probabilities.

Figure out what you want to know in
terms of the events. Use the notation of
conditional probability to write the event
whose probability you want to find.

Plot Draw the tree diagram. When prob-
abilities are very small like these are, be
careful to keep all the significant digits.

To finish the tree we need , 
, and . We can find

each of these from the Complement Rule:

 = 1 - 0.01 = 0.999
 P(� ƒ TB) = 1 - P(� ƒ TB)

 = 1 - 0.01 = 0.99 and
 P(� ƒ  TBC) = 1 - P(� ƒ  TBC)

 P(TBC) = 1 - P(TB) = 0.99995

P(� ƒ  TB)P(� ƒ  TBC)
P(TBC)

0.999

0.001

.00005

.99995

0.01

0.99

0.00004995 
TB and 
test +

TB but 
test – 0.00000005 

0.0099995 
no TB 
but test +

no TB 
and test – 0.9899505 

+

–

+

–

no TB

TB

3 This isn’t given, so we looked it up. Although TB is a matter of serious concern to public
health officials, it is a fairly uncommon disease, with an incidence of about 5 cases per
100,000 in the United States (see http://www.cdc.gov/tb/default.htm).
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Bayes’s Rule
When we have but want the reverse probability we need to find

and A tree is often a convenient way of finding these probabili-
ties. It can work even when we have more than two possible events, as we saw
in the binge-drinking example. Instead of using the tree, we could write the cal-
culation algebraically, showing exactly how we found the quantities that we
needed: P(A B) and P(A). The result is a formula known as Bayes’s Rule, af-
ter the Reverend Thomas Bayes (1702?–1761), who was credited with the rule
after his death, when he could no longer defend himself. Bayes’s Rule is quite
important in Statistics and is the foundation of an approach to Statistical analy-
sis known as Bayesian Statistics. Although the simple rule deals with two alter-
native outcomes, the rule can be extended to the situation in which there are
more than two branches to the first split of the tree. The principle remains the
same (although the math gets more difficult). Bayes’s Rule is just a formula4 for
reversing the probability from the conditional probability that you’re originally
given, the same feat we accomplished with our tree diagram.

¨

P(A).P(A ¨ B)
P(B ƒ  A),P(A ƒ  B)

 = 0.00497

 =

0.00004995
0.01004945

 P(TB ƒ �) =

P(TB ¨ �)
P(�)

 = 0.01004945
 P = 0.00004995 + 0.0099995

 P(�) = P(TB ¨ �) + P(TBc
¨ �)

0.0099995 + 0.98995050 = 1)
(Check: 0.00004995 + 0.00000005 +Mechanics Multiply along the branches

to find the probabilities of the four possi-
ble outcomes. Check your work by seeing
if they total 1.

Add up the probabilities corresponding
to the condition of interest—in this case,
testing positive. We can add because the
tree shows disjoint events.

Divide the probability of both events
occuring (here, having TB and a positive
test) by the probability of satisfying the
condition (testing positive).

The chance of having TB after you test positive
is less than 0.5%.

Conclusion Interpret your result in 
context.

When we reverse the order of conditioning, we change the Who we are concerned with. With events of
low probability, the result can be surprising.That’s the reason patients who test positive for HIV, for exam-
ple, are always told to seek medical counseling.They may have only a small chance of actually being
infected.That’s why global drug or disease testing can have unexpected consequences if people interpret
testing positive as being positive.

4 Bayes’s Rule for two events says that . 

Masochists may wish to try it with the TB testing probabilities. (It’s easier to just draw the 
tree, isn’t it?)

P(B ƒ  A) =

P(A ƒ  B)P(B)

P(A ƒ  B)P(B) + P(A ƒ  BC)P(BC)

The Reverend Thomas Bayes is cred-
ited posthumously with the rule that is
the foundation of Bayesian Statistics.
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Reversing the conditioningFOR EXAMPLE

A recent Maryland highway safety study found that in 77% of all accidents the driver was wearing a seatbelt. Accident reports indicated that 92% of
those drivers escaped serious injury (defined as hospitalization or death), but only 63% of the non-belted drivers were so fortunate.

Question: What’s the probability that a driver who was seriously injured wasn’t wearing a seatbelt?

Let B = the driver was wearing a seatbelt, and NB = no belt.
Let I = serious injury or death, and OK = not seriously injured.
I know , so .
Also, , so 
and , so P(I ƒ  NB) = 0.37P(OK ƒ  B) = 0.63

P(I ƒ  B) = 0.08P(OK ƒ  B) = 0.92
P(NB) = 1 - 0.77 = 0.23P(B) = 0.77

B

0.08

0.92

0.37

0.63

0.77

0.23

NB

I

OK

B and I

B and OK

NB and I

NB and OK

I

OK

(0.77)(0.88) = 0.0616

0.7084

0.0851

0.1449

Accident

Even though only 23% of drivers weren’t wearing seatbelts, they accounted for 58% of all the deaths and serious injuries.

Just some advice from your friends, the authors: Please buckle up! (We want you to finish this course.)

P(NB ƒ  I) =

P(NB and I)
P(I)

=

0.0851
0.0616 + 0.0851

= 0.58

WHAT CAN GO WRONG?
u Don’t use a simple probability rule where a general rule is appropriate. Don’t assume inde-

pendence without reason to believe it. Don’t assume that outcomes are disjoint with-
out checking that they are. Remember that the general rules always apply, even
when outcomes are in fact independent or disjoint.

u Don’t find probabilities for samples drawn without replacement as if they had been drawn with
replacement. Remember to adjust the denominator of your probabilities. This warn-
ing applies only when we draw from small populations or draw a large fraction of a
finite population. When the population is very large relative to the sample size, the
adjustments make very little difference, and we ignore them.

u Don’t reverse conditioning naively. As we have seen, the probability of A given B may
not, and, in general does not, resemble the probability of B given A. The true proba-
bility may be counterintuitive.

u Don’t confuse “disjoint” with “independent.” Disjoint events cannot happen at the same
time. When one happens, you know the other did not, so . Independent
events must be able to happen at the same time. When one happens, you know it
has no effect on the other, so .P(B ƒ  A) = P(B)

P(B ƒ  A) = 0
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CONNECTIONS
This chapter shows the unintuitive side of probability. If you’ve been thinking, “My mind doesn’t
work this way,” you’re probably right. Humans don’t seem to find conditional and compound
probabilities natural and often have trouble with them. Even statisticians make mistakes with
conditional probability.

Our central connection is to the guiding principle that Statistics is about understanding the
world. The events discussed in this chapter are close to the kinds of real-world situations in
which understanding probabilities matters. The methods and concepts of this chapter are the
tools you need to understand the part of the real world that deals with the outcomes of complex,
uncertain events.

WHAT HAVE WE LEARNED?

The last chapter’s basic rules of probability are important, but they work only in special cases—
when events are disjoint or independent. Now we’ve learned the more versatile General Addition
Rule and General Multiplication Rule. We’ve also learned about conditional probabilities, and seen
that reversing the conditioning can give surprising results.

We’ve learned the value of Venn diagrams, tables, and tree diagrams to help organize our
thinking about probabilities.

Most important, we’ve learned to think clearly about independence. We’ve seen how to use condi-
tional probability to determine whether two events are independent and to work with events that are not
independent. A sound understanding of independence will be important throughout the rest of this book.

Terms
General Addition Rule 343. For any two events, A and B, the probability of A or B is

Conditional probability 347.

is read “the probability of B given A.”

General Multiplication Rule 348. For any two events, A and B, the probability of A and B is

Independence (used formally) 349. Events A and B are independent when .

Tree diagram 354. A display of conditional events or probabilities that is helpful in thinking through conditioning.

Skills
u Understand the concept of conditional probability as redefining the Who of concern, according

to the information about the event that is given.

u Understand the concept of independence.

u Know how and when to apply the General Addition Rule.

u Know how to find probabilities for compound events as fractions of counts of occurrences in a
two-way table.

P(B ƒ  A) = P(B)

P(A ¨ B) = P(A) * P(B ƒ  A).

P(B ƒ  A)

P(B ƒ  A) =

P(A ¨ B)

P(A)

P(A ´ B) = P(A) + P(B) - P(A ¨ B).
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Birth Order

1 or only 2 or more Total

Co
lle

ge

Arts & Sciences 34 23 57
Agriculture 52 41 93
Human Ecology 15 28 43
Other 12 18 30

Total 113 110 223

Exercises 361

u Know how and when to apply the General Multiplication Rule.

u Know how to make and use a tree diagram to understand conditional probabilities and reverse
conditioning.

u Be able to make a clear statement about a conditional probability that makes clear how the con-
dition affects the probability.

u Avoid making statements that assume independence of events when there is no clear evidence
that they are in fact independent.

EXERCISES

1. Homes. Real estate ads suggest that 64% of homes for
sale have garages, 21% have swimming pools, and 17%
have both features. What is the probability that a home
for sale has
a) a pool or a garage?
b) neither a pool nor a garage?
c) a pool but no garage?

2. Travel. Suppose the probability that a U.S. resident has
traveled to Canada is 0.18, to Mexico is 0.09, and to both
countries is 0.04. What’s the probability that an American
chosen at random has
a) traveled to Canada but not Mexico?
b) traveled to either Canada or Mexico?
c) not traveled to either country?

3. Amenities. A check of dorm rooms on a large college
campus revealed that 38% had refrigerators, 52% had
TVs, and 21% had both a TV and a refrigerator. What’s
the probability that a randomly selected dorm room has
a) a TV but no refrigerator?
b) a TV or a refrigerator, but not both?
c) neither a TV nor a refrigerator?

4. Workers. Employment data at a large company reveal
that 72% of the workers are married, that 44% are college
graduates, and that half of the college grads are married.
What’s the probability that a randomly chosen worker
a) is neither married nor a college graduate?
b) is married but not a college graduate?
c) is married or a college graduate?

5. Global survey. The marketing research organization
GfK Custom Research North America conducts a yearly
survey on consumer attitudes worldwide. They collect
demographic information on the roughly 1500 respon-
dents from each country that they survey. Here is a
table showing the number of people with various levels
of education in five countries:

Educational Level by Country

Post-
graduate College

Some 
high 

school

Primary 
or 

less
No 

answer Total
China 7 315 671 506 3 1502
France 69 388 766 309 7 1539
India 161 514 622 227 11 1535
U.K. 58 207 1240 32 20 1557
USA 84 486 896 87 4 1557
Total 379 1910 4195 1161 45 7690

If we select someone at random from this survey,
a) what is the probability that the person is from the

United States?
b) what is the probability that the person completed his

or her education before college?
c) what is the probability that the person is from France

or did some post-graduate study?
d) what is the probability that the person is from France

and finished only primary school or less?

6. Birth order. A survey of students in a large Intro-
ductory Statistics class asked about their birth order 
(1 = oldest or only child) and which college of the uni-
versity they were enrolled in. Here are the results:
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United States?
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or her education before college?
c) what is the probability that the person is from France

or did some post-graduate study?
d) what is the probability that the person is from France

and finished only primary school or less?

6. Birth order. A survey of students in a large Intro-
ductory Statistics class asked about their birth order 
(1 = oldest or only child) and which college of the uni-
versity they were enrolled in. Here are the results:
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Suppose we select a student at random from this class.
What is the probability that the person is
a) a Human Ecology student?
b) a firstborn student?
c) firstborn and a Human Ecology student?
d) firstborn or a Human Ecology student?

7. Cards. You draw a card at random from a standard
deck of 52 cards. Find each of the following conditional
probabilities:
a) The card is a heart, given that it is red.
b) The card is red, given that it is a heart.
c) The card is an ace, given that it is red.
d) The card is a queen, given that it is a face card.

8. Pets. In its monthly report, the local animal shelter
states that it currently has 24 dogs and 18 cats available
for adoption. Eight of the dogs and 6 of the cats are male.
Find each of the following conditional probabilities if an
animal is selected at random:
a) The pet is male, given that it is a cat.
b) The pet is a cat, given that it is female.
c) The pet is female, given that it is a dog.

9. Health. The probabilities that an adult American man
has high blood pressure and/or high cholesterol are
shown in the table.

11. Global survey, take 2. Look again at the table summa-
rizing the Roper survey in Exercise 5.
a) If we select a respondent at random, what’s the proba-

bility we choose a person from the United States who
has done post-graduate study?

b) Among the respondents who have done post-
graduate study, what’s the probability the person is
from the United States?

c) What’s the probability that a respondent from the
United States has done post-graduate study?

d) What’s the probability that a respondent from China
has only a primary-level education?

e) What’s the probability that a respondent with only a
primary-level education is from China?

12. Birth order, take 2. Look again at the data about birth
order of Intro Stats students and their choices of colleges
shown in Exercise 6.
a) If we select a student at random, what’s the probabil-

ity the person is an Arts and Sciences student who is a
second child (or more)?

b) Among the Arts and Sciences students, what’s the
probability a student was a second child (or more)?

c) Among second children (or more), what’s the proba-
bility the student is enrolled in Arts and Sciences?

d) What’s the probability that a first or only child is en-
rolled in the Agriculture College?

e) What is the probability that an Agriculture student is a
first or only child?

13. Sick kids. Seventy percent of kids who visit a doctor
have a fever, and 30% of kids with a fever have sore
throats. What’s the probability that a kid who goes to the
doctor has a fever and a sore throat?

14. Sick cars. Twenty percent of cars that are inspected
have faulty pollution control systems. The cost of repair-
ing a pollution control system exceeds $100 about 40% of
the time. When a driver takes her car in for inspection,
what’s the probability that she will end up paying more
than $100 to repair the pollution control system?

15. Cards. You are dealt a hand of three cards, one at a
time. Find the probability of each of the following.
a) The first heart you get is the third card dealt.
b) Your cards are all red (that is, all diamonds or hearts).
c) You get no spades.
d) You have at least one ace.

16. Another hand. You pick three cards at random from a
deck. Find the probability of each event described below.
a) You get no aces.
b) You get all hearts.
c) The third card is your first red card.
d) You have at least one diamond.

17. Batteries. A junk box in your room contains a dozen
old batteries, five of which are totally dead. You start
picking batteries one at a time and testing them. Find the
probability of each outcome.
a) The first two you choose are both good.
b) At least one of the first three works.
c) The first four you pick all work.
d) You have to pick 5 batteries to find one that works.

Ch
ol

es
te

ro
l

Blood Pressure

High OK

High 0.11 0.21
OK 0.16 0.52

What’s the probability that 
a) a man has both conditions?
b) a man has high blood pressure?
c) a man with high blood pressure has high cholesterol?
d) a man has high blood pressure if it’s known that he

has high cholesterol?

10. Death penalty. The table shows the political affilia-
tions of American voters and their positions on the
death penalty.

Pa
rt

y

Death Penalty

Favor Oppose

Republican 0.26 0.04
Democrat 0.12 0.24
Other 0.24 0.10

a) What’s the probability that
i) a randomly chosen voter favors the death penalty?

ii) a Republican favors the death penalty?
iii) a voter who favors the death penalty is a Democrat?

b) A candidate thinks she has a good chance of gaining
the votes of anyone who is a Republican or in favor of
the death penalty. What portion of the voters is that?
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18. Shirts. The soccer team’s shirts have arrived in a big
box, and people just start grabbing them, looking for the
right size. The box contains 4 medium, 10 large, and 
6 extra-large shirts. You want a medium for you and 
one for your sister. Find the probability of each event
described.
a) The first two you grab are the wrong sizes.
b) The first medium shirt you find is the third one

you check.
c) The first four shirts you pick are all extra-large.
d) At least one of the first four shirts you check is a

medium.

19. Eligibility. A university requires its biology majors to
take a course called BioResearch. The prerequisite for this
course is that students must have taken either a Statistics
course or a computer course. By the time they are juniors,
52% of the Biology majors have taken Statistics, 23% have
had a computer course, and 7% have done both.
a) What percent of the junior Biology majors are ineligi-

ble for BioResearch?
b) What’s the probability that a junior Biology major

who has taken Statistics has also taken a computer
course?

c) Are taking these two courses disjoint events? Explain.
d) Are taking these two courses independent events? 

Explain.

20. Benefits. Fifty-six percent of all American workers
have a workplace retirement plan, 68% have health insur-
ance, and 49% have both benefits. We select a worker at
random.
a) What’s the probability he has neither employer-

sponsored health insurance nor a retirement plan?
b) What’s the probability he has health insurance if he

has a retirement plan?
c) Are having health insurance and a retirement plan in-

dependent events? Explain.
d) Are having these two benefits mutually exclusive?

Explain.

21. For sale. In the real-estate ads described in Exercise 1,
64% of homes for sale have garages, 21% have swimming
pools, and 17% have both features.
a) If a home for sale has a garage, what’s the probability

that it has a pool too?
b) Are having a garage and a pool independent events?

Explain.
c) Are having a garage and a pool mutually exclusive?

Explain.

22. On the road again. According to Exercise 2, the proba-
bility that a U.S. resident has traveled to Canada is 0.18,
to Mexico is 0.09, and to both countries is 0.04.
a) What’s the probability that someone who has traveled

to Mexico has visited Canada too?
b) Are traveling to Mexico and to Canada disjoint

events? Explain.
c) Are traveling to Mexico and to Canada independent

events? Explain.

23. Cards. If you draw a card at random from a well-
shuffled deck, is getting an ace independent of the suit?
Explain.

24. Pets again. The local animal shelter in Exercise 8 re-
ported that it currently has 24 dogs and 18 cats available
for adoption; 8 of the dogs and 6 of the cats are male. Are
the species and sex of the animals independent? Explain.

25. Unsafe food. Early in 2007 Consumer Reports published
the results of an extensive investigation of broiler chick-
ens purchased from food stores in 23 states. Tests for bac-
teria in the meat showed that 81% of the chickens were
contaminated with campylobacter, 15% with salmonella,
and 13% with both.
a) What’s the probability that a tested chicken was not

contaminated with either kind of bacteria?
b) Are contamination with the two kinds of bacteria dis-

joint? Explain.
c) Are contamination with the two kinds of bacteria in-

dependent? Explain.

26. Birth order, finis. In Exercises 6 and 12 we looked at
the birth orders and college choices of some Intro Stats
students. For these students:
a) Are enrolling in Agriculture and Human Ecology 

disjoint? Explain.
b) Are enrolling in Agriculture and Human Ecology 

independent? Explain.
c) Are being firstborn and enrolling in Human Ecology 

disjoint? Explain.
d) Are being firstborn and enrolling in Human Ecology 

independent? Explain.

27. Men’s health, again. Given the table of probabilities
from Exercise 9, are high blood pressure and high choles-
terol independent? Explain.

Ch
ol

es
te

ro
l

Blood Pressure

High OK

High 0.11 0.21
OK 0.16 0.52

Pa
rt

y

Death Penalty

Favor Oppose

Republican 0.26 0.04
Democrat 0.12 0.24
Other 0.24 0.10

28. Politics. Given the table of probabilities from Exercise 10,
are party affiliation and position on the death penalty
independent? Explain.

29. Phone service. According to estimates from the federal
government’s 2003 National Health Interview Survey,
based on face-to-face interviews in 16,677 households,
approximately 58.2% of U.S. adults have both a landline
in their residence and a cell phone, 2.8% have only cell
phone service but no landline, and 1.6% have no tele-
phone service at all.
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a) Polling agencies won’t phone cell phone numbers be-
cause customers object to paying for such calls. What
proportion of U.S. households can be reached by a
landline call?

b) Are having a cell phone and having a landline inde-
pendent? Explain.

30. Snoring. After surveying 995 adults, 81.5% of whom
were over 30, the National Sleep Foundation reported
that 36.8% of all the adults snored. 32% of the respon-
dents were snorers over the age of 30.
a) What percent of the respondents were under 30 and

did not snore?
b) Is snoring independent of age? Explain.

31. Montana. A 1992 poll conducted by the University of
Montana classified respondents by sex and political party,
as shown in the table. Is party affiliation independent of
the respondents’ sex? Explain.

32. Cars. A random survey of autos parked in student and
staff lots at a large university classified the brands by
country of origin, as seen in the table. Is country of origin
independent of type of driver?

Democrat Republican Independent

Male 36 45 24

Female 48 33 16

O
rig

in

Driver

Student Staff
American 107 105
European 33 12
Asian 55 47 

not there. What is the probability that Leah’s first flight
was delayed?

36. Graduation, part II. What percent of students who
graduate from the college in Exercise 34 attended a public
high school?

37. Absenteeism. A company’s records indicate that on
any given day about 1% of their day-shift employees and
2% of the night-shift employees will miss work. Sixty per-
cent of the employees work the day shift.
a) Is absenteeism independent of shift worked? Explain.
b) What percent of employees are absent on any given

day?

38. Lungs and smoke. Suppose that 23% of adults smoke
cigarettes. It’s known that 57% of smokers and 13% of
nonsmokers develop a certain lung condition by age 60.
a) Explain how these statistics indicate that lung condi-

tion and smoking are not independent.
b) What’s the probability that a randomly selected 

60-year-old has this lung condition?

39. Absenteeism, part II. At the company described in
Exercise 37, what percent of the absent employees are on
the night shift?

40. Lungs and smoke again. Based on the statistics in Ex-
ercise 38, what’s the probability that someone with the
lung condition was a smoker?

41. Drunks. Police often set up sobriety checkpoints—
roadblocks where drivers are asked a few brief questions
to allow the officer to judge whether or not the person
may have been drinking. If the officer does not suspect 
a problem, drivers are released to go on their way. Other-
wise, drivers are detained for a Breathalyzer test that will
determine whether or not they will be arrested. The 
police say that based on the brief initial stop, trained offi-
cers can make the right decision 80% of the time. Suppose
the police operate a sobriety checkpoint after 9 p.m. on a
Saturday night, a time when national traffic safety experts
suspect that about 12% of drivers have been drinking.
a) You are stopped at the checkpoint and, of course, have

not been drinking. What’s the probability that you are
detained for further testing?

b) What’s the probability that any given driver will be
detained?

c) What’s the probability that a driver who is detained
has actually been drinking?

d) What’s the probability that a driver who was released
had actually been drinking?

42. No-shows. An airline offers discounted “advance-
purchase” fares to customers who buy tickets more than
30 days before travel and charges “regular” fares for tick-
ets purchased during those last 30 days. The company
has noticed that 60% of its customers take advantage of
the advance-purchase fares. The “no-show” rate among
people who paid regular fares is 30%, but only 5% of
customers with advance-purchase tickets are no-shows.
a) What percent of all ticket holders are no-shows?
b) What’s the probability that a customer who didn’t

show had an advance-purchase ticket?
c) Is being a no-show independent of the type of ticket a

passenger holds? Explain.

33. Luggage. Leah is flying from Boston to Denver with a
connection in Chicago. The probability her first flight
leaves on time is 0.15. If the flight is on time, the probabil-
ity that her luggage will make the connecting flight in
Chicago is 0.95, but if the first flight is delayed, the proba-
bility that the luggage will make it is only 0.65.
a) Are the first flight leaving on time and the luggage

making the connection independent events? Explain.
b) What is the probability that her luggage arrives in

Denver with her?

34. Graduation. A private college report contains these
statistics:

70% of incoming freshmen attended public schools.
75% of public school students who enroll as freshmen eventu-
ally graduate.
90% of other freshmen eventually graduate.

a) Is there any evidence that a freshman’s chances to
graduate may depend upon what kind of high school
the student attended? Explain.

b) What percent of freshmen eventually graduate?

35. Late luggage. Remember Leah (Exercise 33)? Suppose
you pick her up at the Denver airport, and her luggage is
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43. Dishwashers. Dan’s Diner employs three dishwashers.
Al washes 40% of the dishes and breaks only 1% of those
he handles. Betty and Chuck each wash 30% of the
dishes, and Betty breaks only 1% of hers, but Chuck
breaks 3% of the dishes he washes. (He, of course, will
need a new job soon. . . .) You go to Dan’s for supper one
night and hear a dish break at the sink. What’s the proba-
bility that Chuck is on the job?

44. Parts. A company manufacturing electronic compo-
nents for home entertainment systems buys electrical
connectors from three suppliers. The company prefers to
use supplier A because only 1% of those connectors prove
to be defective, but supplier A can deliver only 70% of the
connectors needed. The company must also purchase
connectors from two other suppliers, 20% from supplier B
and the rest from supplier C. The rates of defective con-
nectors from B and C are 2% and 4%, respectively. You
buy one of these components, and when you try to use it
you find that the connector is defective. What’s the prob-
ability that your component came from supplier A?

45. HIV testing. In July 2005 the journal Annals of Internal
Medicine published a report on the reliability of HIV test-
ing. Results of a large study suggested that among people
with HIV, 99.7% of tests conducted were (correctly) posi-
tive, while for people without HIV 98.5% of the tests were
(correctly) negative. A clinic serving an at-risk population
offers free HIV testing, believing that 15% of the patients
may actually carry HIV. What’s the probability that a pa-
tient testing negative is truly free of HIV?

46. Polygraphs. Lie detectors are controversial instru-
ments, barred from use as evidence in many courts.
Nonetheless, many employers use lie detector screening
as part of their hiring process in the hope that they can
avoid hiring people who might be dishonest. There has
been some research, but no agreement, about the reliabil-
ity of polygraph tests. Based on this research, suppose
that a polygraph can detect 65% of lies, but incorrectly
identifies 15% of true statements as lies.

A certain company believes that 95% of its job applicants
are trustworthy. The company gives everyone a poly-
graph test, asking, “Have you ever stolen anything from
your place of work?” Naturally, all the applicants answer
“No,” but the polygraph identifies some of those answers
as lies, making the person ineligible for a job. What’s the
probability that a job applicant rejected under suspicion
of dishonesty was actually trustworthy?

JUST CHECKING
Answers

1. a)

b) 0.32
c) 0.41

2. a) Independent
b) Disjoint
c) Neither

3. a)

b)
c) No, pages can (and 7% do) have both.
d) To be independent, we’d need 

but Overall, 48%
of pages have data displays, but only about 26%
of pages with equations do. They do not appear to
be independent.

P(D) = 0.48.P(D ƒ  Eq) = 0.259,
P(D ƒ  Eq) = P(D).

P(D ƒ  Eq) = P(D and Eq)>P(Eq) = 0.07>0.27 = 0.259

0.41 0.07 0.20

0.32

D Eq

Equation

D
is

pl
ay

Yes No Total

Yes 0.07 0.41 0.48
No 0.20 0.32 0.52
Total 0.27 0.73 1.00
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CHAPTER

16
Random 
Variables

Insurance companies make bets. They bet that you’re going to
live a long life. You bet that you’re going to die sooner. Both you
and the insurance company want the company to stay in busi-
ness, so it’s important to find a “fair price” for your bet. Of

course, the right price for you depends on many factors, and nobody
can predict exactly how long you’ll live. But when the company av-
erages over enough customers, it can make reasonably accurate esti-
mates of the amount it can expect to collect on a policy before it has
to pay its benefit.

Here’s a simple example. An insurance company offers a “death
and disability” policy that pays $10,000 when you die or $5000 if you
are permanently disabled. It charges a premium of only $50 a year
for this benefit. Is the company likely to make a profit selling such a
plan? To answer this question, the company needs to know the
probability that its clients will die or be disabled in any year. From ac-
tuarial information like this, the company can calculate the expected
value of this policy.

Expected Value: Center
We’ll want to build a probability model in order to answer the questions about the
insurance company’s risk. First we need to define a few terms. The amount the
company pays out on an individual policy is called a random variable because its
numeric value is based on the outcome of a random event. We use a capital letter,
like X, to denote a random variable. We’ll denote a particular value that it can
have by the corresponding lowercase letter, in this case x. For the insurance com-
pany, x can be $10,000 (if you die that year), $5000 (if you are disabled), or $0 (if
neither occurs). Because we can list all the outcomes, we might formally call this
random variable a discrete random variable. Otherwise, we’d call it a continuous
random variable. The collection of all the possible values and the probabilities
that they occur is called the probability model for the random variable.

What Is an Actuary?
Actuaries are the daring people who put 
a price on risk, estimating the likelihood
and costs of rare events, so they can be
insured.That takes financial, statistical,
and business skills. It also makes them
invaluable to many businesses. Actuaries
are rather rare themselves; only about
19,000 work in North America. Perhaps
because of this, they are well paid. If
you’re enjoying this course, you may want
to look into a career as an actuary. Contact
the Society of Actuaries or the Casualty
Actuarial Society (who, despite what you
may think, did not pay for this blurb).

NOTATION ALERT:

The most common letters for
random variables are X, Y, and
Z. But be cautious: If you see
any capital letter, it just might
denote a random variable.
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Suppose, for example, that the death rate in any year is 1 out of every 1000
people, and that another 2 out of 1000 suffer some kind of disability. Then we can
display the probability model for this insurance policy in a table like this:

To see what the insurance company can expect, imagine that it insures exactly
1000 people. Further imagine that, in perfect accordance with the probabilities,
1 of the policyholders dies, 2 are disabled, and the remaining 997 survive the year
unscathed. The company would pay $10,000 to one client and $5000 to each of 2
clients. That’s a total of $20,000, or an average of per policy.
Since it is charging people $50 for the policy, the company expects to make a profit
of $30 per customer. Not bad!

We can’t predict what will happen during any given year, but we can say
what we expect to happen. To do this, we (or, rather, the insurance company) need
the probability model. The expected value of a policy is a parameter of this model.
In fact, it’s the mean. We’ll signify this with the notation (for population mean)
or E(X) for expected value. This isn’t an average of some data values, so we won’t
estimate it. Instead, we assume that the probabilities are known and simply cal-
culate the expected value from them.

How did we come up with $20 as the expected value of a policy payout?
Here’s the calculation. As we’ve seen, it often simplifies probability calculations
to think about some (convenient) number of outcomes. For example, we could
imagine that we have exactly 1000 clients. Of those, exactly 1 died and 2 were dis-
abled, corresponding to what the probabilities would say.

So our expected payout comes to $20,000, or $20 per policy.
Instead of writing the expected value as one big fraction, we can rewrite it as

separate terms with a common denominator of 1000.

How convenient! See the probabilities? For each policy, there’s a 1/1000 chance
that we’ll have to pay $10,000 for a death and a 2/1000 chance that we’ll have to
pay $5000 for a disability. Of course, there’s a 997/1000 chance that we won’t have
to pay anything.

Take a good look at the expression now. It’s easy to calculate the expected
value of a (discrete) random variable—just multiply each possible value by the
probability that it occurs, and find the sum:

m = E(X) = axP(x).

 = $20.

 = $10,000a 1
1000
b + $5000a 2

1000
b + $0a 997

1000
b

 m = E(X)

m = E(X) =

10,000(1) + 5000(2) + 0(997)
1000

m

20000/1000 = $20

Policyholder 
Outcome

Payout 
x

Probability 
P (X 5 x)

Death 10,000
1

1000

Disability 5000
2

1000

Neither 0
997

1000

Activity: Random
Variables. Learn more about
random variables from this
animated tour.

NOTATION ALERT:

The expected value (or mean) of
a random variable is written
E(X) or .m
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Be sure that every possible outcome is included in the sum. And verify that you
have a valid probability model to start with—the probabilities should each be be-
tween 0 and 1 and should sum to one.
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Love and expected valuesFOR EXAMPLE

On Valentine’s Day the Quiet Nook restaurant offers a Lucky Lovers Special that could save couples money on their romantic dinners.
When the waiter brings the check, he’ll also bring the four aces from a deck of cards. He’ll shuffle them and lay them out face down on
the table. The couple will then get to turn one card over. If it’s a black ace, they’ll owe the full amount, but if it’s the ace of hearts, the
waiter will give them a $20 Lucky Lovers discount. If they first turn over the ace of diamonds (hey—at least it’s red!), they’ll then get
to turn over one of the remaining cards, earning a $10 discount for finding the ace of hearts this time.

Question: Based on a probability model for the size of the Lucky Lovers discounts the restaurant will award, what’s the ex-
pected discount for a couple?

Let X = the Lucky Lovers discount. The probabilities of the three outcomes are:

My probability model is:

 P(X = 0) = P(X Z 20 or 10) = 1 - ¢ 1
4

+

1
12
≤ =

2
3

.

=

1
4

#
1
3

=

1
12

 P(X = 10) = P(A♦, then A♥) = P(A♦) # P(A♥ ƒA♦)

 P(X = 20) = P(A♥) =

1
4

A

A

A

A

A

A

A

A

Couples dining at the Quiet Nook can expect an average discount of $5.83.

E(X) = 20 #
1
4

+ 10 #
1

12
+ 0 #

2
3

=

70
12

L 5.83

Outcome A♥ A , then A♥♦ Black Ace

x 20 10 0

P(X 5 x)
1
4

1
12

2
3

JUST CHECKING
1. One of the authors took his minivan in for repair recently because the air conditioner was cutting

out intermittently. The mechanic identified the problem as dirt in a control unit. He said that in
about 75% of such cases, drawing down and then recharging the coolant a couple of times cleans
up the problem—and costs only $60. If that fails, then the control unit must be replaced at an addi-
tional cost of $100 for parts and $40 for labor.
a) Define the random variable and construct the probability model.
b) What is the expected value of the cost of this repair?
c) What does that mean in this context?
Oh—in case you were wondering—the $60 fix worked!

M16_BOCK0444_03_SE_C16.QXD  2/9/10  1:30 AM  Page 368



Policyholder 
Outcome

Payout 
x

Probability 
P (X 5 x )

Deviation 
(x 2 m)

Death 10,000
1

1000 (10,000 - 20) = 9980 

Disability 5000
2

1000 (5000 - 20) = 4980

Neither 0
997
1000 (0 - 20) = -20

First Center, Now Spread . . . 369

First Center, Now Spread . . .
Of course, this expected value (or mean) is not what actually happens to any
particular policyholder. No individual policy actually costs the company $20. We
are dealing with random events, so some policyholders receive big payouts, oth-
ers nothing. Because the insurance company must anticipate this variability, it
needs to know the standard deviation of the random variable.

For data, we calculated the standard deviation by first computing the devia-
tion from the mean and squaring it. We do that with (discrete) random variables
as well. First, we find the deviation of each payout from the mean (expected
value):

Next, we square each deviation. The variance is the expected value of those
squared deviations, so we multiply each by the appropriate probability and sum
those products. That gives us the variance of X. Here’s what it looks like:

Finally, we take the square root to get the standard deviation:

The insurance company can expect an average payout of $20 per policy, with a
standard deviation of $386.78.

Think about that. The company charges $50 for each policy and expects to
pay out $20 per policy. Sounds like an easy way to make $30. In fact, most of
the time (probability 997/1000) the company pockets the entire $50. But would
you consider selling your roommate such a policy? The problem is that occa-
sionally the company loses big. With probability 1/1000, it will pay out $10,000,
and with probability 2/1000, it will pay out $5000. That may be more risk than
you’re willing to take on. The standard deviation of $386.78 gives an indication
that it’s no sure thing. That’s a pretty big spread (and risk) for an average profit
of $30.

Here are the formulas for what we just did. Because these are parameters of
our probability model, the variance and standard deviation can also be written as

and . You should recognize both kinds of notation.

 s = SD(X) = 1Var(X)
  s2

= Var(X) = a  (x - m)2P(x)

ss2

SD(X) = 1149,600 L $386.78.

Var(X) = 99802 a 1
1000

b + 49802 a 2
1000

b + (-20)2 a 997
1000

b = 149,600.
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Finding the standard deviationFOR EXAMPLE

Recap: Here’s the probability model for the Lucky Lovers restaurant discount.

Outcome A♥ A , then A♥♦ Black Ace

x 20 10 0

P(X = x) 1
4

1
12

2
3

We found that couples can expect an average discount of 

Question: What’s the standard deviation of the discounts?

First find the variance:

So, 
Couples can expect the Lucky Lovers discounts to average $5.83, with a standard deviation of $8.62.

SD(X) = 174.306 L $8.62

 L 74.306.

 = (20 - 5.83)2 #
1
4

+ (10 - 5.83)2 #
1

12
+ (0 - 5.83)2 #

2
3

 Var (X) = a (x - m)2 # P(x)

m = $5.83.

As the head of inventory for Knowway computer company, you were thrilled that you had man-
aged to ship 2 computers to your biggest client the day the order arrived. You are horrified,
though, to find out that someone had restocked refurbished computers in with the new comput-
ers in your storeroom. The shipped computers were selected randomly from the 15 computers in
stock, but 4 of those were actually refurbished.

If your client gets 2 new computers, things are fine. If the client gets one refurbished computer,
it will be sent back at your expense—$100—and you can replace it. However, if both computers are
refurbished, the client will cancel the order this month and you’ll lose a total of $1000.

Question: What’s the expected value and the standard deviation of the company’s loss?

Expected Values and Standard Deviations for Discrete 
Random VariablesSTEP-BY-STEP EXAMPLE

I want to find the company’s expected loss for
shipping refurbished computers and the stan-
dard deviation.

Plan State the problem.

Variable Define the random variable. Let X = amount of loss.
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4/15

3/14

11/14

4/14
10/14

11/15

New

Refurb

New

Refurb

New

Refu
rb

NN 0.524

NR 0.2095

RN  0.2095

RR  0.057

Outcome x P (X 5 x)

Two refurbs
One refurb

New/new

1000
100

0

P(RR) 5 0.057
P (NR RN) 5 0.2095 

1 0.2095 5 0.419
P(NN) 5 0.524

´

Plot Make a picture. This is another job
for tree diagrams.

If you prefer calculation to drawing, find
P(NN) and P(RR), then use the Comple-
ment Rule to find P(NR or RN).

Model List the possible values of the
random variable, and determine the
probability model.

 SD(X) = 151,408.79 = $226.735

 = 51,408.79
 + (1000 - 98.90)2(0.057)
 + (100 - 98.90)2(0.419)

 Var(X) = (0 - 98.90)2(0.524)

 = $98.90
 E(X ) = 0(0.524) + 100(0.419) + 1000(0.057)Mechanics Find the expected value.

Find the variance.

Find the standard deviation.

I expect this mistake to cost the firm $98.90,
with a standard deviation of $226.74. The large
standard deviation reflects the fact that
there’s a pretty large range of possible losses.

Conclusion Interpret your results in
context.

Both numbers seem reasonable. The ex-
pected value of $98.90 is between the
extremes of $0 and $1000, and there’s
great variability in the outcome values.

REALITY CHECK

TI Tips Finding the mean and SD of a random variable

You can easily calculate means and standard deviations for a random variable
with your TI. Let’s do the Knowway computer example.

• Enter the values of the variable in a list, say, L1: 0, 100, 1000.
• Enter the probability model in another list, say, L2. Notice that you can enter

the probabilities as fractions. For example, multiplying along the top branches
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372 CHAPTER 16    Random Variables

1 The rules in this section are true for both discrete and continuous random variables.

More About Means and Variances
Our insurance company expected to pay out an average of $20 per policy, with a
standard deviation of about $387. If we take the $50 premium into account, we see
the company makes a profit of per policy. Suppose the company
lowers the premium by $5 to $45. It’s pretty clear that the expected profit also
drops an average of $5 per policy, to .

What about the standard deviation? We know that adding or subtracting a
constant from data shifts the mean but doesn’t change the variance or standard
deviation. The same is true of random variables.1

E(X ; c) = E(X) ; c  Var(X ; c) = Var(X).

45 - 20 = $25

50 - 20 = $30

of the tree gives the probability of a $1000 loss to be When you enter
that, the TI will automatically calculate the probability as a decimal!

• Under the STAT CALC menu, ask for 1–Var Stats L1,L2.

Now you see the mean and standard deviation (along with some other things).
Don’t fret that the calculator’s mean and standard deviation aren’t precisely
the same as the ones we found. Such minor differences can arise whenever we
round off probabilities to do the work by hand.

Beware: Although the calculator knows enough to call the standard deviation
, it uses where it should say . Make sure you don’t make that mistake!mxs

4
15

# 3
14.

Adding a constantFOR EXAMPLE

Recap: We’ve determined that couples dining at the Quiet Nook can expect Lucky Lovers discounts averaging $5.83 with a standard deviation of
$8.62. Suppose that for several weeks the restaurant has also been distributing coupons worth $5 off any one meal (one discount per table).

Question: If every couple dining there on Valentine’s Day brings a coupon, what will be the mean and standard deviation of the total discounts they’ll
receive?

Let discount (Lucky Lovers plus the coupon); then 

Couples with the coupon can expect total discounts averaging $10.83. The standard deviation is still $8.62.

 SD(D) = 1Var (X ) = $8.62
 Var(D) = Var(X + 5) = Var(X ) = 8.622

 E(D) = E(X + 5) = E(X) + 5 = 5.83 + 5 = $10.83

D = X + 5.D = total

Back to insurance . . . What if the company decides to double all the payouts—
that is, pay $20,000 for death and $10,000 for disability? This would double the
average payout per policy and also increase the variability in payouts. We have
seen that multiplying or dividing all data values by a constant changes both the
mean and the standard deviation by the same factor. Variance, being the square
of standard deviation, changes by the square of the constant. The same is true of
random variables. In general, multiplying each value of a random variable by a
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constant multiplies the mean by that constant and the variance by the square of
the constant.

E(aX) = aE(X) Var(aX) = a2Var(X)

Double the loveFOR EXAMPLE

Recap: On Valentine’s Day at the Quiet Nook, couples may get a Lucky Lovers discount averaging $5.83 with a standard deviation of $8.62. When two
couples dine together on a single check, the restaurant doubles the discount offer—$40 for the ace of hearts on the first card and $20 on the second.

Question: What are the mean and standard deviation of discounts for such foursomes?

If the restaurant doubles the discount offer, two couples dining together can expect to save an average of $11.66 with
a standard deviation of $17.24.

 SD(2X) = 1297.2176 = $17.24

Var(2x) = 22Var(x) = 22 # 8.622
= 297.2176

E(2X) = 2E(X) = 2(5.83) = $11.66

This insurance company sells policies to more than just one person. How
can we figure means and variances for a collection of customers? For example,
how can the company find the total expected value (and standard deviation) of
policies taken over all policyholders? Consider a simple case: just two cus-
tomers, Mr. Ecks and Ms. Wye. With an expected payout of $20 on each policy,
we might predict a total of to be paid out on the two policies.
Nothing surprising there. The expected value of the sum is the sum of the ex-
pected values.

The variability is another matter. Is the risk of insuring two people the same
as the risk of insuring one person for twice as much? We wouldn’t expect both
clients to die or become disabled in the same year. Because we’ve spread the risk,
the standard deviation should be smaller. Indeed, this is the fundamental princi-
ple behind insurance. By spreading the risk among many policies, a company can
keep the standard deviation quite small and predict costs more accurately.

But how much smaller is the standard deviation of the sum? It turns out that,
if the random variables are independent, there is a simple Addition Rule for vari-
ances: The variance of the sum of two independent random variables is the sum of their
individual variances.

For Mr. Ecks and Ms. Wye, the insurance company can expect their outcomes
to be independent, so (using X for Mr. Ecks’s payout and Y for Ms. Wye’s)

If they had insured only Mr. Ecks for twice as much, there would only be one out-
come rather than two independent outcomes, so the variance would have been

twice as big as with two independent policies.
Of course, variances are in squared units. The company would prefer to know

standard deviations, which are in dollars. The standard deviation of the payout
for two independent policies is But the standard deviation1299,200 = $546.99.

Var(2X) = 22Var(X) = 4 * 149,600 = 598,400, or

 = 299,200.
 = 149,600 + 149,600

 Var(X + Y) = Var(X) + Var(Y)

E(X + Y) = E(X) + E(Y).

$20 + $20 = $40
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of the payout for a single policy of twice the size is , or about
40% more.

If the company has two customers, then, it will have an expected annual total
payout of $40 with a standard deviation of about $547.

1598,400 = $773.56

Adding the discountsFOR EXAMPLE

Recap: The Valentine’s Day Lucky Lovers discount for couples averages $5.83 with a standard deviation of $8.62. We’ve seen that if the restaurant
doubles the discount offer for two couples dining together on a single check, they can expect to save $11.66 with a standard deviation of $17.24. Some
couples decide instead to get separate checks and pool their two discounts.

Question: You and your amour go to this restaurant with another couple and agree to share any benefit from this promotion. Does it matter whether
you pay separately or together?

Let and represent the two separate discounts, and T the total; then .

so the expected saving is the same either way.
The cards are reshuffled for each couple’s turn, so the discounts couples receive are independent. It’s okay to add the
variances:

When two couples get separate checks, there’s less variation in their total discount. The standard deviation is
$12.19, compared to $17.24 for couples who play for the double discount on a single check. It does, therefore, mat-
ter whether they pay separately or together.

 SD(T ) = 1148.6088 = $12.19
  Var(T ) = Var(X1 + X2) = Var(X1) + Var(X2) = 8.622

+ 8.622
= 148.6088

E(T ) = E(X1 + X2) = E(X1) + E(X2) = 5.83 + 5.83 = $11.66,

T = X1 + X2X2X1

In general,

u The mean of the sum of two random variables is the sum of the means.

u The mean of the difference of two random variables is the difference
of the means.

u If the random variables are independent, the variance of their sum
or difference is always the sum of the variances.

Wait a minute! Is that third part correct? Do we always add
variances? Yes. Think about the two insurance policies. Suppose
we want to know the mean and standard deviation of the
difference in payouts to the two clients. Since each policy has an
expected payout of $20, the expected difference is .
If we also subtract variances, we get $0, too, and that surely
doesn’t make sense. Note that if the outcomes for the two clients
are independent, the difference in payouts could range from

to , a spread
of $20,000. The variability in differences increases as much as the
variability in sums. If the company has two customers, the dif-
ference in payouts has a mean of $0 and a standard deviation of
about $547 (again).

$0 - $10,000 = - $10,000$10,000 - $0 = $10,000

20 - 20 = $0

E(X ; Y) = E(X) ; E(Y) Var(X ; Y) = Var(X) + Var(Y)

Pythagorean Theorem of Statistics
We often use the standard deviation to measure
variability, but when we add independent
random variables, we use their variances.Think
of the Pythagorean
Theorem. In a right
triangle (only), the
square of the length of
the hypotenuse is the
sum of the squares of
the lengths of the
other two sides:

For independent random variables (only), the
square of the standard deviation of their sum is
the sum of the squares of their standard
deviations:

It’s simpler to write this with variances:

For independent random variables, X and Y,
Var (X + Y ) = Var (X ) + Var(Y ).

SD2(X + Y ) = SD 2(X ) + SD 2(Y ).

c 2
= a 2

+ b 2.

c
b 

a
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Working with differencesFOR EXAMPLE

Recap: The Lucky Lovers discount at the Quiet Nook averages $5.83 with a standard deviation of $8.62. Just up the street, the Wise Fool restaurant
has a competing Lottery of Love promotion. There a couple can select a specially prepared chocolate from a large bowl and unwrap it to learn the size of
their discount. The restaurant’s manager says the discounts vary with an average of $10.00 and a standard deviation of $15.00.

Question: How much more can you expect to save at the Wise Fool? With what standard deviation?

Let at the Wise Fool, discount at the Quiet Nook, and difference: . These
are different promotions at separate restaurants, so the outcomes are independent.

Discounts at the Wise Fool will average $4.17 more than at the Quiet Nook, with a standard deviation of $17.30.

 L $17.30
 = 2152

+ 8.622
 = 1Var(W ) + Var(X )

 SD(W - X ) = 1Var(W - X )
 E(W - X ) = E(W ) - E(X) = 10.00 - 5.83 = $4.17

D = W - XD = theX = theW = discount

For random variables, does ? Maybe, but be careful. As
we’ve just seen, insuring one person for $30,000 is not the same risk as insuring
three people for $10,000 each. When each instance represents a different outcome
for the same random variable, it’s easy to fall into the trap of writing all of them with
the same symbol. Don’t make this common mistake. Make sure you write each in-
stance as a different random variable. Just because each random variable describes
a similar situation doesn’t mean that each random outcome will be the same.

These are random variables, not the variables you saw in Algebra. Being random,
they take on different values each time they’re evaluated. So what you really mean
is . Written this way, it’s clear that the sum shouldn’t necessarily
equal 3 times anything.

X1 + X2 + X3

X � X � X = 3X

Summing a series of outcomesFOR EXAMPLE

Recap: The Quiet Nook’s Lucky Lovers promotion offers couples discounts averaging $5.83 with a standard deviation of $8.62. The restaurant owner
is planning to serve 40 couples on Valentine’s Day.

Question: What’s the expected total of the discounts the owner will give? With what standard deviation?

Let , , , . . . , represent the discounts to the 40 couples, and T the total of all the discounts. Then:

Reshuffling cards between couples makes the discounts independent, so:

The restaurant owner can expect the 40 couples to win discounts totaling $233.20, with a standard deviation of $54.52.

 L $54.52
 = 28.622

+ 8.622
+ 8.622

+
Á

+ 8.622

 = 1Var(X1) + Var(X2) + Var(X3) +
Á

+ Var(X40)

 SD(T) = 1Var(X1 + X2 + X3 +
Á

+ X40)

 = $233.20
 = 5.83 + 5.83 + 5.83 +

Á
+ 5.83

 = E(X1) + E(X2) + E(X3) +
Á

+ E(X40)
 E(T ) = E(X1 + X2 + X3 +

Á
+ X40)

 T = X1 + X2 + X3 +
Á

+ X40

X40X3X2X1
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JUST CHECKING
2. Suppose the time it takes a customer to get and pay for seats at the ticket window of a baseball park

is a random variable with a mean of 100 seconds and a standard deviation of 50 seconds. When you
get there, you find only two people in line in front of you.
a) How long do you expect to wait for your turn to get tickets?
b) What’s the standard deviation of your wait time?
c) What assumption did you make about the two customers in finding the standard deviation?

You’re planning to spend next year wandering
through the mountains of Kyrgyzstan.You plan
to sell your used SUV so you can purchase an
off-road Honda motor scooter when you get
there. Used SUVs of the year and mileage of
yours are selling for a mean of $6940 with a
standard deviation of $250. Your research
shows that scooters in Kyrgyzstan are going
for about 65,000 Kyrgyzstan som with a stan-
dard deviation of 500 som. One U.S. dollar is
worth about 38.5 Kyrgyzstan som (38 som and
50 tylyn).

Question: How much cash can you expect to
pocket after you sell your SUV and buy the
scooter?

Hitting the Road: Means and VariancesSTEP-BY-STEP EXAMPLE

I want to model how much money I’d have (in
som) after selling my SUV and buying the
scooter.

Plan State the problem.

✔ Independence Assumption: The prices are 
independent.

 D = 38.5A - B

 D = profit (in som)
 B = price of a scooter (in som), and

 Let A = sale price of my SUV (in dollars),Variables Define the random variables.

Write an appropriate equation.
Think about the assumptions.

 E(D) = 202,190 som
 = 38.5(6,940) - (65,000)
 = 38.5E(A) - E(B)

 E(D) = E(38.5A - B)Mechanics Find the expected value, 
using the appropriate rules.
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Since sale and purchase prices are 
independent,

 Var(D) = 92,890,625
 = 1482.25(250)2

+ (500)2
 = (38.5)2Var(A) + Var(B)
 = Var(38.5A) + Var(B)

 Var(D) = Var(38.5A - B)

Find the variance, using the appropriate
rules. Be sure to check the assumptions
first!

som SD(D) = 192,890,625 = 9637.98Find the standard deviation.

I can expect to clear about 202,190 som
($5252) with a standard deviation of 9638
som ($250).

Conclusion Interpret your results in
context. (Here that means talking about
dollars.)

Given the initial cost estimates, the mean
and standard deviation seem reasonable.

REALITY CHECK

Continuous Random Variables
A company manufactures small stereo systems. At the end of the production line,
the stereos are packaged and prepared for shipping. Stage 1 of this process is called
“packing.” Workers must collect all the system components (a main unit, two
speakers, a power cord, an antenna, and some wires), put each in plastic bags, and
then place everything inside a protective styrofoam form. The packed form then
moves on to Stage 2, called “boxing.” There, workers place the form and a packet
of instructions in a cardboard box, close it, then seal and label the box for shipping.

The company says that times required for the packing stage can be described
by a Normal model with a mean of 9 minutes and standard deviation of 1.5 min-
utes. The times for the boxing stage can also be modeled as Normal, with a mean
of 6 minutes and standard deviation of 1 minute.

This is a common way to model events. Do our rules for random variables ap-
ply here? What’s different? We no longer have a list of discrete outcomes, with
their associated probabilities. Instead, we have continuous random variables that
can take on any value. Now any single value won’t have a probability. We saw
this back in Chapter 6 when we first saw the Normal model (although we didn’t
talk then about “random variables” or “probability”). We know that the probabil-
ity that doesn’t make sense, but we can talk about the probability that z
lies between 0.5 and 1.5. For a Normal random variable, the probability that it falls
within an interval is just the area under the Normal curve over that interval.

Some continuous random variables have Normal models; others may be
skewed, uniform, or bimodal. Regardless of shape, all continuous random vari-
ables have means (which we also call expected values) and variances. In this book
we won’t worry about how to calculate them, but we can still work with models
for continuous random variables when we’re given these parameters.

The good news is that nearly everything we’ve said about how discrete ran-
dom variables behave is true of continuous random variables, as well. When two
independent continuous random variables have Normal models, so does their
sum or difference. This simple fact is a special property of Normal models and is
very important. It allows us to apply our knowledge of Normal probabilities to
questions about the sum or difference of independent random variables.

z = 1.5

Activity: Numeric
Outcomes. You’ve seen how to
simulate discrete random
outcomes. There’s a tool for
simulating continuous outcomes,
too.

Activity: Means of
Random Variables. Experiment
with continuous random
variables to learn how their
expected values behave.
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Consider the company that manufactures and ships small stereo systems that we
just discussed.

Recall that times required to pack the stereos can be described by a Normal
model with a mean of 9 minutes and standard deviation of 1.5 minutes. The times
for the boxing stage can also be modeled as Normal, with a mean of 6 minutes and
standard deviation of 1 minute.

Questions:

1. What is the probability that packing two consecutive systems takes over 20 minutes?
2. What percentage of the stereo systems take longer to pack than to box?

Question 1: What is the probability that packing two consecutive systems takes over 20 minutes?

Packaging StereosSTEP-BY-STEP EXAMPLE

I want to estimate the probability that packing
two consecutive systems takes over 20 minutes.

✔ Normal Model Assumption: We are told
that both random variables follow Normal
models.

✔ Independence Assumption: We can rea-
sonably assume that the two packing
times are independent.

T = P1 + P2

 T = total time to pack two systems
 P2 = time for packing the second

 Let P1 = time for packing the first system

Plan State the problem.

Variables Define your random variables.

Write an appropriate equation.

Think about the assumptions. Sums of 
independent Normal random variables
follow a Normal model. Such simplicity
isn’t true in general.

Since the times are independent,

I’ll model T with N (18, 2.12).

SD(T ) = 14.50 L 2.12 minutes

Var(T) = 4.50
= 1.52

+ 1.52
= Var(P1) + Var(P2)

Var(T) = Var(P1 + P2)

 = 9 + 9 = 18 minutes
 = E(P1) + E(P2)

 E(T ) = E(P1 + P2)Mechanics Find the expected value.

For sums of independent random vari-
ables, variances add. (We don’t need the
variables to be Normal for this to be
true—just independent.)

Find the standard deviation.

Now we use the fact that both random
variables follow Normal models to say
that their sum is also Normal.
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 = 9 - 6 = 3 minutes
 = E(P) - E(B)

 E(D) = E(P - B)Mechanics Find the expected value.

I want to estimate the percentage of the
stereo systems that take longer to pack than
to box.

Plan State the question.

P(T 7 20) = P(z 7 0.94) = 0.1736

z =

20 - 18
2.12

= 0.94

Sketch a picture of the Normal model for
the total time, shading the region repre-
senting over 20 minutes.

Find the z-score for 20 minutes.

Use technology or Table Z to find the
probability.

There’s a little more than a 17% chance that it
will take a total of over 20 minutes to pack two
consecutive stereo systems.

Conclusion Interpret your result in 
context.

18 20

0.94

Question 2: What percentage of the stereo systems take longer to pack than to box?

D difference in times to pack and box 
a system

D = P - B

=

B = time for boxing a system
Let P = time for packing a systemVariables Define your random variables.

The probability that it takes longer to pack
than to box a system is the probability that
the difference is greater than zero.P - B

Write an appropriate equation.

✔ Normal Model Assumption: We are told
that both random variables follow Normal
models.

✔ Independence Assumption: We can as-
sume that the times it takes to pack and
to box a system are independent.

What are we trying to find? Notice that
we can tell which of two quantities is
greater by subtracting and asking whether
the difference is positive or negative.

Don’t forget to think about the 
assumptions.
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About 95% of all the stereo systems will require
more time for packing than for boxing.

Conclusion Interpret your result in 
context.

Since the times are independent,

I’ll model D with N (3, 1.80)

 SD(D) = 13.25 L 1.80 minutes

 Var(D) = 3.25
 = 1.52

+ 12
 = Var(P) + Var(B)

 Var(D) = Var(P - B)
For the difference of independent random
variables, variances add.

 P(D 7 0) = P(z 7 - 1.67) = 0.9525

 z =

0 - 3
1.80

= - 1.67

Find the standard deviation.

State what model you will use.

Sketch a picture of the Normal model for
the difference in times, and shade the re-
gion representing a difference greater
than zero.

30

–1.67

Find the z-score for 0 minutes, then 
use Table Z or technology to find the
probability.

WHAT CAN GO WRONG?
u Probability models are still just models. Models can be useful, but they are not reality.

Think about the assumptions behind your models. Are your dice really perfectly
fair? (They are probably pretty close.) But when you hear that the probability of a
nuclear accident is 1/10,000,000 per year, is that likely to be a precise value? Ques-
tion probabilities as you would data.

u If the model is wrong, so is everything else. Before you try to find the mean or standard
deviation of a random variable, check to make sure the probability model is reason-
able. As a start, the probabilities in your model should add up to 1. If not, you may
have calculated a probability incorrectly or left out a value of the random variable.
For instance, in the insurance example, the description mentions only death and dis-
ability. Good health is by far the most likely outcome, not to mention the best for
both you and the insurance company (who gets to keep your money). Don’t over-
look that.

u Don’t assume everything’s Normal. Just because a random variable is continuous or you
happen to know a mean and standard deviation doesn’t mean that a Normal model
will be useful. You must Think about whether the Normality Assumption is justi-
fied. Using a Normal model when it really does not apply will lead to wrong answers
and misleading conclusions.
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2 Although some students do manage to attain a state of consciousness somewhere be-
tween sleeping and wakefulness during Statistics class.

To find the expected value of the sum or difference of random variables, we
simply add or subtract means. Center is easy; spread is trickier. Watch out for
some common traps.

u Watch out for variables that aren’t independent. You can add expected values of any two
random variables, but you can only add variances of independent random variables.
Suppose a survey includes questions about the number of hours of sleep people get
each night and also the number of hours they are awake each day. From their an-
swers, we find the mean and standard deviation of hours asleep and hours awake.
The expected total must be 24 hours; after all, people are either asleep or awake.2

The means still add just fine. Since all the totals are exactly 24 hours, however, the
standard deviation of the total will be 0. We can’t add variances here because the
number of hours you’re awake depends on the number of hours you’re asleep. Be
sure to check for independence before adding variances.

u Don’t forget: Variances of independent random variables add. Standard deviations don’t.

u Don’t forget: Variances of independent random variables add, even when you’re looking at the
difference between them.

u Don’t write independent instances of a random variable with notation that looks like they are
the same variables. Make sure you write each instance as a different random variable.
Just because each random variable describes a similar situation doesn’t mean that
each random outcome will be the same. These are random variables, not the variables
you saw in Algebra. Write rather than .X + X + XX1 + X2 + X3

CONNECTIONS
We’ve seen means, variances, and standard deviations of data. We know that they estimate parame-
ters of models for these data. Now we’re looking at the probability models directly. We have only
parameters because there are no data to summarize.

It should be no surprise that expected values and standard deviations adjust to shifts and
changes of units in the same way as the corresponding data summaries. The fact that we can add
variances of independent random quantities is fundamental and will explain why a number of sta-
tistical methods work the way they do.

We’ve learned to work with random variables. We can use the probability model for a discrete ran-
dom variable to find its expected value and its standard deviation.

We’ve learned that the mean of the sum or difference of two random variables, discrete or continu-
ous, is just the sum or difference of their means. And we’ve learned the Pythagorean Theorem of
Statistics: For independent random variables, the variance of their sum or difference is always the
sum of their variances.

Finally, we’ve learned that Normal models are once again special. Sums or differences of Normally
distributed random variables also follow Normal models.

WHAT HAVE WE LEARNED?
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Terms
Random variable 366. A random variable assumes any of several different numeric values as a result of some ran-

dom event. Random variables are denoted by a capital letter such as X.

Discrete random variable 366. A random variable that can take one of a finite number3 of distinct outcomes is called a dis-
crete random variable.

Continuous random variable 366, 367. A random variable that can take any numeric value within a range of values is called a
continuous random variable. The range may be infinite or bounded at either or both ends.

Probability model 366. The probability model is a function that associates a probability P with each value of a dis-
crete random variable X, denoted or with any interval of values of a continuous random
variable.

Expected value 367. The expected value of a random variable is its theoretical long-run average value, the center of
its model. Denoted or E(X), it is found (if the random variable is discrete) by summing the prod-
ucts of variable values and probabilities:

Variance 369. The variance of a random variable is the expected value of the squared deviation from the
mean. For discrete random variables, it can be calculated as:

Standard deviation 369. The standard deviation of a random variable describes the spread in the model, and is the
square root of the variance:

Changing a random 372.
variable by a constant: 373.

Adding or subtracting 373.
random variables: 374. If X and Y are independent,

374. (The Pythagorean Theorem of Statistics)

Skills
u Be able to recognize random variables.

u Understand that random variables must be independent in order to determine the variability of
their sum or difference by adding variances.

u Be able to find the probability model for a discrete random variable.

u Know how to find the mean (expected value) and the variance of a random variable.

u Always use the proper notation for these population parameters: or E(X) for the mean, and ,
SD(X), , or Var(X) when discussing variability.

u Know how to determine the new mean and standard deviation after adding a constant, multiply-
ing by a constant, or adding or subtracting two independent random variables.

u Be able to interpret the meaning of the expected value and standard deviation of a random vari-
able in the proper context.

s2
sm

Var(X ; Y) = Var(X) + Var(Y).
E(X ; Y) = E(X) ; E(Y)

Var(aX) = a2Var(X)E(aX) = aE(X)
Var(X ; c) = Var(X)E(X ; c) = E(X) ; c

s = SD(X) = 1Var(X).

s2
= Var(X) = a (x - m)2P(x).

m = E(X) = axP(x).

m

P(X = x),

3 Technically, there could be an infinite number of outcomes, as long as they’re countable.
Essentially that means we can imagine listing them all in order, like the counting numbers
1, 2, 3, 4, 5, . . .
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RANDOM VARIABLES ON THE COMPUTER

Statistics packages deal with data, not with random variables. Nevertheless, the calculations needed to find
means and standard deviations of random variables are little more than weighted means. Most packages can
manage that, but then they are just being overblown calculators. For technological assistance with these
calculations, we recommend you pull out your calculator.

EXERCISES

1. Expected value. Find the expected value of each ran-
dom variable:

a)

b)

a) Create a probability model for this carnival game.
b) Find the expected number of darts you’ll throw.
c) Find your expected winnings.

7. Software. A small software company bids on two con-
tracts. It anticipates a profit of $50,000 if it gets the larger
contract and a profit of $20,000 on the smaller contract.
The company estimates there’s a 30% chance it will get
the larger contract and a 60% chance it will get the
smaller contract. Assuming the contracts will be awarded
independently, what’s the expected profit?

8. Racehorse. A man buys a racehorse for $20,000 and en-
ters it in two races. He plans to sell the horse afterward,
hoping to make a profit. If the horse wins both races, its
value will jump to $100,000. If it wins one of the races,
it will be worth $50,000. If it loses both races, it will be
worth only $10,000. The man believes there’s a 20%
chance that the horse will win the first race and a 30%
chance it will win the second one. Assuming that the
two races are independent events, find the man’s ex-
pected profit.

9. Variation 1. Find the standard deviations of the ran-
dom variables in Exercise 1.

10. Variation 2. Find the standard deviations of the ran-
dom variables in Exercise 2.

11. Pick another card. Find the standard deviation of the
amount you might win drawing a card in Exercise 3.

12. The die. Find the standard deviation of the amount
you might win rolling a die in Exercise 4.

13. Kids again. Find the standard deviation of the number
of children the couple in Exercise 5 may have.

14. Darts. Find the standard deviation of your winnings
throwing darts in Exercise 6.

15. Repairs. The probability model below describes the
number of repair calls that an appliance repair shop may
receive during an hour.

x 10 20 30
P(X = x) 0.3 0.5 0.2

x 2 4 6 8
P(X = x) 0.3 0.4 0.2 0.1

2. Expected value. Find the expected value of each ran-
dom variable:

a)

b)

x 0 1 2
P(X = x) 0.2 0.4 0.4

x 100 200 300 400
P(X = x) 0.1 0.2 0.5 0.2

3. Pick a card, any card. You draw a card from a deck. If
you get a red card, you win nothing. If you get a spade,
you win $5. For any club, you win $10 plus an extra $20
for the ace of clubs.
a) Create a probability model for the amount you win.
b) Find the expected amount you’ll win.
c) What would you be willing to pay to play this game?

4. You bet! You roll a die. If it comes up a 6, you win $100.
If not, you get to roll again. If you get a 6 the second time,
you win $50. If not, you lose.
a) Create a probability model for the amount you win.
b) Find the expected amount you’ll win.
c) What would you be willing to pay to play this game?

5. Kids. A couple plans to have children until they get a
girl, but they agree that they will not have more than
three children even if all are boys. (Assume boys and girls
are equally likely.)
a) Create a probability model for the number of children

they might have.
b) Find the expected number of children.
c) Find the expected number of boys they’ll have.

6. Carnival. A carnival game offers a $100 cash prize for
anyone who can break a balloon by throwing a dart at it.
It costs $5 to play, and you’re willing to spend up to $20
trying to win. You estimate that you have about a 10%
chance of hitting the balloon on any throw.

Repair Calls 0 1 2 3
Probability 0.1 0.3 0.4 0.2

a) How many calls should the shop expect per hour?
b) What is the standard deviation?
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16. Red lights. A commuter must pass through five traffic
lights on her way to work and will have to stop at each
one that is red. She estimates the probability model for
the number of red lights she hits, as shown below.

22. Contracts. Your company bids for two contracts. You
believe the probability you get contract #1 is 0.8. If you
get contract #1, the probability you also get contract #2
will be 0.2, and if you do not get #1, the probability you
get #2 will be 0.3.
a) Are the two contracts independent? Explain.
b) Find the probability you get both contracts.
c) Find the probability you get no contract.
d) Let X be the number of contracts you get. Find the

probability model for X.
e) Find the expected value and standard deviation.

23. Batteries. In a group of 10 batteries, 3 are dead. You
choose 2 batteries at random.
a) Create a probability model for the number of good

batteries you get.
b) What’s the expected number of good ones you get?
c) What’s the standard deviation?

24. Kittens. In a litter of seven kittens, three are female.
You pick two kittens at random.
a) Create a probability model for the number of male kit-

tens you get.
b) What’s the expected number of males?
c) What’s the standard deviation?

25. Random variables. Given independent random vari-
ables with means and standard deviations as shown, find
the mean and standard deviation of:
a) 3X
b)
c)
d)
e)

26. Random variables. Given independent random vari-
ables with means and standard deviations as shown, find
the mean and standard deviation of:
a)
b) 0.5Y
c)
d)
e)

27. Random variables. Given independent random vari-
ables with means and standard deviations as shown, find
the mean and standard deviation of:
a) 0.8Y
b)
c)
d)
e)

28. Random variables. Given independent random vari-
ables with means and standard deviations as shown, find
the mean and standard deviation of:
a)
b) 3X
c)
d)
e)

29. Eggs. A grocery supplier believes that in a dozen eggs,
the mean number of broken ones is 0.6 with a standard

X1 + X2 + X3

X - 5Y
0.25X + Y

2Y + 20

Y1 + Y2

3X - Y
X + 2Y
2X - 100

Y1 + Y2

X - Y
X + Y

X - 20

X1 + X2

X - Y
X + Y
Y + 6

a) How many red lights should she expect to hit each day?
b) What’s the standard deviation?

17. Defects. A consumer organization inspecting new 
cars found that many had appearance defects (dents,
scratches, paint chips, etc.). While none had more than
three of these defects, 7% had three, 11% two, and 21%
one defect. Find the expected number of appearance de-
fects in a new car and the standard deviation.

18. Insurance. An insurance policy costs $100 and will pay
policyholders $10,000 if they suffer a major injury (result-
ing in hospitalization) or $3000 if they suffer a minor in-
jury (resulting in lost time from work). The company esti-
mates that each year 1 in every 2000 policyholders may
have a major injury, and 1 in 500 a minor injury only.
a) Create a probability model for the profit on a policy.
b) What’s the company’s expected profit on this policy?
c) What’s the standard deviation?

19. Cancelled flights. Mary is deciding whether to book
the cheaper flight home from college after her final ex-
ams, but she’s unsure when her last exam will be. She
thinks there is only a 20% chance that the exam will be
scheduled after the last day she can get a seat on the
cheaper flight. If it is and she has to cancel the flight, she
will lose $150. If she can take the cheaper flight, she will
save $100.
a) If she books the cheaper flight, what can she expect to

gain, on average?
b) What is the standard deviation?

20. Day trading. An option to buy a stock is priced at $200.
If the stock closes above 30 on May 15, the option will be
worth $1000. If it closes below 20, the option will be
worth nothing, and if it closes between 20 and 30 (inclu-
sively), the option will be worth $200. A trader thinks
there is a 50% chance that the stock will close in the 20–30
range, a 20% chance that it will close above 30, and a 30%
chance that it will fall below 20 on May 15.
a) Should she buy the stock option?
b) How much does she expect to gain?
c) What is the standard deviation of her gain?

21. Contest. You play two games against the same oppo-
nent. The probability you win the first game is 0.4. If you
win the first game, the probability you also win the sec-
ond is 0.2. If you lose the first game, the probability that
you win the second is 0.3.
a) Are the two games independent? Explain.
b) What’s the probability you lose both games?
c) What’s the probability you win both games?
d) Let random variable X be the number of games you

win. Find the probability model for X.
e) What are the expected value and standard deviation?

X = # of red 0 1 2 3 4 5
P (X = x) 0.05 0.25 0.35 0.15 0.15 0.05

Mean SD

X 10 2
Y 20 5

Mean SD

X 80 12
Y 12 3

Mean SD

X 80 12
Y 12 3

Mean SD

X 120 12
Y 300 16 
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deviation of 0.5 eggs. You buy 3 dozen eggs without
checking them.
a) How many broken eggs do you expect to get?
b) What’s the standard deviation?
c) What assumptions did you have to make about the

eggs in order to answer this question?

30. Garden. A company selling vegetable seeds in packets
of 20 estimates that the mean number of seeds that will
actually grow is 18, with a standard deviation of 1.2
seeds. You buy 5 different seed packets.
a) How many bad seeds do you expect to get?
b) What’s the standard deviation?
c) What assumptions did you make about the seeds? Do

you think that assumption is warranted? Explain.

31. Repair calls. Find the mean and standard deviation of
the number of repair calls the appliance shop in Exercise 15
should expect during an 8-hour day.

32. Stop! Find the mean and standard deviation of the
number of red lights the commuter in Exercise 16 should
expect to hit on her way to work during a 5-day work
week.

33. Tickets. A delivery company’s trucks occasionally get
parking tickets, and based on past experience, the com-
pany plans that the trucks will average 1.3 tickets a
month, with a standard deviation of 0.7 tickets.
a) If they have 18 trucks, what are the mean and stan-

dard deviation of the total number of parking tickets
the company will have to pay this month?

b) What assumption did you make in answering?

34. Donations. Organizers of a televised fundraiser know
from past experience that most people donate small
amounts ($10–$25), some donate larger amounts
($50–$100), and a few people make very generous dona-
tions of $250, $500, or more. Historically, pledges average
about $32 with a standard deviation of $54.
a) If 120 people call in pledges, what are the mean and

standard deviation of the total amount raised?
b) What assumption did you make in answering this

question?

35. Fire! An insurance company estimates that it should
make an annual profit of $150 on each homeowner’s pol-
icy written, with a standard deviation of $6000.
a) Why is the standard deviation so large?
b) If it writes only two of these policies, what are the

mean and standard deviation of the annual profit?
c) If it writes 10,000 of these policies, what are the mean

and standard deviation of the annual profit?
d) Is the company likely to be profitable? Explain.
e) What assumptions underlie your analysis? Can you

think of circumstances under which those assump-
tions might be violated? Explain.

36. Casino. A casino knows that people play the slot ma-
chines in hopes of hitting the jackpot but that most of
them lose their dollar. Suppose a certain machine pays out
an average of $0.92, with a standard deviation of $120.
a) Why is the standard deviation so large?
b) If you play 5 times, what are the mean and standard

deviation of the casino’s profit?

c) If gamblers play this machine 1000 times in a day,
what are the mean and standard deviation of the
casino’s profit?

d) Is the casino likely to be profitable? Explain.

37. Cereal. The amount of cereal that can be poured into a
small bowl varies with a mean of 1.5 ounces and a stan-
dard deviation of 0.3 ounces. A large bowl holds a mean
of 2.5 ounces with a standard deviation of 0.4 ounces. You
open a new box of cereal and pour one large and one
small bowl.
a) How much more cereal do you expect to be in the

large bowl?
b) What’s the standard deviation of this difference?
c) If the difference follows a Normal model, what’s the

probability the small bowl contains more cereal than
the large one?

d) What are the mean and standard deviation of the total
amount of cereal in the two bowls?

e) If the total follows a Normal model, what’s the proba-
bility you poured out more than 4.5 ounces of cereal in
the two bowls together?

f) The amount of cereal the manufacturer puts in the
boxes is a random variable with a mean of 16.3 ounces
and a standard deviation of 0.2 ounces. Find the ex-
pected amount of cereal left in the box and the
standard deviation.

38. Pets. The American Veterinary Association claims that
the annual cost of medical care for dogs averages $100,
with a standard deviation of $30, and for cats averages
$120, with a standard deviation of $35.
a) What’s the expected difference in the cost of medical

care for dogs and cats?
b) What’s the standard deviation of that difference?
c) If the costs can be described by Normal models,

what’s the probability that medical expenses are
higher for someone’s dog than for her cat?

d) What concerns do you have?

39. More cereal. In Exercise 37 we poured a large and a
small bowl of cereal from a box. Suppose the amount of
cereal that the manufacturer puts in the boxes is a ran-
dom variable with mean 16.2 ounces and standard devia-
tion 0.1 ounces.
a) Find the expected amount of cereal left in the box.
b) What’s the standard deviation?
c) If the weight of the remaining cereal can be described

by a Normal model, what’s the probability that the
box still contains more than 13 ounces?

40. More pets. You’re thinking about getting two dogs and
a cat. Assume that annual veterinary expenses are inde-
pendent and have a Normal model with the means and
standard deviations described in Exercise 38.
a) Define appropriate variables and express the total an-

nual veterinary costs you may have.
b) Describe the model for this total cost. Be sure to spec-

ify its name, expected value, and standard deviation.
c) What’s the probability that your total expenses will

exceed $400?

41. Medley. In the medley relay event, four swim-
mers swim 100 yards, each using a different stroke. A

4 * 100
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Phase Mean SD

Unpacking 3.5 0.7
Assembly 21.8 2.4
Tuning 12.3 2.7
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college team preparing for the conference championship
looks at the times their swimmers have posted and cre-
ates a model based on the following assumptions:
• The swimmers’ performances are independent.
• Each swimmer’s times follow a Normal model.
• The means and standard deviations of the times (in

seconds) are as shown:

44. Bike sale. The bicycle shop in Exercise 42 will be offer-
ing 2 specially priced children’s models at a sidewalk
sale. The basic model will sell for $120 and the deluxe
model for $150. Past experience indicates that sales of the
basic model will have a mean of 5.4 bikes with a standard
deviation of 1.2, and sales of the deluxe model will have a
mean of 3.2 bikes with a standard deviation of 0.8 bikes.
The cost of setting up for the sidewalk sale is $200.
a) Define random variables and use them to express the

bicycle shop’s net income.
b) What’s the mean of the net income?
c) What’s the standard deviation of the net income?
d) Do you need to make any assumptions in calculating

the mean? How about the standard deviation?

45. Coffee and doughnuts. At a certain coffee shop,
all the customers buy a cup of coffee; some also buy a
doughnut. The shop owner believes that the number
of cups he sells each day is normally distributed with a
mean of 320 cups and a standard deviation of 20 cups. He
also believes that the number of doughnuts he sells each
day is independent of the coffee sales and is normally
distributed with a mean of 150 doughnuts and a standard
deviation of 12.
a) The shop is open every day but Sunday. Assuming

day-to-day sales are independent, what’s the probabil-
ity he’ll sell over 2000 cups of coffee in a week?

b) If he makes a profit of 50 cents on each cup of coffee
and 40 cents on each doughnut, can he reasonably ex-
pect to have a day’s profit of over $300? Explain.

c) What’s the probability that on any given day he’ll sell
a doughnut to more than half of his coffee customers?

46. Weightlifting. The Atlas BodyBuilding Company
(ABC) sells “starter sets” of barbells that consist of one bar,
two 20-pound weights, and four 5-pound weights. The
bars weigh an average of 10 pounds with a standard devi-
ation of 0.25 pounds. The weights average the specified
amounts, but the standard deviations are 0.2 pounds for
the 20-pounders and 0.1 pounds for the 5-pounders. We
can assume that all the weights are normally distributed.
a) ABC ships these starter sets to customers in two

boxes: The bar goes in one box and the six weights go
in another. What’s the probability that the total weight
in that second box exceeds 60.5 pounds? Define your
variables clearly and state any assumptions you make.

b) It costs ABC $0.40 per pound to ship the box contain-
ing the weights. Because it’s an odd-shaped package,
though, shipping the bar costs $0.50 a pound plus a
$6.00 surcharge. Find the mean and standard deviation
of the company’s total cost for shipping a starter set.

c) Suppose a customer puts a 20-pound weight at one
end of the bar and the four 5-pound weights at the
other end. Although he expects the two ends to weigh
the same, they might differ slightly. What’s the proba-
bility the difference is more than a quarter of a pound?

a) What are the mean and standard deviation for the re-
lay team’s total time in this event?

b) The team’s best time so far this season was 3:19.48.
(That’s 199.48 seconds.) Do you think the team is
likely to swim faster than this at the conference cham-
pionship? Explain.

42. Bikes. Bicycles arrive at a bike shop in boxes. Before
they can be sold, they must be unpacked, assembled, and
tuned (lubricated, adjusted, etc.). Based on past experi-
ence, the shop manager makes the following assumptions
about how long this may take:
• The times for each setup phase are independent.
• The times for each phase follow a Normal model.
• The means and standard deviations of the times (in

minutes) are as shown:

Swimmer Mean SD

1 (backstroke) 50.72 0.24
2 (breaststroke) 55.51 0.22
3 (butterfly) 49.43 0.25
4 (freestyle) 44.91 0.21

a) What are the mean and standard deviation for the 
total bicycle setup time?

b) A customer decides to buy a bike like one of the dis-
play models but wants a different color. The shop has
one, still in the box. The manager says they can have it
ready in half an hour. Do you think the bike will be set
up and ready to go as promised? Explain.

43. Farmers’ market. A farmer has 100 lb of apples and 
50 lb of potatoes for sale. The market price for apples (per
pound) each day is a random variable with a mean of 0.5
dollars and a standard deviation of 0.2 dollars. Similarly,
for a pound of potatoes, the mean price is 0.3 dollars and
the standard deviation is 0.1 dollars. It also costs him 2
dollars to bring all the apples and potatoes to the market.
The market is busy with eager shoppers, so we can as-
sume that he’ll be able to sell all of each type of produce
at that day’s price.
a) Define your random variables, and use them to ex-

press the farmer’s net income.
b) Find the mean.
c) Find the standard deviation of the net income.
d) Do you need to make any assumptions in calculating

the mean? How about the standard deviation?
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JUST CHECKING
Answers

1. a)

b)
c) Car owners with this problem will spend an aver-

age of $95 to get it fixed.

2. a) seconds
b) seconds
c) The times for the two customers are independent.

2502
+ 502

= 70.7
100 + 100 = 200

60(0.75) + 200(0.25) = $95

Outcome X = cost Probability

Recharging
works

$60 0.75

Replace 
control unit

$200 0.25
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CHAPTER

17
Probability 
Models

Suppose a cereal manufacturer puts pictures of famous athletes on cards in boxes of
cereal, in the hope of increasing sales. The manufacturer announces that 20% of
the boxes contain a picture of Tiger Woods, 30% a picture of David Beckham, and
the rest a picture of Serena Williams.

Sound familiar? In Chapter 11 we simulated to find the number of boxes we’d
need to open to get one of each card. That’s a fairly complex question and one
well suited for simulation. But many important questions can be answered more
directly by using simple probability models.

Searching for Tiger
You’re a huge Tiger Woods fan. You don’t care about completing the whole sports
card collection, but you’ve just got to have the Tiger Woods picture. How many
boxes do you expect you’ll have to open before you find him? This isn’t the same
question that we asked before, but this situation is simple enough for a probabil-
ity model.

We’ll keep the assumption that pictures are distributed at random and we’ll
trust the manufacturer’s claim that 20% of the cards are Tiger. So, when you open
the box, the probability that you succeed in finding Tiger is 0.20. Now we’ll call
the act of opening each box a trial, and note that:

u There are only two possible outcomes (called success and failure) on each trial.
Either you get Tiger’s picture (success), or you don’t (failure).

u In advance, the probability of success, denoted p, is the same on every trial.
Here for each box.

u As we proceed, the trials are independent. Finding Tiger in the first box does
not change what might happen when you reach for the next box.

Situations like this occur often, and are called Bernoulli trials. Common exam-
ples of Bernoulli trials include tossing a coin, looking for defective products rolling
off an assembly line, or even shooting free throws in a basketball game. Just as we
found equally likely random digits to be the building blocks for our simulation, we
can use Bernoulli trials to build a wide variety of useful probability models.

p = 0.20
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Back to Tiger. We want to know how many boxes we’ll need to open to find
his card. Let’s call this random variable boxes, and build a probability
model for it. What’s the probability you find his picture in the first box of cereal?
It’s 20%, of course. We could write .

How about the probability that you don’t find Tiger until the second box?
Well, that means you fail on the first trial and then succeed on the second. With the
probability of success 20%, the probability of failure, denoted q, is .
Since the trials are independent, the probability of getting your first success on the
second trial is .

Of course, you could have a run of bad luck. Maybe you won’t find Tiger un-
til the fifth box of cereal. What are the chances of that? You’d have to fail 4 straight
times and then succeed, so .

How many boxes might you expect to have to open? We could reason that
since Tiger’s picture is in 20% of the boxes, or 1 in 5, we expect to find his picture,
on average, in the fifth box; that is, boxes. That’s correct, but not
easy to prove.

The Geometric Model
We want to model how long it will take to achieve the first success in a series of
Bernoulli trials. The model that tells us this probability is called the Geometric
probability model. Geometric models are completely specified by one parameter,
p, the probability of success, and are denoted Geom(p). Since achieving the first
success on trial number x requires first experiencing failures, the probabili-
ties are easily expressed by a formula.

x - 1

E1Y2 =
1

0.2 = 5

P1Y = 52 = 10.82410.22 = 0.08192

P1Y = 22 = 10.8210.22 = 0.16

1 - 0.2 = 80%

P1Y = 12 = 0.20

Y = #

Daniel Bernoulli (1700–1782) was the
nephew of Jacob, whom you saw in
Chapter 14. He was the first to work
out the mathematics for what we now
call Bernoulli trials.

Calvin and Hobbes © 1993 Watterson. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. 
All rights reserved.

Activity: Bernoulli Trials.
Guess what! We’ve been
generating Bernoulli trials all
along. Look at the Random
Simulation Tool in a new way.

GEOMETRIC PROBABILITY MODEL FOR BERNOULLI TRIALS: Geom(p)
p probability of success (and of failure)
X number of trials until the first success occurs

Expected value: 

Standard deviation: s = A
q

p2

E1X2 = m =

1
p

P1X = x2 = qx-1
 p

=

q = 1 - p = probability=

NOTATION ALERT:

Now we have two more
reserved letters. Whenever we
deal with Bernoulli trials, p
represents the probability of
success, and q the probability of
failure. (Of course, .)q = 1 - p

Geometric probabilities. See what
happens to a geometric model 
as you change the probability of
success.

BOCK_C17_0321570448 pp3.qxd  12/1/08  3:32 PM  Page 389



390 CHAPTER 17    Probability Models

Spam and the Geometric modelFOR EXAMPLE

Postini is a global company specializing in communications security. The company monitors over 1 billion Internet messages per day and recently 
reported that 91% of e-mails are spam!

Let’s assume that your e-mail is typical—91% spam. We’ll also assume you aren’t using a spam filter, so every message gets dumped in your 
inbox. And, since spam comes from many different sources, we’ll consider your messages to be independent.

Questions: Overnight your inbox collects e-mail. When you first check your e-mail in the morning, about how many spam e-mails should you expect 
to have to wade through and discard before you find a real message? What’s the probability that the 4th message in your inbox is the first one that 
isn’t spam?

There are two outcomes: a real message (success) and spam (failure). Since 91% of e-mails are spam, the probability
of success .
Let X = the number of e-mails I’ll check until I find a real message. I assume that the messages arrive independently
and in a random order. I can use the model Geom(0.09).

On average, I expect to have to check just over 11 e-mails before I find a real message. There’s slightly less than a 7%
chance that my first real message will be the 4th one I check.

Note that the probability calculation isn’t new. It’s simply Chapter 14’s Multiplication Rule used to find P1spam ¨ spam ¨ spam ¨ real2.

 P(X = 4) = (0.91)3(0.09) = 0.0678

 E(X) =

1
p

=

1
0.09

= 11.1

p = 1 - 0.91 = 0.09

MATH BOX

We want to find the mean (expected value) of random variable X, using a geometric model with
probability of success p.

First, write the 
probabilities:

The expected value is:
Let 
Simplify:
That’s an infinite 
geometric series, with 
first term 1 and 
common ratio q:

So, finally . . .  E1X2 =

1
p

.

 =

1
1 - q

 = 1 + q + q2
+ q3

+
Á

 = 1 - q + 2q - 2q2
+ 3q2

- 3q3
+ 4q3

- 4q4
+

Á

 = 11 - q2 + 2q11 - q2 + 3q211 - q2 + 4q311 - q2 +
Áp = 1 - q:

 E1X2 = 1p + 2qp + 3q2p + 4q3p +
Á

x 1 2 3 4 Á

P1X = x2 p qp q2p q3p
Á

Independence
One of the important requirements for Bernoulli trials is that the trials be inde-
pendent. Sometimes that’s a reasonable assumption—when tossing a coin or
rolling a die, for example. But that becomes a problem when (often!) we’re look-
ing at situations involving samples chosen without replacement. We said that
whether we find a Tiger Woods card in one box has no effect on the probabilities
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in other boxes. This is almost true. Technically, if exactly 20% of the boxes have
Tiger Woods cards, then when you find one, you’ve reduced the number of 
remaining Tiger Woods cards. If you knew there were 2 Tiger Woods cards hiding
in the 10 boxes of cereal on the market shelf, then finding one in the first box you
try would clearly change your chances of finding Tiger in the next box. With a few
million boxes of cereal, though, the difference is hardly worth mentioning.

If we had an infinite number of boxes, there wouldn’t be a problem. It’s se-
lecting from a finite population that causes the probabilities to change, making
the trials not independent. Obviously, taking 2 out of 10 boxes changes the
probability. Taking even a few hundred out of millions, though, makes very 
little difference. Fortunately, we have a rule of thumb for the in-between cases.
It turns out that if we look at less than 10% of the population, we can pretend
that the trials are independent and still calculate probabilities that are quite 
accurate.

The 10% Condition: Bernoulli trials must be independent. If that assumption is
violated, it is still okay to proceed as long as the sample is smaller than 10% of
the population.

People with O-negative blood are called  “universal donors” because O-negative blood can be
given to anyone else, regardless of the recipient’s blood type. Only about 6% of people have 
O-negative blood.

Questions:
1. If donors line up at random for a blood drive, how many do you expect to examine before

you find someone who has O-negative blood?
2. What’s the probability that the first O-negative donor found is one of the first four people 

in line?

Working with a Geometric ModelSTEP-BY-STEP EXAMPLE

I want to estimate how many people I’ll need to
check to find an O-negative donor, and the prob-
ability that 1 of the first 4 people is O-negative.

Plan State the questions.

I can model X with Geom(0.06).Model Specify the model.

Let X number of donors until one is 
O-negative.

=Variable Define the random variable.

Ç There are two outcomes:
success O-negative
failure other blood types

Ç The probability of success for each person
is , because they lined up 
randomly.

Ç 10% Condition: Trials aren’t independent
because the population is finite, but the
donors lined up are fewer than 10% of all
possible donors.

p = 0.06

=

=

Check to see that these are Bernoulli trials.
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392 CHAPTER 17    Probability Models

Blood drives such as this one expect to exam-
ine an average of 16.7 people to find a universal
donor. About 22% of the time there will be one
within the first 4 people in line.

Conclusion Interpret your results in 
context.

L 0.2193
(0.94)2(0.06) + (0.94)3(0.06)

= (0.06) + (0.94)(0.06) +

P(X = 3) + P(X = 4)
P(X … 4) = P(X = 1) + P(X = 2) +

E(X ) =

1
0.06

L 16.7
Mechanics Find the mean.

Calculate the probability of success on
one of the first four trials. That’s the prob-
ability that or 4.X = 1, 2, 3,

TI TIPS Finding geometric probabilities

Your TI knows the geometric model. Just as you saw back in Chapter 6 with the
Normal model, commands to calculate probability distributions are found in
the 2nd DISTRmenu. Have a look. After many others (Don’t drop the course
yet!) you’ll see two Geometric probability functions at the bottom of the list.

• geometpdf(.

The “pdf” stands for “probability density function.” This command allows
you to find the probability of any individual outcome. You need only specify
p, which defines the Geometric model, and x, which indicates the number of
trials until you get a success. The format is geometpdf(p,x).
For example, suppose we want to know the probability that we find our first
Tiger Woods picture in the fifth box of cereal. Since Tiger is in 20% of the boxes,
we use and , entering the command geometpdf(.2,5). The
calculator says there’s about an 8% chance.

• geometcdf(.

This is the “cumulative density function,” meaning that it finds the sum of
the probabilities of several possible outcomes. In general, the command
geometcdf(p,x) calculates the probability of finding the first success on
or before the xth trial.
Let’s find the probability of getting a Tiger Woods picture by the time we open
the fourth box of cereal—in other words, the probability our first success
comes on the first box, or the second, or the third, or the fourth. Again we spec-
ify p 0.2, and now use x 4. The command geometcdf(.2,4) calcu-
lates all the probabilities and adds them. There’s about a 59% chance that our
quest for a Tiger Woods photo will succeed by the time we open the fourth box.

==

x = 5p = 0.2

The Binomial Model
We can use the Bernoulli trials to answer other questions. Suppose you buy 5
boxes of cereal. What’s the probability you get exactly 2 pictures of Tiger Woods?
Before, we asked how long it would take until our first success. Now we want to
find the probability of getting 2 successes among the 5 trials. We are still talking
about Bernoulli trials, but we’re asking a different question.
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This time we’re interested in the number of successes in the 5 trials, so we’ll call
it of successes. We want to find This is an example of a
Binomial probability. It takes two parameters to define this Binomial model: the
number of trials, n, and the probability of success, p. We denote this model
Binom(n, p). Here, trials, and the probability of finding a Tiger
Woods card in any trial.

Exactly 2 successes in 5 trials means 2 successes and 3 failures. It seems logi-
cal that the probability should be . Too bad! It’s not that easy. That cal-
culation would give you the probability of finding Tiger in the first 2 boxes and
not in the next 3—in that order. But you could find Tiger in the third and fifth
boxes and still have 2 successes. The probability of those outcomes in that par-
ticular order is (0.8)(0.8)(0.2)(0.8)(0.2). That’s also . In fact, the proba-
bility will always be the same, no matter what order the successes and failures
occur in. Anytime we get 2 successes in 5 trials, no matter what the order, the
probability will be . We just need to take account of all the possible
orders in which the outcomes can occur.

Fortunately, these possible orders are disjoint. (For example, if your two suc-
cesses came on the first two trials, they couldn’t come on the last two.) So we can
use the Addition Rule and add up the probabilities for all the possible orderings.
Since the probabilities are all the same, we only need to know how many orders
are possible. For small numbers, we can just make a tree diagram and count the
branches. For larger numbers this isn’t practical, so we let the computer or calcu-
lator do the work.

Each different order in which we can have k successes in n trials is called a 

“combination.” The total number of ways that can happen is written or 
and pronounced “n choose k.”

For 2 successes in 5 trials,

So there are 10 ways to get 2 Tiger pictures in 5 boxes, and the probability of each
is . Now we can find what we wanted:

In general, the probability of exactly k successes in n trials is .

Using this formula, we could find the expected value by adding up 
for all values, but it would be a long, hard way to get an answer that you already
know intuitively. What’s the expected value? If we have 5 boxes, and Tiger’s picture
is in 20% of them, then we would expect to have success. If we had 100
trials with probability of success 0.2, how many successes would you expect? Can
you think of any reason not to say 20? It seems so simple that most people wouldn’t
even stop to think about it. You just multiply the probability of success by n. In other
words, . Not fully convinced? We prove it in the next Math Box.

The standard deviation is less obvious; you can’t just rely on your intuition.
Fortunately, the formula for the standard deviation also boils down to something
simple: . (If you’re curious about where that comes from, it’s in
the Math Box too!) In 100 boxes of cereal, we expect to find 20 Tiger Woods cards,
with a standard deviation of pictures.

Time to summarize. A Binomial probability model describes the number of
successes in a specified number of trials. It takes two parameters to specify this
model: the number of trials n and the probability of success p.

1100 * 0.8 * 0.2 = 4

SD1X2 = 1npq

E1X2 = np

510.22 = 1

xP1X = x2

pkqn-k¢n

k
≤

P1#success = 22 = 1010.22210.823 = 0.2048

10.22210.823

¢5
2
≤ =

5!
2!15 - 22!

=

5 * 4 * 3 * 2 * 1
2 * 1 * 3 * 2 * 1

=

5 * 4
2 * 1

= 10.

¢n

k
≤  =  

n!
k!1n - k2!

 where n! 1pronounced “n factorial”2 =  n * 1n - 12 *
Á

* 1

nCk¢n

k
≤

10.22210.823

10.22210.823

10.22210.823

p = 0.2,n = 5

P1X = 22.X = numberActivity: The Binomial
Distribution. It’s more interesting
to combine Bernoulli trials.
Simulate this with the Random
Tool to get a sense of how
Binomial models behave.

NOTATION ALERT:

Now punctuation! Throughout
mathematics n!, pronounced  
“n factorial,” is the product of
all the integers from 1 to n. For
example, 4! � 4 . 3 . 2 . 1 � 24.
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BINOMIAL PROBABILITY MODEL FOR BERNOULLI TRIALS: Binom(n, p)
number of trials
probability of success (and probability of failure)
number of successes in n trials

Mean: 
Standard Deviation: s = 1npq

m = np

P1X = x2 = nCx pxqn-x, where nCx =

n!
x!1n - x2!

X =

q = 1 - p =p =

n =

MATH BOX

To derive the formulas for the mean and standard deviation of a Binomial model we start with
the most basic situation.

Consider a single Bernoulli trial with probability of success p. Let’s find the mean and vari-
ance of the number of successes.

Here’s the probability model 
for the number of successes:

Find the expected value:

And now the variance:

What happens when there is more than one trial, though? A Binomial model simply counts the
number of successes in a series of n independent Bernoulli trials. That makes it easy to find the
mean and standard deviation of a binomial random variable,Y.

So, as we thought, the mean is 
And since the trials are independent, the variances add:

Voilà! The standard deviation is SD1Y2 = 1npq.

 Var1Y2 = npq

 = pq + pq + pq +
Á

+ pq 1Again, n terms.2
 = Var1X12 + Var1X22 + Var1X32 +

Á
+ Var1Xn2

 Var1Y2 = Var1X1 + X2 + X3 +
Á

+ Xn2

E1Y2 = np.

 = p + p + p +
Á

+ p 1There are n terms.2
 = E1X12 + E1X22 + E1X32 +

Á
+ E1Xn2

 E1Y2 = E1X1 + X2 + X3 +
Á

+ Xn2

 Let Y = X1 + X2 + X3 +
Á

+ Xn

 Var1X2 = pq

 = pq112
 = pq1p + q2

 = p2q + q2p

 Var1X2 = 10 - p22q + 11 - p22 p

 E1X2 = p

 E1X2 = 0q + 1p

x 0 1
P1X = x2 q p

Binomial probabilities.
Do-it-yourseif binomial models!
Watch the probabilities change as
you control n and p.
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Spam and the Binomial modelFOR EXAMPLE

Recap: The communications monitoring company Postini has reported that 91% of e-mail messages are spam. Suppose your inbox contains 
25 messages.

Questions: What are the mean and standard deviation of the number of real messages you should expect to find in your inbox? What’s the probability
that you’ll find only 1 or 2 real messages?

I assume that messages arrive independently and at random, with the probability of success (a real message)
. Let X = the number of real messages among 25. I can use the model Binom(25, 0.09).

Among 25 e-mail messages, I expect to find an average of 2.25 that aren’t spam, with a standard deviation of 
1.43 messages. There’s just over a 50% chance that 1 or 2 of my 25 e-mails will be real messages.

 = 0.5117
 = 0.2340 + 0.2777

 = a
25
1
b(0.09)1(0.91)24

+ a
25
2
b(0.09)2(0.91)23

 P(X = 1 or 2) = P(X = 1) + P(X = 2)
 SD(X ) = 1npq = 125(0.09)(0.91) = 1.43

 E(X) = np = 25(0.09) = 2.25

p = 1 - 0.91 = 0.09

Suppose 20 donors come to a blood drive. Recall that 6% of people are “universal donors.”

Questions:
1. What are the mean and standard deviation of the number of universal donors among them?
2. What is the probability that there are 2 or 3 universal donors?

Working with a Binomial ModelSTEP-BY-STEP EXAMPLE

I want to know the mean and standard devia-
tion of the number of universal donors among
20 people, and the probability that there are 2
or 3 of them.

Plan State the question.

I can model X with Binom(20, 0.06).Model Specify the model.

Let X number of O-negative donors among 
people.n = 20

=Variable Define the random variable.

Ç There are two outcomes:

success O-negative
failure other blood types

Ç , because people have lined up at
random.

Ç 10% Condition: Trials are not independent,
because the population is finite, but fewer
than 10% of all possible donors are lined up.

p = 0.06

=

=

Check to see that these are Bernoulli 
trials.
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= 0.3106
L 0.2246 + 0.0860

+ a
20
3
b(0.06)3(0.94)17

= a
20
2
b10.0622(0.94)18

 P(X = 2 or 3) = P(X = 2) + P(X = 3)

 SD(X ) = 1npq = 120(0.06)(0.94) L 1.06
E(X ) = np = 20(0.06) = 1.2Mechanics Find the expected value and

standard deviation.

In groups of 20 randomly selected blood
donors, I expect to find an average of 1.2 univer-
sal donors, with a standard deviation of 1.06.
About 31% of the time, I’d find 2 or 3 universal
donors among the 20 people.

Conclusion Interpret your results in
context.

TI Tips Finding binomial probabilities

Remember how the calculator handles Geometric probabilities? Well, the com-
mands for finding Binomial probabilities are essentially the same. Again you’ll
find them in the 2nd DISTR menu.

• binompdf(

This probability density function allows you to find the probability of an
individual outcome. You need to define the Binomial model by specifying
n and p, and then indicate the desired number of successes, x. The format is
binompdf(n,p,X).

For example, recall that Tiger Woods’ picture is in 20% of the cereal boxes.
Suppose that we want to know the probability of finding Tiger exactly twice
among 5 boxes of cereal. We use , and , entering the com-x = 2n = 5, p = 0.2
mand binompdf(5,.2,2). There’s about a 20% chance of getting two
pictures of Tiger Woods in five boxes of cereal.

• binomcdf(

Need to add several Binomial probabilities? To find the total probability of
getting x or fewer successes among the n trials use the cumulative Binomial
density function binomcdf(n,p,X).
For example, suppose we have ten boxes of cereal and wonder about the
probability of finding up to 4 pictures of Tiger. That’s the probability of 0, 1,
2, 3 or 4 successes, so we specify the command binomcdf(10,.2,4).
Pretty likely!
Of course “up to 4” allows for the possibility that we end up with none.
What’s the probability we get at least 4 pictures of Tiger in 10 boxes? Well,
“at least 4” means “not 3 or fewer.” That’s the complement of 0, 1, 2, or 3 suc-
cesses. Have your TI evaluate 1-binomcdf(10,.2,3). There’s about a
12% chance we’ll find at least 4 pictures of Tiger in 10 boxes of cereal.
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The Normal Model to the Rescue!
Suppose the Tennessee Red Cross anticipates the need for at least 1850 units of 
O-negative blood this year. It estimates that it will collect blood from 32,000 donors.
How great is the risk that the Tennessee Red Cross will fall short of meeting its need?
We’ve just learned how to calculate such probabilities. We can use the Binomial
model with and . The probability of getting exactly 1850 

units of O-negative blood from 32,000 donors  is . No 

calculator on earth can calculate that first term (it has more than 100,000 digits).1

And that’s just the beginning. The problem said at least 1850, so we have to do it
again for 1851, for 1852, and all the way up to 32,000. No thanks.

When we’re dealing with a large number of trials like this, making direct cal-
culations of the probabilities becomes tedious (or outright impossible). Here an
old friend—the Normal model—comes to the rescue.

The Binomial model has mean and standard deviation 
. We could try approximating its distribution with a Normal model, using

the same mean and standard deviation. Remarkably enough, that turns out to be
a very good approximation. (We’ll see why in the next chapter.) With that approx-
imation, we can find the probability:

There seems to be about a 5% chance that this Red Cross chapter will run short of
O-negative blood.

Can we always use a Normal model to make estimates of Binomial probabili-
ties? No. Consider the Tiger Woods situation—pictures in 20% of the cereal boxes.
If we buy five boxes, the actual Binomial probabilities that we get 0, 1, 2, 3, 4, or 5
pictures of Tiger are 33%, 41%, 20%, 5%, 1%, and 0.03%, respectively. The first his-
togram shows that this probability model is skewed. That makes it clear that we
should not try to estimate these probabilities by using a Normal model.

Now suppose we open 50 boxes of this cereal and count the number of Tiger
Woods pictures we find. The second histogram shows this probability model. It is
centered at pictures, as expected, and it appears to be fairly
symmetric around that center. Let’s have a closer look.

The third histogram again shows Binom(50, 0.2), this time magnified some-
what and centered at the expected value of 10 pictures of Tiger. It looks close to
Normal, for sure. With this larger sample size, it appears that a Normal model
might be a useful approximation.

A Normal model, then, is a close enough approximation only for a large
enough number of trials. And what we mean by “large enough” depends on the
probability of success. We’d need a larger sample if the probability of success
were very low (or very high). It turns out that a Normal model works pretty well
if we expect to see at least 10 successes and 10 failures. That is, we check the
Success/ Failure Condition.

The Success/ Failure Condition: A Binomial model is approximately Normal if
we expect at least 10 successes and 10 failures:

np Ú 10 and nq Ú 10.

np = 5010.22 = 10

P1X 6 18502 = Paz 6

1850 - 1920
42.48

b L P1z 6 -1.652 L 0.05

42.48
1npq Lnp = 1920

a
32000
1850

b * 0.061850
* 0.9430150

p = 0.06n = 32,000

1 If your calculator can find Binom(32000,0.06), then it’s smart enough to use an approxi-
mation. Read on to see how you can, too.

Activity: Normal
Approximation. Binomial
probabilities can be hard to
calculate. With the Simulation
Tool you’ll see how well the
Normal model can approximate
the Binomial—a much easier
method.

0 1 2 3 4 5

0 30 40 502010

0 5 10 15 20

How close to Normal? How well
does a Normal curve fit a binomial
model? Check out the Success/
Failure Condition for yourself.
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398 CHAPTER 17    Probability Models

MATH BOX

It’s easy to see where the magic number 10 comes from. You just need to remember how Nor-
mal models work. The problem is that a Normal model extends infinitely in both directions. But
a Binomial model must have between 0 and n successes, so if we use a Normal to approximate a
Binomial, we have to cut off its tails. That’s not very important if the center of the Normal model
is so far from 0 and n that the lost tails have only a negligible area. More than three standard de-
viations should do it, because a Normal model has little probability past that.

So the mean needs to be at least 3 standard deviations from 0 and at least 3 standard devia-
tions from n. Let’s look at the 0 end.

We require: 
Or in other words:
For a Binomial, that’s:
Squaring yields:
Now simplify: 
Since we can require:

For simplicity, we usually require that np (and nq for the other tail) be at least 10 to use the Nor-
mal approximation, the Success/Failure Condition.2

np 7 9q … 1,
np 7 9q

n2p2
7 9npq

np 7 31npq

m 7 3s
m - 3s 7 0

Spam and the Normal approximation to the BinomialFOR EXAMPLE

Recap: The communications monitoring company Postini has reported that 91% of e-mail messages are spam. Recently, you installed a spam filter.
You observe that over the past week it okayed only 151 of 1422 e-mails you received, classifying the rest as junk. Should you worry that the filtering is
too aggressive?

Question: What’s the probability that no more than 151 of 1422 e-mails is a real message?

I assume that messages arrive randomly and independently, with a probability of success (a real message) .
The model Binom(1422, 0.09) applies, but will be hard to work with. Checking conditions for the Normal approximation,
I see that:

Ç These messages represent less than 10% of all e-mail traffic.
Ç I expect real messages and spam messages, both

far greater than 10.

It’s okay to approximate this binomial probability by using a Normal model.

Among my 1422 e-mails, there’s over a 98% chance that no more than 151 of them were real messages, so the filter
may be working properly.

 = 0.9834
 = P(z … 2.13)

 P(x … 151) = P az …

151 - 127.98
10.79

b

s = 1npq = 11422(0.09)(0.91) L 10.79
m = np = 1422(0.09) = 127.98

nq = (1422)(0.91) = 1294.02np = (1422)(0.09) = 127.98

p = 0.09

151127.98

2.13

2 Looking at the final step, we see that we need in the worst case, when q (or p) is
near 1, making the Binomial model quite skewed. When q and p are near 0.5—say between
0.4 and 0.6—the Binomial model is nearly symmetric and ought to be safe enough.
Although we’ll always check for 10 expected successes and failures, keep in mind that for
values of p near 0.5, we can be somewhat more forgiving.

np 7 5

np 7 9
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What Can Go Wrong? 399

Continuous Random Variables
There’s a problem with approximating a Binomial model with a Normal model.
The Binomial is discrete, giving probabilities for specific counts, but the Normal
models a continuous random variable that can take on any value. For continuous
random variables, we can no longer list all the possible outcomes and their proba-
bilities, as we could for discrete random variables.3

As we saw in the previous chapter, models for continuous random variables
give probabilities for intervals of values. So, when we use the Normal model, we
no longer calculate the probability that the random variable equals a particular
value, but only that it lies between two values. We won’t calculate the probability
of getting exactly 1850 units of blood, but we have no problem approximating
the probability of getting 1850 or more, which was, after all, what we really
wanted.4

3 In fact, some people use an adjustment called the “continuity correction” to help with this
problem. It’s related to the suggestion we make in the next footnote and is discussed in
more advanced textbooks.
4 If we really had been interested in a single value, we might have approximated it by find-
ing the probability of getting between 1849.5 and 1850.5 units of blood.

JUST CHECKING
As we noted a few chapters ago, the Pew Research Center (www.pewresearch.org) reports that

they are actually able to contact only 76% of the randomly selected households drawn for a telephone
survey.

1. Explain why these phone calls can be considered Bernoulli trials.

2. Which of the models of this chapter (Geometric, Binomial, Normal) would you use to model the
number of successful contacts from a list of 1000 sampled households? Explain.

3. Pew further reports that even after they contacted a household, only 38% agree to be interviewed,
so the probability of getting a completed interview for a randomly selected household is only 0.29.
Which of the models of this chapter would you use to model the number of households Pew has to
call before they get the first completed interview?

WHAT CAN GO WRONG?
u Be sure you have Bernoulli trials. Be sure to check the requirements first: two possible

outcomes per trial (“success” and “failure”), a constant probability of success, and
independence. Remember to check the 10% Condition when sampling without re-
placement.

u Don’t confuse Geometric and Binomial models. Both involve Bernoulli trials, but the issues
are different. If you are repeating trials until your first success, that’s a Geometric
probability. You don’t know in advance how many trials you’ll need—theoretically,
it could take forever. If you are counting the number of successes in a specified num-
ber of trials, that’s a Binomial probability.

u Don’t use the Normal approximation with small n . To use a Normal approximation in place
of a Binomial model, there must be at least 10 expected successes and 10 expected
failures.
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400 CHAPTER 17    Probability Models

CONNECTIONS
This chapter builds on what we know about random variables. We now have two more probability
models to join the Normal model.

There are a number of “forward” connections from this chapter. We’ll see the 10% Condition
and the Success/Failure Condition often. And the facts about the Binomial distribution can help
explain how proportions behave, as we’ll see in the next chapter.

We’ve learned that Bernoulli trials show up in lots of places. Depending on the random variable of
interest, we can use one of three models to estimate probabilities for Bernoulli trials:

u a Geometric model when we’re interested in the number of Bernoulli trials until the next success;
u a Binomial model when we’re interested in the number of successes in a certain number of

Bernoulli trials;
u a Normal model to approximate a Binomial model when we expect at least 10 successes and

10 failures.

Terms
Bernoulli trials, if . . . 388. 1. there are two possible outcomes.

2. the probability of success is constant.
3. the trials are independent.

Geometric probability model 389. A Geometric model is appropriate for a random variable that counts the number of Bernoulli
trials until the first success.

Binomial probability model 393. A Binomial model is appropriate for a random variable that counts the number of successes in
a fixed number of Bernoulli trials.

10% Condition 391. When sampling without replacement, trials are not independent. It’s still okay to proceed as
long as the sample is smaller than 10% of the population.

Success/Failure Condition 397. For a Normal model to be a good approximation of a Binomial model, we must expect at least
10 successes and 10 failures. That is, .

Skills
u Know how to tell if a situation involves Bernoulli trials.

u Be able to choose whether to use a Geometric or a Binomial model for a random variable involving
Bernoulli trials.

u Know the appropriate conditions for using a Geometric, Binomial, or Normal model.

u Know how to find the expected value of a Geometric model.

u Be able to calculate Geometric probabilities.

u Know how to find the mean and standard deviation of a Binomial model.

u Be able to calculate Binomial probabilities, perhaps approximating with a Normal model.

u Be able to interpret means, standard deviations, and probabilities in the Bernoulli trial context.

np Ú 10 and nq Ú 10

WHAT HAVE WE LEARNED?
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THE BINOMIAL AND THE GEOMETRIC ON THE COMPUTER

Most statistics packages offer functions that compute Binomial probabilities, and many offer functions for
Geometric probabilities as well. Some technology solutions automatically use the Normal approximation for the
Binomial when the exact calculations become unmanageable.

EXERCISES

1. Bernoulli. Do these situations involve Bernoulli trials?
Explain.
a) We roll 50 dice to find the distribution of the number

of spots on the faces.
b) How likely is it that in a group of 120 the majority

may have Type A blood, given that Type A is found in
43% of the population?

c) We deal 7 cards from a deck and get all hearts. How
likely is that?

d) We wish to predict the outcome of a vote on the school
budget, and poll 500 of the 3000 likely voters to see
how many favor the proposed budget.

e) A company realizes that about 10% of its packages are
not being sealed properly. In a case of 24, is it likely
that more than 3 are unsealed?

2. Bernoulli 2. Do these situations involve Bernoulli 
trials? Explain.
a) You are rolling 5 dice and need to get at least two 6’s

to win the game.
b) We record the distribution of eye colors found in a

group of 500 people.
c) A manufacturer recalls a doll because about 3% have

buttons that are not properly attached. Customers 
return 37 of these dolls to the local toy store. Is the
manufacturer likely to find any dangerous buttons?

d) A city council of 11 Republicans and 8 Democrats
picks a committee of 4 at random. What’s the proba-
bility they choose all Democrats?

e) A 2002 Rutgers University study found that 74% of
high school students have cheated on a test at least
once. Your local high school principal conducts a 
survey in homerooms and gets responses that admit
to cheating from 322 of the 481 students.

3. Simulating the model. Think about the Tiger Woods
picture search again. You are opening boxes of cereal one
at a time looking for his picture, which is in 20% of the
boxes. You want to know how many boxes you might
have to open in order to find Tiger.
a) Describe how you would simulate the search for Tiger

using random numbers.
b) Run at least 30 trials.
c) Based on your simulation, estimate the probabilities

that you might find your first picture of Tiger in the
first box, the second, etc.

d) Calculate the actual probability model.
e) Compare the distribution of outcomes in your simula-

tion to the probability model.

4. Simulation II. You are one space short of winning a
child’s board game and must roll a 1 on a die to claim 
victory. You want to know how many rolls it might take.
a) Describe how you would simulate rolling the die until

you get a 1.
b) Run at least 30 trials.
c) Based on your simulation, estimate the probabilities

that you might win on the first roll, the second, the
third, etc.

d) Calculate the actual probability model.
e) Compare the distribution of outcomes in your simula-

tion to the probability model.

5. Tiger again. Let’s take one last look at the Tiger Woods
picture search. You know his picture is in 20% of the ce-
real boxes. You buy five boxes to see how many pictures
of Tiger you might get.
a) Describe how you would simulate the number of pic-

tures of Tiger you might find in five boxes of cereal.
b) Run at least 30 trials.
c) Based on your simulation, estimate the probabilities that

you get no pictures of Tiger, 1 picture, 2 pictures, etc.
d) Find the actual probability model.
e) Compare the distribution of outcomes in your simula-

tion to the probability model.

6. Seatbelts. Suppose 75% of all drivers always wear
their seatbelts. Let’s investigate how many of the drivers
might be belted among five cars waiting at a traffic light.
a) Describe how you would simulate the number of 

seatbelt-wearing drivers among the five cars.
b) Run at least 30 trials.
c) Based on your simulation, estimate the probabilities

there are no belted drivers, exactly one, two, etc.
d) Find the actual probability model.
e) Compare the distribution of outcomes in your simula-

tion to the probability model.

7. On time. A Department of Transportation report about
air travel found that, nationwide, 76% of all flights are on
time. Suppose you are at the airport and your flight is one
of 50 scheduled to take off in the next two hours. Can you
consider these departures to be Bernoulli trials? Explain.
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8. Lost luggage. A Department of Transportation report
about air travel found that airlines misplace about 5 bags
per 1000 passengers. Suppose you are traveling with a
group of people who have checked 22 pieces of luggage
on your flight. Can you consider the fate of these bags to
be Bernoulli trials? Explain.

9. Hoops. A basketball player has made 80% of his foul
shots during the season. Assuming the shots are inde-
pendent, find the probability that in tonight’s game he
a) misses for the first time on his fifth attempt.
b) makes his first basket on his fourth shot.
c) makes his first basket on one of his first 3 shots.

10. Chips. Suppose a computer chip manufacturer rejects
2% of the chips produced because they fail presale testing.
a) What’s the probability that the fifth chip you test is

the first bad one you find?
b) What’s the probability you find a bad one within the

first 10 you examine?

11. More hoops. For the basketball player in Exercise 9,
what’s the expected number of shots until he misses?

12. Chips ahoy. For the computer chips described in 
Exercise 10, how many do you expect to test before find-
ing a bad one?

13. Customer center operator. Raaj works at the cus-
tomer service call center of a major credit card bank.
Cardholders call for a variety of reasons, but regardless
of their reason for calling, if they hold a platinum card,
Raaj is instructed to offer them a double-miles promo-
tion. About 10% of all cardholders hold platinum cards,
and about 50% of those will take the double-miles pro-
motion. On average, how many calls will Raaj have to
take before finding the first cardholder to take the double-
miles promotion?

14. Cold calls. Justine works for an organization commit-
ted to raising money for Alzheimer’s research. From past
experience, the organization knows that about 20% of all
potential donors will agree to give something if contacted
by phone. They also know that of all people donating,
about 5% will give $100 or more. On average, how many
potential donors will she have to contact until she gets
her first $100 donor?

15. Blood. Only 4% of people have Type AB blood.
a) On average, how many donors must be checked to

find someone with Type AB blood?
b) What’s the probability that there is a Type AB donor

among the first 5 people checked?
c) What’s the probability that the first Type AB donor

will be found among the first 6 people?
d) What’s the probability that we won’t find a Type AB

donor before the 10th person?

16. Colorblindness. About 8% of males are colorblind. A
researcher needs some colorblind subjects for an experi-
ment and begins checking potential subjects.
a) On average, how many men should the researcher 

expect to check to find one who is colorblind?
b) What’s the probability that she won’t find anyone 

colorblind among the first 4 men she checks?

c) What’s the probability that the first colorblind man
found will be the sixth person checked?

d) What’s the probability that she finds someone who is
colorblind before checking the 10th man?

17. Lefties. Assume that 13% of people are left-handed. If
we select 5 people at random, find the probability of each
outcome described below.
a) The first lefty is the fifth person chosen.
b) There are some lefties among the 5 people.
c) The first lefty is the second or third person.
d) There are exactly 3 lefties in the group.
e) There are at least 3 lefties in the group.
f) There are no more than 3 lefties in the group.

18. Arrows. An Olympic archer is able to hit the bull’s-eye
80% of the time. Assume each shot is independent of the
others. If she shoots 6 arrows, what’s the probability of
each of the following results?
a) Her first bull’s-eye comes on the third arrow.
b) She misses the bull’s-eye at least once.
c) Her first bull’s-eye comes on the fourth or fifth arrow.
d) She gets exactly 4 bull’s-eyes.
e) She gets at least 4 bull’s-eyes.
f ) She gets at most 4 bull’s-eyes.

19. Lefties redux. Consider our group of 5 people from
Exercise 17.
a) How many lefties do you expect?
b) With what standard deviation?
c) If we keep picking people until we find a lefty, how

long do you expect it will take?

20. More arrows. Consider our archer from Exercise 18.
a) How many bull’s-eyes do you expect her to get?
b) With what standard deviation?
c) If she keeps shooting arrows until she hits the bull’s-

eye, how long do you expect it will take?

21. Still more lefties. Suppose we choose 12 people in-
stead of the 5 chosen in Exercise 17.
a) Find the mean and standard deviation of the number

of right-handers in the group.
b) What’s the probability that

i) they’re not all right-handed?
ii) there are no more than 10 righties?

iii) there are exactly 6 of each?
iv) the majority is right-handed?

22. Still more arrows. Suppose our archer from Exercise 18
shoots 10 arrows.
a) Find the mean and standard deviation of the number

of bull’s-eyes she may get.
b) What’s the probability that

i) she never misses?
ii) there are no more than 8 bull’s-eyes?

iii) there are exactly 8 bull’s-eyes?
iv) she hits the bull’s-eye more often than she misses?

23. Vision. It is generally believed that nearsightedness 
affects about 12% of all children. A school district tests the
vision of 169 incoming kindergarten children. How many
would you expect to be nearsighted? With what standard
deviation?

402 CHAPTER 17    Probability Models
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24. International students. At a certain college, 6% of all
students come from outside the United States. Incoming
students there are assigned at random to freshman dorms,
where students live in residential clusters of 40 freshmen
sharing a common lounge area. How many international
students would you expect to find in a typical cluster?
With what standard deviation?

25. Tennis, anyone? A certain tennis player makes a suc-
cessful first serve 70% of the time. Assume that each serve
is independent of the others. If she serves 6 times, what’s
the probability she gets
a) all 6 serves in?
b) exactly 4 serves in?
c) at least 4 serves in?
d) no more than 4 serves in?

26. Frogs. A wildlife biologist examines frogs for a genetic
trait he suspects may be linked to sensitivity to industrial
toxins in the environment. Previous research had estab-
lished that this trait is usually found in 1 of every 8 frogs.
He collects and examines a dozen frogs. If the frequency
of the trait has not changed, what’s the probability he
finds the trait in
a) none of the 12 frogs?
b) at least 2 frogs?
c) 3 or 4 frogs?
d) no more than 4 frogs?

27. And more tennis. Suppose the tennis player in Exer-
cise 25 serves 80 times in a match.
a) What are the mean and standard deviation of the

number of good first serves expected?
b) Verify that you can use a Normal model to approxi-

mate the distribution of the number of good first
serves.

c) Use the 68–95–99.7 Rule to describe this distribution.
d) What’s the probability she makes at least 65 first

serves?

28. More arrows. The archer in Exercise 18 will be shoot-
ing 200 arrows in a large competition.
a) What are the mean and standard deviation of the

number of bull’s-eyes she might get?
b) Is a Normal model appropriate here? Explain.
c) Use the 68–95–99.7 Rule to describe the distribution of

the number of bull’s-eyes she may get.
d) Would you be surprised if she made only 140 bull’s-

eyes? Explain.

29. Apples. An orchard owner knows that he’ll have to use
about 6% of the apples he harvests for cider because they
will have bruises or blemishes. He expects a tree to pro-
duce about 300 apples.
a) Describe an appropriate model for the number of cider

apples that may come from that tree. Justify your model.
b) Find the probability there will be no more than a

dozen cider apples.
c) Is it likely there will be more than 50 cider apples? 

Explain.

30. Frogs, part II. Based on concerns raised by his prelimi-
nary research, the biologist in Exercise 26 decides to col-
lect and examine 150 frogs.

a) Assuming the frequency of the trait is still 1 in 8, deter-
mine the mean and standard deviation of the number
of frogs with the trait he should expect to find in his
sample.

b) Verify that he can use a Normal model to approximate
the distribution of the number of frogs with the trait.

c) He found the trait in 22 of his frogs. Do you think this
proves that the trait has become more common? 
Explain.

31. Lefties again. A lecture hall has 200 seats with folding
arm tablets, 30 of which are designed for left-handers.
The typical size of classes that meet there is 188, and we
can assume that about 13% of students are left-handed.
What’s the probability that a right-handed student in one
of these classes is forced to use a lefty arm tablet?

32. No-shows. An airline, believing that 5% of passengers
fail to show up for flights, overbooks (sells more tickets
than there are seats). Suppose a plane will hold 265 pas-
sengers, and the airline sells 275 tickets. What’s the prob-
ability the airline will not have enough seats, so someone
gets bumped?

33. Annoying phone calls. A newly hired telemarketer is
told he will probably make a sale on about 12% of his
phone calls. The first week he called 200 people, but only
made 10 sales. Should he suspect he was misled about the
true success rate? Explain.

34. The euro. Shortly after the introduction of the euro
coin in Belgium, newspapers around the world published
articles claiming the coin is biased. The stories were based
on reports that someone had spun the coin 250 times and
gotten 140 heads—that’s 56% heads. Do you think this is
evidence that spinning a euro is unfair? Explain.

35. Seatbelts II. Police estimate that 80% of drivers now
wear their seatbelts. They set up a safety roadblock, 
stopping cars to check for seatbelt use.
a) How many cars do they expect to stop before finding

a driver whose seatbelt is not buckled?
b) What’s the probability that the first unbelted driver is

in the 6th car stopped?
c) What’s the probability that the first 10 drivers are all

wearing their seatbelts?
d) If they stop 30 cars during the first hour, find the

mean and standard deviation of the number of drivers
expected to be wearing seatbelts.

e) If they stop 120 cars during this safety check, what’s
the probability they find at least 20 drivers not wear-
ing their seatbelts?

36. Rickets. Vitamin D is essential for strong, healthy
bones. Our bodies produce vitamin D naturally when
sunlight falls upon the skin, or it can be taken as a dietary
supplement. Although the bone disease rickets was
largely eliminated in England during the 1950s, some
people there are concerned that this generation of chil-
dren is at increased risk because they are more likely to
watch TV or play computer games than spend time out-
doors. Recent research indicated that about 20% of British
children are deficient in vitamin D. Suppose doctors test a
group of elementary school children.

Exercises 403
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a) What’s the probability that the first vitamin D– 
deficient child is the 8th one tested?

b) What’s the probability that the first 10 children tested
are all okay?

c) How many kids do they expect to test before finding
one who has this vitamin deficiency?

d) They will test 50 students at the third-grade level.
Find the mean and standard deviation of the number
who may be deficient in vitamin D.

e) If they test 320 children at this school, what’s the prob-
ability that no more than 50 of them have the vitamin
deficiency?

37. ESP. Scientists wish to test the mind-reading ability of a
person who claims to “have ESP.” They use five cards
with different and distinctive symbols (square, circle, tri-
angle, line, squiggle). Someone picks a card at random
and thinks about the symbol. The “mind reader” must
correctly identify which symbol was on the card. If the
test consists of 100 trials, how many would this person
need to get right in order to convince you that ESP may
actually exist? Explain.

38. True-False. A true-false test consists of 50 questions.
How many does a student have to get right to convince
you that he is not merely guessing? Explain.

39. Hot hand. A basketball player who ordinarily makes
about 55% of his free throw shots has made 4 in a row. Is
this evidence that he has a “hot hand” tonight? That is, is
this streak so unusual that it means the probability he
makes a shot must have changed? Explain.

40. New bow. Our archer in Exercise 18 purchases a new
bow, hoping that it will improve her success rate to more
than 80% bull’s-eyes. She is delighted when she first tests

her new bow and hits 6 consecutive bull’s-eyes. Do you
think this is compelling evidence that the new bow is 
better? In other words, is a streak like this unusual for
her? Explain.

41. Hotter hand. Our basketball player in Exercise 39 has
new sneakers, which he thinks improve his game. Over
his past 40 shots, he’s made 32—much better than the
55% he usually shoots. Do you think his chances of mak-
ing a shot really increased? In other words, is making at
least 32 of 40 shots really unusual for him? (Do you think
it’s his sneakers?)

42. New bow, again. The archer in Exercise 40 continues
shooting arrows, ending up with 45 bull’s-eyes in 50 shots.
Now are you convinced that the new bow is better? 
Explain.

404 CHAPTER 17    Probability Models

JUST CHECKING
Answers

1. There are two outcomes (contact, no contact), the
probability of contact is 0.76, and random calls
should be independent.

2. Binomial, with and . For actual 
calculations, we could approximate using a Normal
model with and

3. Geometric, with .p = 0.29

s = 1npq = 1100010.76210.242 L 13.5.

m = np = 100010.762 = 760

p = 0.76n = 1000
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Sex

Male Female

Jo
b 

Ty
pe Management 7 6

Supervision 8 12
Production 45 72

Review Exercises 405

Randomness and Probability
Quick Review
Here’s a brief summary of the key concepts and skills in prob-
ability and probability modeling:

u The Law of Large Numbers says that the more times we
try something, the closer the results will come to theoreti-
cal perfection.
• Don’t mistakenly misinterpret the Law of Large Num-

bers as the “Law of Averages.” There’s no such thing.

u Basic rules of probability can handle most situations:
• To find the probability that an event OR another event

happens, add their probabilities and subtract the proba-
bility that both happen.

• To find the probability that an event AND another inde-
pendent event both happen, multiply probabilities.

• Conditional probabilities tell you how likely one event
is to happen, knowing that another event has happened.

• Mutually exclusive events (also called “disjoint”) cannot
both happen at the same time.

• Two events are independent if the occurrence of one
doesn’t change the probability that the other happens.

u A probability model for a random variable describes the
theoretical distribution of outcomes.
• The mean of a random variable is its expected value.
• For sums or differences of independent random vari-

ables, variances add.
• To estimate probabilities involving quantitative vari-

ables, you may be able to use a Normal model—but
only if the distribution of the variable is unimodal and
symmetric.

• To estimate the probability you’ll get your first success
on a certain trial, use a Geometric model.

• To estimate the probability you’ll get a certain number
of successes in a specified number of independent trials,
use a Binomial model.

Ready? Here are some opportunities to check your under-
standing of these ideas.

IV
PA R T

REVIEW OF PART IV

REVIEW EXERCISES

1. Quality control. A consumer organization estimates
that 29% of new cars have a cosmetic defect, such as a
scratch or a dent, when they are delivered to car dealers.
This same organization believes that 7% have a functional
defect—something that does not work properly—and
that 2% of new cars have both kinds of problems.
a) If you buy a new car, what’s the probability that it has

some kind of defect?
b) What’s the probability it has a cosmetic defect but no

functional defect?
c) If you notice a dent on a new car, what’s the probabil-

ity it has a functional defect?
d) Are the two kinds of defects disjoint events? Explain.
e) Do you think the two kinds of defects are independent

events? Explain.

2. Workers. A company’s human resources officer reports
a breakdown of employees by job type and sex shown in
the table.

a) What’s the probability that a worker selected at ran-
dom is

i) female?
ii) female or a production worker?

iii) female, if the person works in production?
iv) a production worker, if the person is female?

b) Do these data suggest that job type is independent of
being male or female? Explain.

3. Airfares. Each year a company must send 3 officials to
a meeting in China and 5 officials to a meeting in France.
Airline ticket prices vary from time to time, but the com-
pany purchases all tickets for a country at the same price.
Past experience has shown that tickets to China have a
mean price of $1000, with a standard deviation of $150,
while the mean airfare to France is $500, with a standard
deviation of $100.
a) Define random variables and use them to express the

total amount the company will have to spend to send
these delegations to the two meetings.

b) Find the mean and standard deviation of this total
cost.

c) Find the mean and standard deviation of the differ-
ence in price of a ticket to China and a ticket to France.

d) Do you need to make any assumptions in calculating
these means? How about the standard deviations?
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4. Bipolar. Psychiatrists estimate that about 1 in 100 adults
suffers from bipolar disorder. What’s the probability that
in a city of 10,000 there are more than 200 people with
this condition? Be sure to verify that a Normal model can
be used here.

5. A game. To play a game, you must pay $5 for each
play. There is a 10% chance you will win $5, a 40% chance
you will win $7, and a 50% chance you will win only $3.
a) What are the mean and standard deviation of your net

winnings?
b) You play twice. Assuming the plays are independent

events, what are the mean and standard deviation of
your total winnings?

6. Emergency switch. Safety engineers must determine
whether industrial workers can operate a machine’s
emergency shutoff device. Among a group of test sub-
jects, 66% were successful with their left hands, 82% with
their right hands, and 51% with either hand.
a) What percent of these workers could not operate the

switch with either hand?
b) Are success with right and left hands independent

events? Explain.
c) Are success with right and left hands mutually exclu-

sive? Explain.

7. Twins. In the United States, the probability of having
twins (usually about 1 in 90 births) rises to about 1 in 
10 for women who have been taking the fertility drug
Clomid. Among a group of 10 pregnant women, what’s
the probability that
a) at least one will have twins if none were taking a

fertility drug?
b) at least one will have twins if all were taking 

Clomid?
c) at least one will have twins if half were taking 

Clomid?

8. Deductible. A car owner may buy insurance that will
pay the full price of repairing the car after an at-fault acci-
dent, or save $12 a year by getting a policy with a $500
deductible. Her insurance company says that about 0.5%
of drivers in her area have an at-fault auto accident dur-
ing any given year. Based on this information, should she
buy the policy with the deductible or not? How does the
value of her car influence this decision?

9. More twins. A group of 5 women became pregnant
while undergoing fertility treatments with the drug 
Clomid, discussed in Exercise 7. What’s the probability
that
a) none will have twins?
b) exactly 1 will have twins?
c) at least 3 will have twins?

10. At fault. The car insurance company in Exercise 8 be-
lieves that about 0.5% of drivers have an at-fault accident
during a given year. Suppose the company insures 1355
drivers in that city.
a) What are the mean and standard deviation of the

number who may have at-fault accidents?
b) Can you describe the distribution of these accidents

with a Normal model? Explain.

11. Twins, part III. At a large fertility clinic, 152 women
became pregnant while taking Clomid. (See Exercise 7.)
a) What are the mean and standard deviation of the

number of twin births we might expect?
b) Can we use a Normal model in this situation? Explain.
c) What’s the probability that no more than 10 of the

women have twins?

12. Child’s play. In a board game you determine the num-
ber of spaces you may move by spinning a spinner and
rolling a die. The spinner has three regions: Half of the
spinner is marked “5,” and the other half is equally di-
vided between “10”and “20.” The six faces of the die
show 0, 0, 1, 2, 3, and 4 spots. When it’s your turn, you
spin and roll, adding the numbers together to determine
how far you may move.
a) Create a probability model for the outcome on the

spinner.
b) Find the mean and standard deviation of the spinner

results.
c) Create a probability model for the outcome on the die.
d) Find the mean and standard deviation of the die 

results.
e) Find the mean and standard deviation of the number

of spaces you get to move.

13. Language. Neurological research has shown that in
about 80% of people, language abilities reside in the
brain’s left side. Another 10% display right-brain lan-
guage centers, and the remaining 10% have two-sided
language control. (The latter two groups are mainly left-
handers; Science News, 161 no. 24 [2002].)
a) Assume that a freshman composition class contains 

25 randomly selected people. What’s the probability
that no more than 15 of them have left-brain language 
control?

b) In a randomly chosen group of 5 of these students,
what’s the probability that no one has two-sided lan-
guage control?

c) In the entire freshman class of 1200 students, how
many would you expect to find of each type?

d) What are the mean and standard deviation of the
number of these freshmen who might be right-brained
in language abilities?

e) If an assumption of Normality is justified, use the
68–95–99.7 Rule to describe how many students in 
the freshman class might have right-brain language 
control.

14. Play again. If you land in a “penalty zone” on the
game board described in Exercise 12, your move will be
determined by subtracting the roll of the die from the re-
sult on the spinner. Now what are the mean and standard
deviation of the number of spots you may move?

15. Beanstalks. In some cities tall people who want to meet
and socialize with other tall people can join Beanstalk
Clubs. To qualify, a man must be over 6'2" tall, and a
woman over 5'10". According to the National Health Sur-
vey, heights of adults may have a Normal model with
mean heights of 69.1" for men and 64.0" for women. The
respective standard deviations are 2.8" and 2.5".
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a) You’re probably not surprised to learn that men are
generally taller than women, but what does the
greater standard deviation for men’s heights indicate?

b) Are men or women more likely to qualify for
Beanstalk membership?

c) Beanstalk members believe that height is an important
factor when people select their spouses. To investi-
gate, we select at random a married man and, inde-
pendently, a married woman. Define two random
variables, and use them to express how many inches
taller the man is than the woman.

d) What’s the mean of this difference?
e) What’s the standard deviation of this difference?
f ) What’s the probability that the man is taller than the

woman (that the difference in heights is greater than 0)?
g) Suppose a survey of married couples reveals that 92%

of the husbands were taller than their wives. Based on
your answer to part f, do you believe that people’s
choice of spouses is independent of height? Explain.

16. Stocks. Since the stock market began in 1872, stock
prices have risen in about 73% of the years. Assuming
that market performance is independent from year to
year, what’s the probability that
a) the market will rise for 3 consecutive years?
b) the market will rise 3 years out of the next 5?
c) the market will fall during at least 1 of the next 

5 years?
d) the market will rise during a majority of years over

the next decade?

17. Multiple choice. A multiple choice test has 50 ques-
tions, with 4 answer choices each. You must get at least 
30 correct to pass the test, and the questions are very
difficult.
a) Are you likely to be able to pass by guessing on every

question? Explain.
b) Suppose, after studying for a while, you believe you

have raised your chances of getting each question
right to 70%. How likely are you to pass now?

c) Assuming you are operating at the 70% level and the
instructor arranges questions randomly, what’s the
probability that the third question is the first one you
get right?

18. Stock strategy. Many investment advisors argue that
after stocks have declined in value for 2 consecutive
years, people should invest heavily because the market
rarely declines 3 years in a row.
a) Since the stock market began in 1872, there have been

two consecutive losing years eight times. In six of
those cases, the market rose during the following year.
Does this confirm the advice?

b) Overall, stocks have risen in value during 95 of the
130 years since the market began in 1872. How is this
fact relevant in assessing the statistical reasoning of
the advisors?

19. Insurance. A 65-year-old woman takes out a $10,000
term life insurance policy. The company charges an an-
nual premium of $500. Estimate the company’s expected
profit on such policies if mortality tables indicate that
only 2.6% of women age 65 die within a year.

20. Teen smoking. The Centers for Disease Control say
that about 30% of high-school students smoke tobacco
(down from a high of 38% in 1997). Suppose you ran-
domly select high-school students to survey them on
their attitudes toward scenes of smoking in the movies.
What’s the probability that
a) none of the first 4 students you interview is a smoker?
b) the first smoker is the sixth person you choose?
c) there are no more than 2 smokers among 10 people

you choose?

21. Passing stats. Molly’s college offers two sections of
Statistics 101. From what she has heard about the two
professors listed, Molly estimates that her chances of
passing the course are 0.80 if she gets Professor Scedastic
and 0.60 if she gets Professor Kurtosis. The registrar uses
a lottery to randomly assign the 120 enrolled students
based on the number of available seats in each class.
There are 70 seats in Professor Scedastic’s class and 50 in
Professor Kurtosis’s class.
a) What’s the probability that Molly will pass Statistics?
b) At the end of the semester, we find out that Molly

failed. What’s the probability that she got Professor
Kurtosis?

22. Teen smoking II. Suppose that, as reported by the
Centers for Disease Control, about 30% of high school
students smoke tobacco. You randomly select 120 high
school students to survey them on their attitudes toward
scenes of smoking in the movies.
a) What’s the expected number of smokers?
b) What’s the standard deviation of the number of 

smokers?
c) The number of smokers among 120 randomly selected

students will vary from group to group. Explain why
that number can be described with a Normal model.

d) Using the 68–95–99.7 Rule, create and interpret a
model for the number of smokers among your group
of 120 students.

23. Random variables. Given independent random vari-
ables with means and standard deviations as shown, 
find the mean and standard deviation of each of these
variables:
a)
b) 10Y
c)
d)
e)

24. Merger. Explain why the facts you know about vari-
ances of independent random variables might encourage
two small insurance companies to merge. (Hint: Think
about the expected amount and potential variability in
payouts for the separate and the merged companies.)

25. Youth survey. According to a recent Gallup survey, 93%
of teens use the Internet, but there are differences in how
teen boys and girls say they use computers. The telephone
poll found that 77% of boys had played computer games
in the past week, compared with 65% of girls. On the
other hand, 76% of girls said they had e-mailed friends in
the past week, compared with only 65% of boys.

X1 + X2

X - Y
X + 0.5Y

X + 50

Review Exercises 407

Mean SD
X 50 8
Y 100 6
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a) For boys, the cited percentages are 77% playing com-
puter games and 65% using e-mail. That total is 142%,
so there is obviously a mistake in the report. No? 
Explain.

b) Based on these results, do you think playing games
and using e-mail are mutually exclusive? Explain.

c) Do you think whether a child e-mails friends is inde-
pendent of being a boy or a girl? Explain.

d) Suppose that in fact 93% of the teens in your area do
use the Internet. You want to interview a few who do
not, so you start contacting teenagers at random.
What is the probability that it takes you 5 interviews
until you find the first person who does not use the
Internet?

26. Meals. A college student on a seven-day meal plan 
reports that the amount of money he spends daily on
food varies with a mean of $13.50 and a standard devia-
tion of $7.
a) What are the mean and standard deviation of the

amount he might spend in two consecutive days?
b) What assumption did you make in order to find that

standard deviation? Are there any reasons you might
question that assumption?

c) Estimate his average weekly food costs, and the stan-
dard deviation.

d) Do you think it likely he might spend less than $50 in
a week? Explain, including any assumptions you
make in your analysis.

27. Travel to Kyrgyzstan. Your pocket copy of Kyrgyzstan
on Som a Day claims that you can expect to
spend about 4237 som each day with a standard devia-
tion of 360 som. How well can you estimate your expenses
for the trip?
a) Your budget allows you to spend 90,000 som. To 

the nearest day, how long can you afford to stay in
Kyrgyzstan, on average?

b) What’s the standard deviation of your expenses for a
trip of that duration?

c) You doubt that your total expenses will exceed your
expectations by more than two standard deviations.
How much extra money should you bring? On
average, how much of a “cushion” will you have 
per day?

28. Picking melons. Two stores sell watermelons. At the
first store the melons weigh an average of 22 pounds,
with a standard deviation of 2.5 pounds. At the second
store the melons are smaller, with a mean of 18 pounds
and a standard deviation of 2 pounds. You select a melon
at random at each store.
a) What’s the mean difference in weights of the melons?
b) What’s the standard deviation of the difference in

weights?
c) If a Normal model can be used to describe the differ-

ence in weights, what’s the probability that the melon
you got at the first store is heavier?

29. Home, sweet home. According to the 2000 Census,
66% of U.S. households own the home they live in. A
mayoral candidate conducts a survey of 820 randomly
selected homes in your city and finds only 523 owned 

4237 ; 360

by the current residents. The candidate then attacks the
incumbent mayor, saying that there is an unusually low
level of homeownership in the city. Do you agree?
Explain.

30. Buying melons. The first store in Exercise 28 sells wa-
termelons for 32 cents a pound. The second store is having
a sale on watermelons—only 25 cents a pound. Find the
mean and standard deviation of the difference in the
price you may pay for melons randomly selected at each
store.

31. Who’s the boss? The 2000 Census revealed that 26% of
all firms in the United States are owned by women. You
call some firms doing business locally, assuming that the
national percentage is true in your area.
a) What’s the probability that the first 3 you call are all

owned by women?
b) What’s the probability that none of your first 4 calls

finds a firm that is owned by a woman?
c) Suppose none of your first 5 calls found a firm owned

by a woman. What’s the probability that your next call
does?

32. Jerseys. A Statistics professor comes home to find that
all four of his children got white team shirts from soccer
camp this year. He concludes that this year, unlike other
years, the camp must not be using a variety of colors. But
then he finds out that in each child’s age group there are
4 teams, only 1 of which wears white shirts. Each child
just happened to get on the white team at random.
a) Why was he so surprised? If each age group uses the

same 4 colors, what’s the probability that all four kids
would get the same-color shirt?

b) What’s the probability that all 4 would get white
shirts?

c) We lied. Actually, in the oldest child’s group there are
6 teams instead of the 4 teams in each of the other
three groups. How does this change the probability
you calculated in part b?

408 PART IV    Randomness and Probability

33. When to stop? In Exercise 27 of the Review Exercises
for Part III, we posed this question:

You play a game that involves rolling a die. You can roll as
many times as you want, and your score is the total for all the
rolls. But . . . if you roll a 6, your score is 0 and your turn is
over. What might be a good strategy for a game like this?

You attempted to devise a good strategy by simulating
several plays to see what might happen. Let’s try calcu-
lating a strategy.
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a) On what roll would you expect to get a 6 for the first
time?

b) So, roll one time less than that. Assuming all those rolls
were not 6’s, what’s your expected score?

c) What’s the probability that you can roll that many
times without getting a 6?

34. Plan B. Here’s another attempt at developing a good
strategy for the dice game in Exercise 33. Instead of stop-
ping after a certain number of rolls, you could decide to
stop when your score reaches a certain number of points.
a) How many points would you expect a roll to add to

your score?
b) In terms of your current score, how many points

would you expect a roll to subtract from your score?
c) Based on your answers in parts a and b, at what score

will another roll “break even”?
d) Describe the strategy this result suggests.

35. Technology on campus. Every 5 years the Conference
Board of the Mathematical Sciences surveys college math
departments. In 2000 the board reported that 51% of all
undergraduates taking Calculus I were in classes that
used graphing calculators and 31% were in classes that
used computer assignments. Suppose that 16% used both
calculators and computers.
a) What percent used neither kind of technology?
b) What percent used calculators but not computers?
c) What percent of the calculator users had computer 

assignments?
d) Based on this survey, do calculator and computer use

appear to be independent events? Explain.

36. Dogs. A census by the county dog control officer found
that 18% of homes kept one dog as a pet, 4% had two
dogs, and 1% had three or more. If a salesman visits two
homes selected at random, what’s the probability he
encounters
a) no dogs?
b) some dogs?
c) dogs in each home?
d) more than one dog in each home?

37. Socks. In your sock drawer you have 4 blue socks, 
5 grey socks, and 3 black ones. Half asleep one morning,
you grab 2 socks at random and put them on. Find the
probability you end up wearing
a) 2 blue socks.
b) no grey socks.
c) at least 1 black sock.
d) a green sock.
e) matching socks.

38. Coins. A coin is to be tossed 36 times.
a) What are the mean and standard deviation of the

number of heads?
b) Suppose the resulting number of heads is unusual,

two standard deviations above the mean. How many
“extra” heads were observed?

c) If the coin were tossed 100 times, would you still 
consider the same number of extra heads unusual? 
Explain.

d) In the 100 tosses, how many extra heads would you
need to observe in order to say the results were 
unusual?

e) Explain how these results refute the “Law of Aver-
ages” but confirm the Law of Large Numbers.

39. The Drake equation. In 1961 astronomer Frank Drake
developed an equation to try to estimate the number of
extraterrestrial civilizations in our galaxy that might be
able to communicate with us via radio transmissions.
Now largely accepted by the scientific community, the
Drake equation has helped spur efforts by radio as-
tronomers to search for extraterrestrial intelligence.
Here is the equation:

OK, it looks a little messy, but here’s what it means:

NC = N # fp
# ne

# fl
# fi

# fc
# fL

Review Exercises 409

Factor What It Represents Possible Value

N Number of stars in the Milky 
Way Galaxy

200–400 billion

fp Probability that a star has planets 20%–50%
ne Number of planets in a solar

system capable of sustaining 
earth-type life

1? 2?

fl Probability that life develops
on a planet with a suitable 
environment

1%–100%

fi Probability that life evolves 
intelligence

50%?

fc Probability that intelligent life 
develops radio communication

10%–20%

fL Fraction of the planet’s life for 
which the civilization survives

?
1

1,000,000
Nc Number of extraterrestrial 

civilizations in our galaxy with 
which we could communicate

?

So, how many ETs are out there? That depends; values
chosen for the many factors in the equation depend on
ever-evolving scientific knowledge and one’s personal
guesses. But now, some questions.
a) What quantity is calculated by the first product, 
b) What quantity is calculated by the product,

c) What probability is calculated by the product ?
d) Which of the factors in the formula are conditional

probabilities? Restate each in a way that makes the
condition clear.

Note: A quick Internet search will find you a site where
you can play with the Drake equation yourself.

40. Recalls. In a car rental company’s fleet, 70% of the cars
are American brands, 20% are Japanese, and the rest are
German. The company notes that manufacturers’ recalls
seem to affect 2% of the American cars, but only 1% of the
others.
a) What’s the probability that a randomly chosen car is

recalled?
b) What’s the probability that a recalled car is American?

fl
# fi

N # fp
# ne

# fl?

N # fp?
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41. Pregnant? Suppose that 70% of the women who sus-
pect they may be pregnant and purchase an in-home preg-
nancy test are actually pregnant. Further suppose that the
test is 98% accurate. What’s the probability that a woman
whose test indicates that she is pregnant actually is?

42. Door prize. You are among 100 people attending a
charity fundraiser at which a large-screen TV will be
given away as a door prize. To determine who wins, 
99 white balls and 1 red ball have been placed in a box
and thoroughly mixed. The guests will line up and, one
at a time, pick a ball from the box. Whoever gets the red
ball wins the TV, but if the ball is white, it is returned to
the box. If none of the 100 guests gets the red ball, the
TV will be auctioned off for additional benefit of the
charity.

a) What’s the probability that the first person in line
wins the TV?

b) You are the third person in line. What’s the probability
that you win the TV?

c) What’s the probability that the charity gets to sell the
TV because no one wins?

d) Suppose you get to pick your spot in line. Where
would you want to be in order to maximize your
chances of winning?

e) After hearing some protest about the plan, the organ-
izers decide to award the prize by not returning the
white balls to the box, thus ensuring that 1 of the 100
people will draw the red ball and win the TV. Now
what position in line would you choose in order to
maximize your chances?
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CHAPTER

18
Sampling 
Distribution 
Models

In November 2005 the Harris Poll asked 889 U.S. adults, “Do you believe in
ghosts?” 40% said they did. At almost the same time, CBS News polled 808
U.S. adults and asked the same question. 48% of their respondents pro-
fessed a belief in ghosts. Why the difference? This seems like a simple

enough question. Should we be surprised to find that we could get proportions
this different from properly selected random samples drawn from the same pop-
ulation? You’re probably used to seeing that observations vary, but how much
variability among polls should we expect to see?

Why do sample proportions vary at all? How can surveys conducted at essen-
tially the same time by organizations asking the same questions get different re-
sults? The answer is at the heart of Statistics. The proportions vary from sample
to sample because the samples are composed of different people.

It’s actually pretty easy to predict how much a proportion will vary under cir-
cumstances like this. Understanding the variability of our estimates will let us ac-
tually use that variability to better understand the world.

The Central Limit Theorem 
for Sample Proportions

We’ve talked about Think, Show, and Tell. Now we have to add Imagine. In order
to understand the CBS poll, we want to imagine the results from all the random
samples of size 808 that CBS News didn’t take. What would the histogram of all
the sample proportions look like?

For people’s belief in ghosts, where do you expect the center of that histogram
to be? Of course, we don’t know the answer to that (and probably never will). But
we know that it will be at the true proportion in the population, and we can call
that p. (See the Notation Alert.) For the sake of discussion here, let’s suppose that
45% of all American adults believe in ghosts, so we’ll use .

How about the shape of the histogram? We don’t have to just imagine. We can
simulate a bunch of random samples that we didn’t really draw. Here’s a histogram
of the proportions saying they believe in ghosts for 2000 simulated independent
samples of 808 adults when the true proportion is .p = 0.45

p = 0.45

WHO U.S. adults

WHAT Belief in ghosts

WHEN November 2005

WHERE United States

WHY Public attitudes

We see only the sample that
we actually drew, but by
simulating or modeling, we
can imagine what we might
have seen had we drawn
other possible random
samples.
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FIGURE 18.1
A histogram of sample
proportions for 2000 sim-
ulated samples of 808
adults drawn from a popu-
lation with . The
sample proportions vary,
but their distribution is
centered at the true pro-
portion, p.

p = 0.45

1 A word of caution. Until now we’ve been plotting the distribution of the sample, a display
of the actual data that were collected in that one sample. But now we’ve plotted the
sampling distribution; a display of summary statistics ( ’s, for example) for many different
samples. “Sample distribution” and “sampling distribution” sound a lot alike, but they re-
fer to very different things. (Sorry about that—we didn’t make up the terms. It’s just the
way it is.) And the distinction is critical. Whenever you read or write something about one
of these, think very carefully about what the words signify.
2 Well, the fact that we spent most of Chapter 6 on the Normal model might have been a hint.

pN

It should be no surprise that we don’t get the same proportion for each sam-
ple we draw, even though the underlying true value is the same for the popula-
tion. Each comes from a different simulated sample. The histogram above is a
simulation of what we’d get if we could see all the proportions from all possible sam-
ples. That distribution has a special name. It is called the sampling distribution of
the proportions.1

Does it surprise you that the histogram is unimodal? Symmetric? That it is
centered at p? You probably don’t find any of this shocking. Does the shape re-
mind you of any model that we’ve discussed? It’s an amazing and fortunate fact
that a Normal model is just the right one for the histogram of sample proportions.

As we’ll see in a few pages, this fact was proved in 1810 by the great French
mathematician Pierre-Simon Laplace as part of a more general result. There is no
reason you should guess that the Normal model would be the one we need here,2

and, indeed, the importance of Laplace’s result was not immediately understood
by his contemporaries. But (unlike Laplace’s contemporaries in 1810) we know
how useful the Normal model can be.

Modeling how sample proportions vary from sample to sample is one of the
most powerful ideas we’ll see in this course. A sampling distribution model for
how a sample proportion varies from sample to sample allows us to quantify that
variation and to talk about how likely it is that we’d observe a sample proportion
in any particular interval.

To use a Normal model, we need to specify two parameters: its mean and
standard deviation. The center of the histogram is naturally at p, so we’ll put ,
the mean of the Normal, at p.

What about the standard deviation? Usually the mean gives us no informa-
tion about the standard deviation. Suppose we told you that a batch of bike helmets
had a mean diameter of 26 centimeters and asked what the standard deviation was.
If you said, “I have no idea,” you’d be exactly right. There’s no information about

from knowing the value of .
But there’s a special fact about proportions. With proportions we get some-

thing for free. Once we know the mean, p, we automatically also know the stan-
dard deviation. We saw in the last chapter that for a Binomial model the standard
deviation of the number of successes is . Now we want the standard deviation1npq

ms

m

pN

Activity: Sampling
Distribution of a Proportion. You
don’t have to imagine—you can
simulate.

NOTATION ALERT:

The letter p is our choice for 
the parameter of the model for
proportions. It violates our
“Greek letters for parameters”
rule, but if we stuck to that, our
natural choice would be . We
could use to be perfectly
consistent, but then we’d have
to write statements like

.That just seems a bit
weird to us. After all, we’ve
known that . . .
since the Greeks, and it’s a hard
habit to break.

So, we’ll use p for the model
parameter (the probability of a
success) and for the observed
proportion in a sample. We’ll
also use q for the probability of
a failure and for
its observed value.

But be careful. We’ve already
used capital P for a general
probability. And we’ll soon see
another use of P in the next
chapter! There are a lot of p’s in
this course; you’ll need to think
clearly about the context to
keep them straight.

qN1q = 1 - p2

pN

p = 3.1415926

p = 0.46

p

p

Pierre-Simon Laplace, 1749–1827.

Sample Proportions. Generate
sample after sample to see how
the proportions vary.
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Simulation: The Standard
Deviation of a Proportion. Do
you believe this formula for
standard deviation? Don’t just
take our word for it—convince
yourself with an experiment.

Simulation: Simulating
Sampling Distributions. Watch
the Normal model appear from
random proportions.
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p
–3 pq

 n –2 pq
 n –1 pq

 n 1 pq
 n 2 pq

 n 3 pq
 n

FIGURE 18.2
A Normal model centered at p with a 

standard deviation of is a good 

model for a collection of proportions
found for many random samples of
size n from a population with success
probability p.

A

pq

n

3 For smaller n, we can just use a Binomial model.
4 The standard deviation is 1.75%. Remember that the standard deviation always has the
same units as the data. Here our units are %. But that can be confusing, because the stan-
dard deviation is not 1.75% of anything. It is 1.75 percentage points. If that’s confusing, try
writing the units as “percentage points” instead of %.

of the proportion of successes, . The sample proportion is the number of successes
divided by the number of trials, n, so the standard deviation is also divided by n:

When we draw simple random samples of n individuals, the proportions we
find will vary from sample to sample. As long as n is reasonably large,3 we can
model the distribution of these sample proportions with a probability model that is

N¢p, 
A

pq

n
≤ .

s1pN2 = SD1pN2 =

1npq

n
=

A

pq

n
.

pNpN

Although we’ll never know the true proportion of adults who believe in ghosts,
we’re supposing it to be 45%. Once we put the center at , the standard de-
viation for the CBS poll is

Here’s a picture of the Normal model for our simulation histogram:

SD1pN2 =

A

pq

n
=

A

10.45210.552

808
= 0.0175, or 1.75%.

p = 0.45

NOTATION ALERT:

In Chapter 8 we introduced as
the predicted value for y.The
“hat” here plays a similar role.
It indicates that —the observed
proportion in our data—is our
estimate of the parameter p.

pN

yN

0.3975 0.4150
–2s

0.4325
–1s

0.4500
p

0.4675
1s

0.4850
2s

0.5025
–3s 3s

FIGURE 18.3
Using 0.45 for p gives this Normal
model for Figure 18.1’s histogram of
the sample proportions of adults be-
lieving in ghosts .(n = 808)

Because we have a Normal model, we can use the 68–95–99.7 Rule or look up
other probabilities using a table or technology. For example, we know that 95% of
Normally distributed values are within two standard deviations of the mean, so
we should not be surprised if 95% of various polls gave results that were near 45%
but varied above and below that by no more than two standard deviations. Since

,4 we see that the CBS poll estimating belief in ghosts at 48% is
consistent with our guess of 45%. This is what we mean by sampling error. It’s not
really an error at all, but just variability you’d expect to see from one sample to an-
other. A better term would be sampling variability.

2 * 1.75% = 3.5%
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Assumptions and Conditions 415

How Good Is the Normal Model?
Stop and think for a minute about what we’ve just said. It’s a remarkable claim.
We’ve said that if we draw repeated random samples of the same size, n, from
some population and measure the proportion, , we see in each sample, then the
collection of these proportions will pile up around the underlying population pro-
portion, p, and that a histogram of the sample proportions can be modeled well
by a Normal model.

There must be a catch. Suppose the samples were of size 2, for example. Then
the only possible proportion values would be 0, 0.5, and 1. There’s no way the his-
togram could ever look like a Normal model with only three possible values for
the variable.

Well, there is a catch. The claim is only approximately true. (But, that’s OK.
After all, models are only supposed to be approximately true.) And the model be-
comes a better and better representation of the distribution of the sample propor-
tions as the sample size gets bigger.5 Samples of size 1 or 2 just aren’t going to
work very well. But the distributions of proportions of many larger samples do
have histograms that are remarkably close to a Normal model.

Assumptions and Conditions
To use a model, we usually must make some assumptions. To use the sampling
distribution model for sample proportions, we need two assumptions:

The Independence Assumption: The sampled values must be independent
of each other.
The Sample Size Assumption: The sample size, n, must be large enough.

Of course, assumptions are hard—often impossible—to check. That’s why we
assume them. But, as we saw in Chapter 8, we should check to see whether the as-
sumptions are reasonable. To think about the Independence Assumption, we of-
ten wonder whether there is any reason to think that the data values might affect
each other. Fortunately, we can often check conditions that provide information
about the assumptions. Check these conditions before using the Normal to model
the distribution of sample proportions:

Randomization Condition: If your data come from an experiment, subjects
should have been randomly assigned to treatments. If you have a survey,
your sample should be a simple random sample of the population. If some
other sampling design was used, be sure the sampling method was not biased
and that the data are representative of the population.
10% Condition: The sample size, n, must be no larger than 10% of the popu-
lation. For national polls, the total population is usually very large, so the
sample is a small fraction of the population.
Success/Failure Condition: The sample size has to be big enough so that we
expect at least 10 successes and at least 10 failures. When np and nq are at least
10, we have enough data for sound conclusions. For the CBS survey, a “suc-
cess” might be believing in ghosts. With , we expect 
successes and failures. Both are at least 10, so we cer-
tainly expect enough successes and enough failures for the condition to be
satisfied.

808 * 0.55 = 444
808 * 0.45 = 364p = 0.45

pN

0.0 0.5 1.0

1500

1000

500

0

FIGURE 18.4
Proportions from samples of size 2 can
take on only three possible values. A
Normal model does not work well.

5 Formally, we say the claim is true in the limit as n grows.

The terms  “success” and
“failure” for the outcomes
that have probability p and q
are common in Statistics. But
they are completely arbitrary
labels. When we say that 
a disease occurs with
probability p, we certainly
don’t mean that getting sick
is a  “success” in the ordinary
sense of the word.
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416 CHAPTER 18    Sampling Distribution Models

These last two conditions seem to conflict with each other. The Success/ 
Failure Condition wants sufficient data. How much depends on p. If p is near 0.5,
we need a sample of only 20 or so. If p is only 0.01, however, we’d need 1000. But
the 10% Condition says that a sample should be no larger than 10% of the popu-
lation. If you’re thinking, “Wouldn’t a larger sample be better?” you’re right of
course. It’s just that if the sample were more than 10% of the population, we’d
need to use different methods to analyze the data. Fortunately, this isn’t usually a
problem in practice. Often, as in polls that sample from all U.S. adults or indus-
trial samples from a day’s production, the populations are much larger than 10
times the sample size.

A Sampling Distribution Model for a Proportion
We’ve simulated repeated samples and looked at a histogram of the sample pro-
portions. We modeled that histogram with a Normal model. Why do we bother to
model it? Because this model will give us insight into how much the sample propor-
tion can vary from sample to sample. We’ve simulated many of the other random
samples we might have gotten. The model is an attempt to show the distribution
from all the random samples. But how do we know that a Normal model will re-
ally work? Is this just an observation based on some simulations that might be ap-
proximately true some of the time?

It turns out that this model can be justified theoretically and that the larger
the sample size, the better the model works. That’s the result Laplace proved. We
won’t bother you with the math because, in this instance, it really wouldn’t help
your understanding.6 Nevertheless, the fact that we can think of the sample pro-
portion as a random variable taking on a different value in each random sample,
and then say something this specific about the distribution of those values, is a
fundamental insight—one that we will use in each of the next four chapters.

We have changed our point of view in a very important way. No longer is a
proportion something we just compute for a set of data. We now see it as a ran-
dom variable quantity that has a probability distribution, and thanks to Laplace
we have a model for that distribution. We call that the sampling distribution
model for the proportion, and we’ll make good use of it.

6 The proof is pretty technical. We’re not sure it helps our understanding all that much either.

THE SAMPLING DISTRIBUTION MODEL FOR A PROPORTION
Provided that the sampled values are independent and the sample size is
large enough, the sampling distribution of is modeled by a Normal model 

with mean p and standard deviation SD1pN2 =

A

pq

n
.m1pN2 =

pN

We have now answered the
question raised at the start of
the chapter.To know how
variable a sample proportion
is, we need to know the
proportion and the size of
the sample.That’s all.

Without the sampling distribution model, the rest of Statistics just wouldn’t
exist. Sampling models are what makes Statistics work. They inform us about the
amount of variation we should expect when we sample. Suppose we spin a coin
100 times in order to decide whether it’s fair or not. If we get 52 heads, we’re prob-
ably not surprised. Although we’d expect 50 heads, 52 doesn’t seem particularly
unusual for a fair coin. But we would be surprised to see 90 heads; that might re-
ally make us doubt that the coin is fair. How about 64 heads? Harder to say. That’s
a case where we need the sampling distribution model. The sampling model
quantifies the variability, telling us how surprising any sample proportion is. And

Simulation: Simulate the
Sampling Distribution Model of 
a Proportion. You probably don’t
want to work through the formal
mathematical proof; a simulation
is far more convincing!
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A Sampling Distribution Model for a Proportion 417

it enables us to make informed decisions about how precise our estimate of the
true proportion might be. That’s exactly what we’ll be doing for the rest of this
book.

Sampling distribution models act as a bridge from the real world of data to
the imaginary model of the statistic and enable us to say something about the
population when all we have is data from the real world. This is the huge leap of
Statistics. Rather than thinking about the sample proportion as a fixed quantity
calculated from our data, we now think of it as a random variable—our value is
just one of many we might have seen had we chosen a different random sample.
By imagining what might happen if we were to draw many, many samples from
the same population, we can learn a lot about how close the statistics computed
from our one particular sample may be to the corresponding population parame-
ters they estimate. That’s the path to the margin of error you hear about in polls
and surveys. We’ll see how to determine that in the next chapter.

Using the sampling distribution model for proportionsFOR EXAMPLE

The Centers for Disease Control and Prevention report that 22% of 18-year-old women in the United States have a body mass index (BMI)7 of 25 or
more—a value considered by the National Heart Lung and Blood Institute to be associated with increased health risk.

As part of a routine health check at a large college, the physical education department usually requires students to come in to be measured and
weighed. This year, the department decided to try out a self-report system. It asked 200 randomly selected female students to report their heights and
weights (from which their BMIs could be calculated). Only 31 of these students had BMIs greater than 25.

Question: Is this proportion of high-BMI students unusually small?

First, check the conditions:
Ç Randomization Condition: The department drew a random sample, so the respondents should be independent and

randomly selected from the population.
Ç 10% Condition: 200 respondents is less than 10% of all the female students at a “large college.”
Ç Success/Failure Condition: The department expected “successes” and

“failures,” both at least 10.
It’s okay to use a Normal model to describe the sampling distribution of the proportion of respondents with BMIs
above 25.

The phys ed department observed .

The department expected 

.

By the 68–95–99.7 Rule, I know that values more than 2 standard deviations below the mean of a Normal model
show up less than 2.5% of the time. Perhaps women at this college differ from the general population, or self-reporting
may not provide accurate heights and weights.

so z =

pN - p
SD(pN)

=

0.155 - 0.22
0.029

= -2.24

E(pN) = p = 0.22, with SD(pN) =

A

pq
n

=

A

(0.22)(0.78)
200

= 0.029,

pN =

31
200

= 0.155

nq = 200(0.78) = 156
np = 200(0.22) = 44

7 BMI = weight in kg/(height in m)2.
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8 Actually, it’s quite difficult to get an accurate estimate of the proportion of lefties in the
population. Estimates range from 8% to 15%.

Plan State what we want to know.

JUST CHECKING
1. You want to poll a random sample of 100 students on campus to see if they are in favor of the pro-

posed location for the new student center. Of course, you’ll get just one number, your sample propor-
tion, . But if you imagined all the possible samples of 100 students you could draw and imagined the
histogram of all the sample proportions from these samples, what shape would it have?

2. Where would the center of that histogram be?

3. If you think that about half the students are in favor of the plan, what would the standard deviation
of the sample proportions be?

pN

Suppose that about 13% of the population is left-handed.8 A 200-seat school auditorium has been
built with 15 “lefty seats,” seats that have the built-in desk on the left rather than the right arm of
the chair. (For the right-handed readers among you, have you ever tried to take notes in a chair
with the desk on the left side?)

Question: In a class of 90 students, what’s the probability that there will not be enough seats for
the left-handed students?

Working with Sampling Distribution Models for ProportionsSTEP-BY-STEP EXAMPLE

I want to find the probability that in a group
of 90 students, more than 15 will be left-
handed. Since 15 out of 90 is 16.7%, I need
the probability of finding more than 16.7%
left-handed students out of a sample of 90 if
the proportion of lefties is 13%.

Model Think about the assumptions and
check the conditions.

You might be able to think of cases where
the Independence Assumption is not
plausible—for example, if the students
are all related, or if they were selected for
being left- or right-handed. But for a ran-
dom sample, the assumption of
independence seems reasonable.

Ç Independence Assumption: It is reason-
able to assume that the probability that
one student is left-handed is not changed
by the fact that another student is
right- or left-handed.

Ç Randomization Condition: The 90 stu-
dents in the class can be thought of as
a random sample of students.

Ç 10% Condition: 90 is surely less than
10% of the population of all students.
(Even if the school itself is small, I’m
thinking of the population of all possible
students who could have gone to the
school.)

Ç Success/Failure Condition:

nq = 90(0.87) = 78.3 Ú 10
np = 90(0.13) = 11.7 Ú 10
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What About Quantitative Data? 419

What About Quantitative Data?
Proportions summarize categorical variables. And the Normal sampling distribu-
tion model looks like it is going to be very useful. But can we do something similar
with quantitative data?

Of course we can (or we wouldn’t have asked). Even more remarkable, not
only can we use all of the same concepts, but almost the same model, too.

What are the concepts? We know that when we sample at random or random-
ize an experiment, the results we get will vary from sample-to-sample and from
experiment-to-experiment. The Normal model seems an incredibly simple way to
summarize all that variation. Could something that simple work for means? We
won’t keep you in suspense. It turns out that means also have a sampling distri-
bution that we can model with a Normal model. And it turns out that Laplace’s
theoretical result applies to means, too. As we did with proportions, we can get
some insight from a simulation.

The population proportion is . The
conditions are satisfied, so I’ll model the sam-
pling distribution of with a Normal model
with mean 0.13 and a standard deviation of

My model for is .N (0.13, 0.035)pN

SD(pN) =

A

pq
n

=

A

(0.13)(0.87)
90

L 0.035

pN

p = 0.13State the parameters and the sampling
distribution model.

z =

pN - p
SD(pN)

=

0.167 - 0.13
0.035

= 1.06

Plot Make a picture. Sketch the model
and shade the area we’re interested in, in
this case the area to the right of 16.7%.

Mechanics Use the standard deviation
as a ruler to find the z-score of the cutoff
proportion. We see that 16.7% lefties
would be just over one standard devia-
tion above the mean.

Find the resulting probability from a
table of Normal probabilities, a computer
program, or a calculator.

0.235 
3s

0.2
2s

0.165
1s

0.095
–1s

0.06
–2s

0.025
–3s

0.130
p

0.167

0.145

P(pN 7 0.167) = P(z 7 1.06) = 0.1446

There is about a 14.5% chance that there will
not be enough seats for the left-handed stu-
dents in the class.

Conclusion Interpret the probability in
the context of the question.
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1 2 3 4 5 6
Die Toss

2000

1500

1000

500

# 
of

 T
os

se
s

Simulating the Sampling Distribution of a Mean
Here’s a simple simulation. Let’s start with one fair die. If we toss this die 10,000
times, what should the histogram of the numbers on the face of the die look like?
Here are the results of a simulated 10,000 tosses:

1.0 2.0 3.0 4.0 5.0 6.0
2-Dice Average

2000

1500

1000

500

# 
of

 T
os

se
s

Now let’s toss a pair of dice and record the average of the two. If we repeat
this (or at least simulate repeating it) 10,000 times, recording the average of each
pair, what will the histogram of these 10,000 averages look like? Before you look,
think a minute. Is getting an average of 1 on two dice as likely as getting an aver-
age of 3 or 3.5?

Let’s see:

We’re much more likely to get an average near 3.5 than we are to get one near
1 or 6. Without calculating those probabilities exactly, it’s fairly easy to see that the
only way to get an average of 1 is to get two 1’s. To get a total of 7 (for an average
of 3.5), though, there are many more possibilities. This distribution even has a
name: the triangular distribution.

What if we average 3 dice? We’ll sim-
ulate 10,000 tosses of 3 dice and take
their average:

3 4
3-Dice Average

1500

1000

500# 
of

 T
os

se
s

651 2

What’s happening? First notice that it’s getting harder to have averages near
the ends. Getting an average of 1 or 6 with 3 dice requires all three to come up 1
or 6, respectively. That’s less likely than for 2 dice to come up both 1 or both 6. The
distribution is being pushed toward the middle. But what’s happening to the
shape? (This distribution doesn’t have a name, as far as we know.)
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The Fundamental Theorem of Statistics 421

Let’s continue this simulation to
see what happens with larger samples.
Here’s a histogram of the averages for
10,000 tosses of 5 dice:

1.0
5-Dice Average

1500
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500# 
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 T
os

se
s

2.0 3.0 4.0 5.0 6.0

The pattern is becoming clearer. Two things continue to happen. The first fact we
knew already from the Law of Large Numbers. It says that as the sample size (num-
ber of dice) gets larger, each sample average is more likely to be closer to the popula-
tion mean. So, we see the shape continuing to tighten around 3.5. But the shape of
the distribution is the surprising part. It’s becoming bell-shaped. And not just bell-
shaped; it’s approaching the Normal model.

Are you convinced? Let’s skip
ahead and try 20 dice. The histogram
of averages for 10,000 throws of 20
dice looks like this:
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20-Dice Average

# 
of

 T
os

se
s

Now we see the Normal shape again (and notice how much smaller the
spread is). But can we count on this happening for situations other than dice
throws? What kinds of sample means have sampling distributions that we can
model with a Normal model? It turns out that Normal models work well amaz-
ingly often.

The Fundamental Theorem of Statistics
The dice simulation may look like a special situation, but it turns out that what we
saw with dice is true for means of repeated samples for almost every situation.
When we looked at the sampling distribution of a proportion, we had to check
only a few conditions. For means, the result is even more remarkable. There are al-
most no conditions at all.

Let’s say that again: The sampling distribution of any mean becomes more
nearly Normal as the sample size grows. All we need is for the observations to be
independent and collected with randomization. We don’t even care about the
shape of the population distribution!9 This surprising fact is the result Laplace
proved in a fairly general form in 1810. At the time, Laplace’s theorem caused
quite a stir (at least in mathematics circles) because it is so unintuitive. Laplace’s
result is called the Central Limit Theorem10 (CLT).

Activity: The Sampling
Distribution Model for Means.
Don’t just sit there reading about
the simulation—do it yourself.

9 OK, one technical condition. The data must come from a population with a finite vari-
ance. You probably can’t imagine a population with an infinite variance, but statisticians
can construct such things, so we have to discuss them in footnotes like this. It really makes
no difference in how you think about the important stuff, so you can just forget we men-
tioned it.
10 The word “central” in the name of the theorem means “fundamental.” It doesn’t refer to
the center of a distribution.

“The theory of probabilities is at
bottom nothing but common
sense reduced to calculus.”

—Laplace, in Théorie
analytique des

probabilités, 1812
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Why should the Normal model show up again for the sampling distribution
of means as well as proportions? We’re not going to try to persuade you that it is
obvious, clear, simple, or straightforward. In fact, the CLT is surprising and a bit
weird. Not only does the distribution of means of many random samples get
closer and closer to a Normal model as the sample size grows, this is true regard-
less of the shape of the population distribution! Even if we sample from a skewed or
bimodal population, the Central Limit Theorem tells us that means of repeated
random samples will tend to follow a Normal model as the sample size grows. Of
course, you won’t be surprised to learn that it works better and faster the closer
the population distribution is to a Normal model. And it works better for larger
samples. If the data come from a population that’s exactly Normal to start with,
then the observations themselves are Normal. If we take samples of size 1, their
“means” are just the observations—so, of course, they have Normal sampling dis-
tribution. But now suppose the population distribution is very skewed (like the
CEO data from Chapter 5, for example). The CLT works, although it may take a
sample size of dozens or even hundreds of observations for the Normal model to
work well.

For example, think about a really bimodal population, one that consists of
only 0’s and 1’s. The CLT says that even means of samples from this population
will follow a Normal sampling distribution model. But wait. Suppose we have a
categorical variable and we assign a 1 to each individual in the category and a 0
to each individual not in the category. And then we find the mean of these 0’s and
1’s. That’s the same as counting the number of individuals who are in the cate-
gory and dividing by n. That mean will be . . . the sample proportion, , of individu-
als who are in the category (a “success”). So maybe it wasn’t so surprising after
all that proportions, like means, have Normal sampling distribution models; they
are actually just a special case of Laplace’s remarkable theorem. Of course, for
such an extremely bimodal population, we’ll need a reasonably large sample
size—and that’s where the special conditions for proportions come in.

pN

Laplace was one of the
greatest scientists and
mathematicians of his 
time. In addition to his
contributions to probability
and statistics, he published
many new results in
mathematics, physics, and
astronomy (where his
nebular theory was one of
the first to describe the
formation of the solar system
in much the way it is
understood today). He also
played a leading role in
establishing the metric
system of measurement.

His brilliance, though,
sometimes got him into
trouble. A visitor to the
Académie des Sciences in
Paris reported that Laplace
let it be widely known that he
considered himself the best
mathematician in France.The
effect of this on his colleagues
was not eased by the fact that
Laplace was right.

THE CENTRAL LIMIT THEOREM (CLT)
The mean of a random sample is a random variable whose sampling distri-
bution can be approximated by a Normal model. The larger the sample,
the better the approximation will be.

Assumptions and Conditions
The CLT requires essentially the same assumptions as we saw for modelling pro-
portions:

Independence Assumption: The sampled values must be independent of
each other.
Sample Size Assumption: The sample size must be sufficiently large.

We can’t check these directly, but we can think about whether the Independence
Assumption is plausible. We can also check some related conditions:

Randomization Condition: The data values must be sampled randomly, or
the concept of a sampling distribution makes no sense.
10% Condition: When the sample is drawn without replacement (as is usually
the case), the sample size, n, should be no more than 10% of the population.
Large Enough Sample Condition: Although the CLT tells us that a Normal
model is useful in thinking about the behavior of sample means when the

Activity: The Central
Limit Theorem. Does it really
work for samples from non-
Normal populations?

The Central Limit Theorem. See
the sampling distribution of sample
means take shape as you choose
sample after sample.
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But Which Normal? 423

sample size is large enough, it doesn’t tell us how large a sample we need.
The truth is, it depends; there’s no one-size-fits-all rule. If the population is
unimodal and symmetric, even a fairly small sample is okay. If the popula-
tion is strongly skewed, like the compensation for CEOs we looked at in
Chapter 5, it can take a pretty large sample to allow use of a Normal model
to describe the distribution of sample means. For now you’ll just need to
think about your sample size in the context of what you know about the pop-
ulation, and then tell whether you believe the Large Enough Sample Condi-
tion has been met.

But Which Normal?
The CLT says that the sampling distribution of any mean or proportion is ap-
proximately Normal. But which Normal model? We know that any Normal is
specified by its mean and standard deviation. For proportions, the sampling dis-
tribution is centered at the population proportion. For means, it’s centered at the
population mean. What else would we expect?

What about the standard deviations, though? We noticed in our dice simulation
that the histograms got narrower as we averaged more and more dice together. This
shouldn’t be surprising. Means vary less than the individual observations. Think
about it for a minute. Which would be more surprising, having one person in your
Statistics class who is over 6'9" tall or having the mean of 100 students taking the
course be over 6'9"? The first event is fairly rare.11 You may have seen somebody
this tall in one of your classes sometime. But finding a class of 100 whose mean
height is over 6'9" tall just won’t happen. Why? Because means have smaller stan-
dard deviations than individuals.

How much smaller? Well, we have good news and bad news. The good news
is that the standard deviation of falls as the sample size grows. The bad news is
that it doesn’t drop as fast as we might like. It only goes down by the square root
of the sample size. Why? The Math Box will show you that the Normal model for
the sampling distribution of the mean has a standard deviation equal to

where is the standard deviation of the population. To emphasize that this is a
standard deviation parameter of the sampling distribution model for the sample
mean, , we write or .s1y2SD1y2y

s

SD1y2 =

s

1n

y

Activity: The Standard
Deviation of Means. Experiment
to see how the variability of the
mean changes with the sample
size.

THE SAMPLING DISTRIBUTION MODEL FOR A MEAN (CLT)
When a random sample is drawn from any population with mean and
standard deviation , its sample mean, , has a sampling distribution 

with the same mean but whose standard deviation is (and we write 

). No matter what population the random sample comes 

from, the shape of the sampling distribution is approximately Normal as long
as the sample size is large enough. The larger the sample used, the more
closely the Normal approximates the sampling distribution for the mean.

s1y2 = SD1y2 =

s

1n

s

1n
m

ys

m
Activity: The Sampling

Distribution of the Mean. The
CLT tells us what to expect. In
this activity you can work with
the CLT or simulate it if you
prefer.

11 If students are a random sample of adults, fewer than 1 out of 10,000 should be taller than
6'9". Why might college students not really be a random sample with respect to height?
Even if they’re not a perfectly random sample, a college student over 6'9" tall is still rare.
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We know that is a sum divided by n:

As we saw in Chapter 16, when a random variable is divided by a constant its variance is divided
by the square of the constant:

To get our sample, we draw the y’s randomly, ensuring they are independent. For independent
random variables, variances add:

All n of the y’s were drawn from our population, so they all have the same variance, :

The standard deviation of is the square root of this variance:

SD1y2 =

A

s2

n
=

s

1n
.

y

Var1y2 =

s2
+ s2

+ s2
+

.  .  .
+ s2

n2
=

ns2

n2
=

s2

n
.

s2

Var1y2 =

Var1y12 + Var1y22 + Var1y32 +
.  .  .

+ Var1yn2

n2
.

Var1y2 =

Var1y1 + y2 + y3 +
.  .  .

+ yn2

n2
.

y =

y1 + y2 + y3 +
.  .  .

+ yn

n
.

y

424 CHAPTER 18    Sampling Distribution Models

We now have two closely related sampling distribution models that we can use
when the appropriate assumptions and conditions are met. Which one we use de-
pends on which kind of data we have:

u When we have categorical data, we calculate a sample proportion, ; the
sampling distribution of this random variable has a Normal model with a
mean at the true proportion (“Greek letter”) p and a standard deviation of 

. We’ll use this model in Chapters 19 through 22.

u When we have quantitative data, we calculate a sample mean, ; the sampling
distribution of this random variable has a Normal model with a mean at the 
true mean, , and a standard deviation of . We’ll use this model
in Chapters 23, 24, and 25.

The means of these models are easy to remember, so all you need to be care-
ful about is the standard deviations. Remember that these are standard deviations
of the statistics and . They both have a square root of n in the denominator. That
tells us that the larger the sample, the less either statistic will vary. The only dif-
ference is in the numerator. If you just start by writing for quantitative
data and for categorical data, you’ll be able to remember which formula
to use.

SD1pN2
SD1y2

ypN

SD1y2 =

s

1n
m

y

SD1pN2 =

A

pq

n
=

1pq

1n

pN

MATH BOX
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But Which Normal? 425

Using the CLT for meansFOR EXAMPLE

Recap: A college physical education department asked a random sample of 200 female students to self-report their heights and weights, but the per-
centage of students with body mass indexes over 25 seemed suspiciously low. One possible explanation may be that the respondents “shaded” their
weights down a bit. The CDC reports that the mean weight of 18-year-old women is 143.74 lb, with a standard deviation of 51.54 lb, but these 200 ran-
domly selected women reported a mean weight of only 140 lb.

Question: Based on the Central Limit Theorem and the 68–95–99.7 Rule, does the mean weight in this sample seem exceptionally low, or might this
just be random sample-to-sample variation?

The conditions check out okay:
Ç Randomization Condition: The women were a random sample and their weights can be assumed to be independent.
Ç 10% Condition: They sampled fewer than 10% of all women at the college.
Ç Large Enough Sample Condition: The distribution of college women’s weights is likely to be unimodal and reasonably

symmetric, so the CLT applies to means of even small samples; 200 values is plenty.

The sampling model for sample means is ap-
proximately Normal with and 

. The expected

distribution of sample means is:

The 68–95–99.7 Rule suggests that although the reported mean weight of 140 pounds is somewhat lower than ex-
pected, it does not appear to be unusual. Such variability is not all that extraordinary for samples of this size.

SD(y) =

s

1n
=

51.54
1200

= 3.64

E(y) = 143.7

132.82 136.46 140.10 147.38 151.02 154.66143.74
Sample Means

68%

95%

99.7%

140

12 Cynthia L. Ogden, Cheryl D. Fryar, Margaret D. Carroll, and Katherine M. Flegal, Mean
Body Weight, Height, and Body Mass Index, United States 1960–2002, Advance Data from Vital
and Health Statistics Number 347, Oct. 27, 2004. https//www.cdc.gov/nchs

The Centers for Disease Control and Prevention reports that the mean weight of adult men in the
United States is 190 lb with a standard deviation of 59 lb.12

Question: An elevator in our building has a weight limit of 10 persons or 2500 lb. What’s the prob-
ability that if 10 men get on the elevator, they will overload its weight limit?

Working with the Sampling Distribution Model for the MeanSTEP-BY-STEP EXAMPLE

Asking the probability that the total weight of
a sample of 10 men exceeds 2500 pounds is
equivalent to asking the probability that their
mean weight is greater than 250 pounds.

Plan State what we want to know.
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426 CHAPTER 18    Sampling Distribution Models

Plot Make a picture. Sketch the model
and shade the area we’re interested in.
Here the mean weight of 250 pounds ap-
pears to be far out on the right tail of the
curve.

z =

y - m

SD(y)
=

250 - 190
18.66

= 3.21
Mechanics Use the standard deviation
as a ruler to find the z-score of the cutoff
mean weight. We see that an average of
250 pounds is more than 3 standard devi-
ations above the mean.

The chance that a random collection of 10 men
will exceed the elevator’s weight limit is only
0.0007. So, if they are a random sample, it is
quite unlikely that 10 people will exceed the 
total weight allowed on the elevator.

Conclusion Interpret your result in the
proper context, being careful to relate it to
the original question.

P(y 7 250) = P(z 7 3.21) = 0.0007Find the resulting probability from a table
of Normal probabilities such as Table Z, a
computer program, or a calculator.

for example, if they were all from the same
family or if the elevator were in a building
with a diet clinic!)

Ç Randomization Condition: I’ll assume that
the 10 men getting on the elevator are a
random sample from the population.

Ç 10% Condition: 10 men is surely less than
10% of the population of possible elevator
riders.

Ç Large Enough Sample Condition: I suspect
the distribution of population weights is
roughly unimodal and symmetric, so my
sample of 10 men seems large enough.

The mean for all weights is and the
standard deviation is pounds. Since
the conditions are satisfied, the CLT says that
the sampling distribution of has a Normal
model with mean 190 and standard deviation

SD(y) =

s

1n
=

59
110

L 18.66

y

s = 59
m = 190

Note that if the sample were larger we’d
be less concerned about the shape of the
distribution of all weights.

State the parameters and the sampling
model.

171.3 190.0 208.7 227.3 246.0152.7134.0
y

Ç Independence Assumption: It’s reasonable
to think that the weights of 10 randomly
sampled men will be independent of each
other. (But there could be exceptions—

Model Think about the assumptions and
check the conditions.

BOCK_C18_0321570448 pp3.qxd  12/1/08  7:47 PM  Page 426



About Variation 427

About Variation
Means vary less than individual data values. That makes sense. If the same test is
given to many sections of a large course and the class average is, say, 80%, some
students may score 95% because individual scores vary a lot. But we’d be shocked
(and pleased!) if the average score of the students in any section was 95%. Aver-
ages are much less variable. Not only do group averages vary less than individ-
ual values, but common sense suggests that averages should be more consistent
for larger groups. The Central Limit Theorem confirms this hunch; the fact that 

has n in the denominator shows that the variability of sample means

decreases as the sample size increases. There’s a catch, though. The standard de-
viation of the sampling distribution declines only with the square root of the sam-
ple size and not, for example, with 1/n.

The mean of a random sample of 4 has half the standard deviation

of an individual data value. To cut the standard deviation in half again, we’d need
a sample of 16, and a sample of 64 to halve it once more.

If only we had a much larger sample, we could get the standard deviation of
the sampling distribution really under control so that the sample mean could tell
us still more about the unknown population mean, but larger samples cost more
and take longer to survey. And while we’re gathering all that extra data, the pop-
ulation itself may change, or a news story may alter opinions. There are practical
limits to most sample sizes. As we shall see, that nasty square root limits how
much we can make a sample tell about the population. This is an example of
something that’s known as the Law of Diminishing Returns.

a
1
14

=

1
2
b

SD1y2 =

s

1n
“The n’s justify the means.”

—Apocryphal 
statistical saying

13 Wainer, H. and Zwerling, H., “Legal and empirical evidence that smaller schools do not
improve student achievement,” The Phi Delta Kappan 2006 87:300–303. Discussed in
Howard Wainer, “The Most Dangerous Equation,” American Scientist, May–June 2007, 
pp. 249–256; also at www.Americanscientist.org.

A Billion Dollar Misunderstanding? In the late 1990s the Bill and Melinda
Gates Foundation began funding an effort to encourage the breakup of large schools
into smaller schools. Why? It had been noticed that smaller schools were more
common among the best-performing schools than one would expect. In time, the
Annenberg Foundation, the Carnegie Corporation, the Center for Collaborative Edu-
cation, the Center for School Change, Harvard’s Change Leadership Group, the
Open Society Institute, Pew Charitable Trusts, and the U.S. Department of Educa-
tion’s Smaller Learning Communities Program all supported the effort. Well over a
billion dollars was spent to make schools smaller.

But was it all based on a misunderstanding of sampling distributions? Statisti-
cians Howard Wainer and Harris Zwerling13 looked at the mean test scores of
schools in Pennsylvania. They found that indeed 12% of the top-scoring 50 schools
were from the smallest 3% of Pennsylvania schools—substantially more than the
3% we’d naively expect. But then they looked at the bottom 50. There they found
that 18% were small schools! The explanation? Mean test scores are, well, means.
We are looking at a rough real-world simulation in which each school is a trial. Even
if all Pennsylvania schools were equivalent, we’d expect their mean scores to vary. 
How much? The CLT tells us that means of test scores vary according to . Smaller 

schools have (by definition) smaller n’s, so the sampling distributions of their mean
scores naturally have larger standard deviations. It’s natural, then, that small
schools have both higher and lower mean scores.

s

1n
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428 CHAPTER 18    Sampling Distribution Models

The Real World and the Model World
Be careful. We have been slipping smoothly between the real world, in which we
draw random samples of data, and a magical mathematical model world, in
which we describe how the sample means and proportions we observe in the real
world behave as random variables in all the random samples that we might have
drawn. Now we have two distributions to deal with. The first is the real-world
distribution of the sample, which we might display with a histogram (for quanti-
tative data) or with a bar chart or table (for categorical data). The second is the
math world sampling distribution model of the statistic, a Normal model based on
the Central Limit Theorem. Don’t confuse the two.

For example, don’t mistakenly think the CLT says that the data are Normally
distributed as long as the sample is large enough. In fact, as samples get larger,
we expect the distribution of the data to look more and more like the population
from which they are drawn—skewed, bimodal, whatever—but not necessarily
Normal. You can collect a sample of CEO salaries for the next 1000 years,14 but the
histogram will never look Normal. It will be skewed to the right. The Central
Limit Theorem doesn’t talk about the distribution of the data from the sample. It
talks about the sample means and sample proportions of many different random
samples drawn from the same population. Of course, the CLT does require that
the sample be big enough when the population shape is not unimodal and sym-
metric, but the fact that, even then, a Normal model is useful is still a very surpris-
ing and powerful result.

14 Don’t forget to adjust for inflation.

On October 26, 2005, The Seattle Times reported:

[T]he Gates Foundation announced last week it is moving away from its em-
phasis on converting large high schools into smaller ones and instead giving
grants to specially selected school districts with a track record of academic
improvement and effective leadership. Education leaders at the Foundation
said they concluded that improving classroom instruction and mobilizing the
resources of an entire district were more important first steps to improving
high schools than breaking down the size.

JUST CHECKING
4. Human gestation times have a mean of about 266 days, with a standard deviation of about 16 days.

If we record the gestation times of a sample of 100 women, do we know that a histogram of the
times will be well modeled by a Normal model?

5. Suppose we look at the average gestation times for a sample of 100 women. If we imagined all the
possible random samples of 100 women we could take and looked at the histogram of all the sam-
ple means, what shape would it have?

6. Where would the center of that histogram be?

7. What would be the standard deviation of that histogram?
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Sampling Distribution Models
Let’s summarize what we’ve learned about sampling distributions. At the heart is
the idea that the statistic itself is a random variable. We can’t know what our statistic
will be because it comes from a random sample. It’s just one instance of some-
thing that happened for our particular random sample. A different random sam-
ple would have given a different result. This sample-to-sample variability is what
generates the sampling distribution. The sampling distribution shows us the dis-
tribution of possible values that the statistic could have had.

We could simulate that distribution by pretending to take lots of samples.
Fortunately, for the mean and the proportion, the CLT tells us that we can model
their sampling distribution directly with a Normal model.

The two basic truths about sampling distributions are:

1. Sampling distributions arise because samples vary. Each random sample will
contain different cases and, so, a different value of the statistic.

2. Although we can always simulate a sampling distribution, the Central Limit
Theorem saves us the trouble for means and proportions.

Here’s a picture showing the process going into the sampling distribution
model:

Simulation: The CLT for
Real Data. Why settle for a
picture when you can see it in
action?

–3
s
n –2

s
n –1

s
n +1

s
n +2

s
n +3

s
n

n

m

s

m
s

y1 y2 y3 • • •

FIGURE 18.5
We start with a population model, which can have any shape. It
can even be bimodal or skewed (as this one is). We label the
mean of this model and its standard deviation, .

We draw one real sample (solid line) of size n and show its
histogram and summary statistics. We imagine (or simulate)
drawing many other samples (dotted lines), which have their
own histograms and summary statistics.

We (imagine) gathering all the means into a histogram.

The CLT tells us we can model the shape of this histogram with a
Normal model. The mean of this Normal is , and the standard

deviation is .SD1y2 =

s

1n

m

sm

WHAT CAN GO WRONG?
u Don’t confuse the sampling distribution with the distribution of the sample. When you take a

sample, you always look at the distribution of the values, usually with a histogram,
and you may calculate summary statistics. Examining the distribution of the sample
data is wise. But that’s not the sampling distribution. The sampling distribution is
an imaginary collection of all the values that a statistic might have taken for all pos-
sible random samples—the one you got and the ones that you didn’t get. We use the
sampling distribution model to make statements about how the statistic varies.

(continued)
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15 For proportions, of course, there is a rule: the Success/Failure Condition. That works for
proportions because the standard deviation of a proportion is linked to its mean.

u Beware of observations that are not independent. The CLT depends crucially on the as-
sumption of independence. If our elevator riders are related, are all from the same
school (for example, an elementary school), or in some other way aren’t a random
sample, then the statements we try to make about the mean are going to be wrong.
Unfortunately, this isn’t something you can check in your data. You have to think
about how the data were gathered. Good sampling practice and well-designed ran-
domized experiments ensure independence.

u Watch out for small samples from skewed populations. The CLT assures us that the sam-
pling distribution model is Normal if n is large enough. If the population is nearly
Normal, even small samples (like our 10 elevator riders) work. If the population is
very skewed, then n will have to be large before the Normal model will work well.
If we sampled 15 or even 20 CEOs and used to make a statement about the mean
of all CEOs’ compensation, we’d likely get into trouble because the underlying data
distribution is so skewed. Unfortunately, there’s no good rule of thumb.15 It just de-
pends on how skewed the data distribution is. Always plot the data to check.

y

CONNECTIONS
The concept of a sampling distribution connects to almost everything we have done. The funda-
mental connection is to the deliberate application of randomness in random sampling and ran-
domized comparative experiments. If we didn’t employ randomness to generate unbiased data,
then repeating the data collection would just get the same data values again (with perhaps a 
few new measurement or recording errors). The distribution of statistic values arises directly
because different random samples and randomized experiments would generate different
statistic values.

The connection to the Normal distribution is obvious. We first introduced the Normal model be-
fore because it was “nice.” As a unimodal, symmetric distribution with 99.7% of its area within
three standard deviations of the mean, the Normal model is easy to work with. Now we see that
the Normal holds a special place among distributions because we can use it to model the sampling
distributions of the mean and the proportion.

We use simulation to understand sampling distributions. In fact, some important sampling dis-
tributions were discovered first by simulation.

WHAT HAVE WE LEARNED?

Way back in Chapter 1 we said that Statistics is about variation. We know that no sample fully and
exactly describes the population; sample proportions and means will vary from sample to sample.
That’s sampling error (or, better, sampling variability). We know it will always be present—indeed,
the world would be a boring place if variability didn’t exist. You might think that sampling variabil-
ity would prevent us from learning anything reliable about a population by looking at a sample,
but that’s just not so. The fortunate fact is that sampling variability is not just unavoidable—it’s
predictable!
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We’ve learned how the Central Limit Theorem describes the behavior of sample proportions—
shape, center, and spread—as long as certain assumptions and conditions are met. The sample
must be independent, random, and large enough that we expect at least 10 successes and failures.
Then:

u The sampling distribution (the imagined histogram of the proportions from all possible samples)
is shaped like a Normal model.

u The mean of the sampling model is the true proportion in the population.

u The standard deviation of the sample proportions is .

And we’ve learned to describe the behavior of sample means as well, based on this amazing result
known as the Central Limit Theorem—the Fundamental Theorem of Statistics. Again the sample
must be independent and random—no surprise there—and needs to be larger if our data come from
a population that’s not roughly unimodal and symmetric. Then:

u Regardless of the shape of the original population, the shape of the distribution of the means of
all possible samples can be described by a Normal model, provided the samples are large
enough.

u The center of the sampling model will be the true mean of the population from which we took
the sample.

u The standard deviation of the sample means is the population’s standard deviation divided by
the square root of the sample size, .

Terms
Sampling distribution 413. Different random samples give different values for a statistic. The sampling distribution model 

model shows the behavior of the statistic over all the possible samples for the same size n.

Sampling variability 414. The variability we expect to see from one random sample to another. It is sometimes called 
Sampling error sampling error, but sampling variability is the better term.

Sampling distribution 416. If assumptions of independence and random sampling are met, and we expect at least 
model for a proportion 10 successes and 10 failures, then the sampling distribution of a proportion is modeled by a Normal

model with a mean equal to the true proportion value, p, and a standard deviation equal to .

Central Limit Theorem 421. The Central Limit Theorem (CLT) states that the sampling distribution model of the sample
mean (and proportion) from a random sample is approximately Normal for large n, regardless of the
distribution of the population, as long as the observations are independent.

Sampling distribution 423. If assumptions of independence and random sampling are met, and the sample size is large 
model for a mean enough, the sampling distribution of the sample mean is modeled by a Normal model with a mean 

equal to the population mean, , and a standard deviation equal to .

Skills
u Understand that the variability of a statistic (as measured by the standard deviation of its sam-

pling distribution) depends on the size of the sample. Statistics based on larger samples are less
variable.

u Understand that the Central Limit Theorem gives the sampling distribution model of the mean
for sufficiently large samples regardless of the underlying population.

u Be able to demonstrate a sampling distribution by simulation.

u Be able to use a sampling distribution model to make simple statements about the distribution
of a proportion or mean under repeated sampling.

u Be able to interpret a sampling distribution model as describing the values taken by a statistic in
all possible realizations of a sample or randomized experiment under the same conditions.

s

1n
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pq

n
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1n

A

pq

n
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1. Send money. When they send out their fundraising 
letter, a philanthropic organization typically gets a return
from about 5% of the people on their mailing list. To see
what the response rate might be for future appeals, they
did a simulation using samples of size 20, 50, 100, and
200. For each sample size, they simulated 1000 mailings
with success rate and constructed the histogram
of the 1000 sample proportions, shown below. Explain
how these histograms demonstrate what the Central
Limit Theorem says about the sampling distribution
model for sample proportions. Be sure to talk about
shape, center, and spread.

p = 0.05

3. Send money, again. The philanthropic organization 
in Exercise 1 expects about a 5% success rate when they
send fundraising letters to the people on their mailing
list. In Exercise 1 you looked at the histograms showing
distributions of sample proportions from 1000 simulated
mailings for samples of size 20, 50, 100, and 200. The sam-
ple statistics from each simulation were as follows:

432 CHAPTER 18    Sampling Distribution Models

EXERCISES
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2. Character recognition. An automatic character recog-
nition device can successfully read about 85% of hand-
written credit card applications. To estimate what might
happen when this device reads a stack of applications,
the company did a simulation using samples of size 20,
50, 75, and 100. For each sample size, they simulated 1000
samples with success rate and constructed the
histogram of the 1000 sample proportions, shown here.
Explain how these histograms demonstrate what the
Central Limit Theorem says about the sampling distribu-
tion model for sample proportions. Be sure to talk about
shape, center, and spread.

p = 0.85
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n mean st. dev.

20 0.0497 0.0479
50 0.0516 0.0309

100 0.0497 0.0215
200 0.0501 0.0152

a) According to the Central Limit Theorem, what should
the theoretical mean and standard deviations be for
these sample sizes?

b) How close are those theoretical values to what was
observed in these simulations?

c) Looking at the histograms in Exercise 1, at what sample
size would you be comfortable using the Normal model
as an approximation for the sampling distribution?

d) What does the Success/Failure Condition say about
the choice you made in part c?
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4. Character recognition, again. The automatic charac-
ter recognition device discussed in Exercise 2 successfully
reads about 85% of handwritten credit card applications.
In Exercise 2 you looked at the histograms showing dis-
tributions of sample proportions from 1000 simulated
samples of size 20, 50, 75, and 100. The sample statistics
from each simulation were as follows:

8. Bigger bag. Suppose the class in Exercise 6 buys bigger
bags of candy, with 200 M&M’s each. Again the students
calculate the proportion of green candies they find.
a) Explain why it’s appropriate to use a Normal model

to describe the distribution of the proportion of green
M&M’s they might expect.

b) Use the 68–95–99.7 Rule to describe how this propor-
tion might vary from bag to bag.

c) How would this model change if the bags contained
even more candies?

9. Just (un)lucky? One of the students in the introduc-
tory Statistics class in Exercise 7 claims to have tossed her
coin 200 times and found only 42% heads. What do you
think of this claim? Explain.

10. Too many green ones? In a really large bag of M&M’s,
the students in Exercise 8 found 500 candies, and 12% of
them were green. Is this an unusually large proportion of
green M&M’s? Explain.

11. Speeding. State police believe that 70% of the drivers
traveling on a major interstate highway exceed the speed
limit. They plan to set up a radar trap and check the
speeds of 80 cars.
a) Using the 68–95–99.7 Rule, draw and label the distri-

bution of the proportion of these cars the police will
observe speeding.

b) Do you think the appropriate conditions necessary for
your analysis are met? Explain.

12. Smoking. Public health statistics indicate that 26.4% of
American adults smoke cigarettes. Using the 68–95–99.7
Rule, describe the sampling distribution model for the
proportion of smokers among a randomly selected group
of 50 adults. Be sure to discuss your assumptions and
conditions.

13. Vision. It is generally believed that nearsightedness 
affects about 12% of all children. A school district has 
registered 170 incoming kindergarten children.
a) Can you apply the Central Limit Theorem to describe

the sampling distribution model for the sample pro-
portion of children who are nearsighted? Check the
conditions and discuss any assumptions you need to
make.

b) Sketch and clearly label the sampling model, based on
the 68–95–99.7 Rule.

c) How many of the incoming students might the school
expect to be nearsighted? Explain.

14. Mortgages. In early 2007 the Mortgage Lenders Asso-
ciation reported that homeowners, hit hard by rising in-
terest rates on adjustable-rate mortgages, were defaulting
in record numbers. The foreclosure rate of 1.6% meant
that millions of families were losing their homes. Suppose
a large bank holds 1731 adjustable-rate mortgages.
a) Can you apply the Central Limit Theorem to describe

the sampling distribution model for the sample pro-
portion of foreclosures? Check the conditions and
discuss any assumptions you need to make.

b) Sketch and clearly label the sampling model, based on
the 68–95–99.7 Rule.

c) How many of these homeowners might the bank 
expect will default on their mortgages? Explain.
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n mean st. dev.

20 0.8481 0.0803
50 0.8507 0.0509
75 0.8481 0.0406

100 0.8488 0.0354

a) According to the Central Limit Theorem, what should
the theoretical mean and standard deviations be for
these sample sizes?

b) How close are those theoretical values to what was
observed in these simulations?

c) Looking at the histograms in Exercise 2, at what sample
size would you be comfortable using the Normal model
as an approximation for the sampling distribution?

d) What does the Success/Failure Condition say about
the choice you made in part c?

5. Coin tosses. In a large class of introductory Statistics
students, the professor has each person toss a coin 16
times and calculate the proportion of his or her tosses that
were heads. The students then report their results, and the
professor plots a histogram of these several proportions.
a) What shape would you expect this histogram to be?

Why?
b) Where do you expect the histogram to be centered?
c) How much variability would you expect among these

proportions?
d) Explain why a Normal model should not be used here.

6. M&M’s. The candy company claims that 10% of the
M&M’s it produces are green. Suppose that the candies are
packaged at random in small bags containing about 50
M&M’s. A class of elementary school students learning
about percents opens several bags, counts the various colors
of the candies, and calculates the proportion that are green.
a) If we plot a histogram showing the proportions of

green candies in the various bags, what shape would
you expect it to have?

b) Can that histogram be approximated by a Normal
model? Explain.

c) Where should the center of the histogram be?
d) What should the standard deviation of the propor-

tion be?

7. More coins. Suppose the class in Exercise 5 repeats the
coin-tossing experiment.
a) The students toss the coins 25 times each. Use the

68–95–99.7 Rule to describe the sampling distribution
model.

b) Confirm that you can use a Normal model here.
c) They increase the number of tosses to 64 each. Draw

and label the appropriate sampling distribution model.
Check the appropriate conditions to justify your model.

d) Explain how the sampling distribution model changes
as the number of tosses increases.
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15. Loans. Based on past experience, a bank believes that
7% of the people who receive loans will not make pay-
ments on time. The bank has recently approved 200 loans.
a) What are the mean and standard deviation of the pro-

portion of clients in this group who may not make
timely payments?

b) What assumptions underlie your model? Are the con-
ditions met? Explain.

c) What’s the probability that over 10% of these clients
will not make timely payments?

16. Contacts. Assume that 30% of students at a university
wear contact lenses.
a) We randomly pick 100 students. Let represent the

proportion of students in this sample who wear 
contacts. What’s the appropriate model for the distri-
bution of ? Specify the name of the distribution, the
mean, and the standard deviation. Be sure to verify
that the conditions are met.

b) What’s the approximate probability that more than
one third of this sample wear contacts?

17. Back to school? Best known for its testing program,
ACT, Inc., also compiles data on a variety of issues in ed-
ucation. In 2004 the company reported that the national
college freshman-to-sophomore retention rate held steady
at 74% over the previous four years. Consider random
samples of 400 freshmen who took the ACT. Use the
68–95–99.7 Rule to describe the sampling distribution
model for the percentage of those students we expect to
return to that school for their sophomore years. Do you
think the appropriate conditions are met?

18. Binge drinking. As we learned in Chapter 15, a na-
tional study found that 44% of college students engage 
in binge drinking (5 drinks at a sitting for men, 4 for
women). Use the 68–95–99.7 Rule to describe the sam-
pling distribution model for the proportion of students in
a randomly selected group of 200 college students who
engage in binge drinking. Do you think the appropriate
conditions are met?

19. Back to school, again. Based on the 74% national re-
tention rate described in Exercise 17, does a college where
522 of the 603 freshman returned the next year as sopho-
mores have a right to brag that it has an unusually high
retention rate? Explain.

20. Binge sample. After hearing of the national result that
44% of students engage in binge drinking (5 drinks at a
sitting for men, 4 for women), a professor surveyed a ran-
dom sample of 244 students at his college and found that
96 of them admitted to binge drinking in the past week.
Should he be surprised at this result? Explain.

21. Polling. Just before a referendum on a school budget, a
local newspaper polls 400 voters in an attempt to predict
whether the budget will pass. Suppose that the budget
actually has the support of 52% of the voters. What’s the
probability the newspaper’s sample will lead them to
predict defeat? Be sure to verify that the assumptions and
conditions necessary for your analysis are met.

22. Seeds. Information on a packet of seeds claims that the
germination rate is 92%. What’s the probability that more

pN

pN

than 95% of the 160 seeds in the packet will germinate?
Be sure to discuss your assumptions and check the condi-
tions that support your model.

23. Apples. When a truckload of apples arrives at a packing
plant, a random sample of 150 is selected and examined
for bruises, discoloration, and other defects. The whole
truckload will be rejected if more than 5% of the sample is
unsatisfactory. Suppose that in fact 8% of the apples on
the truck do not meet the desired standard. What’s the
probability that the shipment will be accepted anyway?

24. Genetic defect. It’s believed that 4% of children have a
gene that may be linked to juvenile diabetes. Researchers
hoping to track 20 of these children for several years test
732 newborns for the presence of this gene. What’s the
probability that they find enough subjects for their study?

25. Nonsmokers. While some nonsmokers do not mind
being seated in a smoking section of a restaurant, about
60% of the customers demand a smoke-free area. A new
restaurant with 120 seats is being planned. How many
seats should be in the nonsmoking area in order to be
very sure of having enough seating there? Comment on
the assumptions and conditions that support your model,
and explain what “very sure” means to you.

26. Meals. A restauranteur anticipates serving about 180
people on a Friday evening, and believes that about 20%
of the patrons will order the chef’s steak special. How
many of those meals should he plan on serving in order
to be pretty sure of having enough steaks on hand to
meet customer demand? Justify your answer, including
an explanation of what “pretty sure” means to you.

27. Sampling. A sample is chosen randomly from a popu-
lation that can be described by a Normal model.
a) What’s the sampling distribution model for the 

sample mean? Describe shape, center, and spread.
b) If we choose a larger sample, what’s the effect on this

sampling distribution model?

28. Sampling, part II. A sample is chosen randomly from
a population that was strongly skewed to the left.
a) Describe the sampling distribution model for the 

sample mean if the sample size is small.
b) If we make the sample larger, what happens to the sam-

pling distribution model’s shape, center, and spread?
c) As we make the sample larger, what happens to the

expected distribution of the data in the sample?

29. Waist size. A study measured the Waist Size of 250 men,
finding a mean of 36.33 inches and a standard deviation of
4.02 inches. Here is a histogram of these measurements
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a) Describe the histogram of Waist Size.
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b) To explore how the mean might vary from sample to
sample, they simulated by drawing many samples of
size 2, 5, 10, and 20, with replacement, from the 250
measurements. Here are histograms of the sample
means for each simulation. Explain how these his-
tograms demonstrate what the Central Limit Theorem
says about the sampling distribution model for sam-
ple means.

b) Explain how these histograms demonstrate what the
Central Limit Theorem says about the sampling distri-
bution model for sample means. Be sure to talk about
shape, center, and spread.

c) Comment on the “rule of thumb” that “With a sample
size of at least 30, the sampling distribution of the
mean is Normal”?

31. Waist size revisited. Researchers measured the Waist
Sizes of 250 men in a study on body fat. The true mean
and standard deviation of the Waist Sizes for the 250 men
are 36.33 in and 4.019 inches, respectively. In Exercise 29
you looked at the histograms of simulations that drew
samples of sizes 2, 5, 10, and 20 (with replacement). The
summary statistics for these simulations were as follows:
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30. CEO compensation. In Chapter 5 we saw the distri-
bution of the total compensation of the chief executive 
officers (CEOs) of the 800 largest U.S. companies (the 
Fortune 800). The average compensation (in thousands 
of dollars) is 10,307.31 and the standard deviation is
17,964.62. Here is a histogram of their annual compensa-
tions (in $1000):
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a) Describe the histogram of Total Compensation.
A research organization simulated sample means by
drawing samples of 30, 50, 100, and 200, with replace-
ment, from the 800 CEOs. The histograms show the
distributions of means for many samples of each size.
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n mean st. dev.

2 36.314 2.855
5 36.314 1.805

10 36.341 1.276
20 36.339 0.895

a) According to the Central Limit Theorem, what should
the theoretical mean and standard deviation be for
each of these sample sizes?

b) How close are the theoretical values to what was 
observed in the simulation?

c) Looking at the histograms in Exercise 29, at what sample
size would you be comfortable using the Normal model
as an approximation for the sampling distribution?

d) What about the shape of the distribution of Waist Size
explains your choice of sample size in part c?
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32. CEOs revisited. In Exercise 30 you looked at the annual
compensation for 800 CEOs, for which the true mean and
standard deviation were (in thousands of dollars) 10,307.31
and 17,964.62, respectively. A simulation drew samples of
sizes 30, 50, 100, and 200 (with replacement) from the total
annual compensations of the Fortune 800 CEOs. The sum-
mary statistics for these simulations were as follows:

The reporter thinks that by identifying the outlets with
the highest fraction of bets paid out, players might be
able to increase their chances of winning. (Typically—but
not always—instant winners are paid immediately (in-
stantly) at the store at which they are purchased. How-
ever, the fact that tickets may be scratched off and then
cashed in at any outlet may account for some outlets pay-
ing out more than they take in. The few with very low
payouts may be on interstate highways where players
may purchase cards but then leave.)
a) Explain why the plot has this funnel shape.
b) Explain why the reporter’s idea wouldn’t have

worked anyway.

36. Safe cities. Allstate Insurance Company identified the
10 safest and 10 least-safe U.S. cities from among the 200
largest cities in the United States, based on the mean
number of years drivers went between automobile acci-
dents. The cities on both lists were all smaller than the 
10 largest cities. Using facts about the sampling distribu-
tion model of the mean, explain why this is not surprising.

37. Pregnancy. Assume that the duration of human preg-
nancies can be described by a Normal model with mean
266 days and standard deviation 16 days.
a) What percentage of pregnancies should last between

270 and 280 days?
b) At least how many days should the longest 25% of all

pregnancies last?
c) Suppose a certain obstetrician is currently providing

prenatal care to 60 pregnant women. Let represent
the mean length of their pregnancies. According to the
Central Limit Theorem, what’s the distribution of this
sample mean, ? Specify the model, mean, and stan-
dard deviation.

d) What’s the probability that the mean duration of these
patients’ pregnancies will be less than 260 days?

38. Rainfall. Statistics from Cornell’s Northeast Regional
Climate Center indicate that Ithaca, NY, gets an average
of 35.4" of rain each year, with a standard deviation of
4.2". Assume that a Normal model applies.
a) During what percentage of years does Ithaca get more

than 40" of rain?
b) Less than how much rain falls in the driest 20% of all

years?
c) A Cornell University student is in Ithaca for 4 years.

Let represent the mean amount of rain for those 
4 years. Describe the sampling distribution model of
this sample mean, .

d) What’s the probability that those 4 years average less
than 30" of rain?

39. Pregnant again. The duration of human pregnancies
may not actually follow the Normal model described in
Exercise 37.
a) Explain why it may be somewhat skewed to the left.
b) If the correct model is in fact skewed, does that change

your answers to parts a, b, and c of Exercise 37? Explain
why or why not for each.

40. At work. Some business analysts estimate that the
length of time people work at a job has a mean of 6.2 years
and a standard deviation of 4.5 years.

y

y

y

y
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n mean st. dev.

30 10,251.73 3359.64
50 10,343.93 2483.84

100 10,329.94 1779.18
200 10,340.37 1230.79

a) According to the Central Limit Theorem, what should
the theoretical mean and standard deviation be for
each of these sample sizes?

b) How close are the theoretical values to what was 
observed from the simulation?

c) Looking at the histograms in Exercise 30, at what
sample size would you be comfortable using the 
Normal model as an approximation for the sampling
distribution?

d) What about the shape of the distribution of Total Com-
pensation explains your answer in part c?

33. GPAs. A college’s data about the incoming freshmen
indicates that the mean of their high school GPAs was 3.4,
with a standard deviation of 0.35; the distribution was
roughly mound-shaped and only slightly skewed. The
students are randomly assigned to freshman writing sem-
inars in groups of 25. What might the mean GPA of one of
these seminar groups be? Describe the appropriate sam-
pling distribution model—shape, center, and spread—
with attention to assumptions and conditions. Make a
sketch using the 68–95–99.7 Rule.

34. Home values. Assessment records indicate that the
value of homes in a small city is skewed right, with a
mean of $140,000 and standard deviation of $60,000. To
check the accuracy of the assessment data, officials plan
to conduct a detailed appraisal of 100 homes selected at
random. Using the 68–95–99.7 Rule, draw and label an
appropriate sampling model for the mean value of the
homes selected.

35. Lucky Spot? A reporter working on a story about the
New York lottery contacted one of the authors of this
book, wanting help analyzing data to see if some ticket
sales outlets were more likely to produce winners. His
data for each of the 966 New York lottery outlets are
graphed below; the scatterplot shows the ratio TotalPaid/
TotalSales vs. TotalSales for the state’s “instant winner”
games for all of 2007.
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a) Explain why you suspect this distribution may be
skewed to the right.

b) Explain why you could estimate the probability that
100 people selected at random had worked for their
employers an average of 10 years or more, but you
could not estimate the probability that an individual
had done so.

41. Dice and dollars. You roll a die, winning nothing if the
number of spots is odd, $1 for a 2 or a 4, and $10 for a 6.
a) Find the expected value and standard deviation of

your prospective winnings.
b) You play twice. Find the mean and standard deviation

of your total winnings.
c) You play 40 times. What’s the probability that you win

at least $100?

42. New game. You pay $10 and roll a die. If you get a 6,
you win $50. If not, you get to roll again. If you get a 6
this time, you get your $10 back.
a) Create a probability model for this game.
b) Find the expected value and standard deviation of

your prospective winnings.
c) You play this game five times. Find the expected value

and standard deviation of your average winnings.
d) 100 people play this game. What’s the probability the

person running the game makes a profit?

43. AP Stats 2006. The College Board reported the score
distribution shown in the table for all students who took
the 2006 AP Statistics exam.

the distribution of the donations for a day to follow a
Normal model? Explain.

c) Consider the mean donation of the 50 new members
each day. Describe the sampling model for these
means (shape, center, and spread).

45. AP Stats 2006, again. An AP Statistics teacher had 
63 students preparing to take the AP exam discussed in
Exercise 43. Though they were obviously not a random
sample, he considered his students to be “typical” of all
the national students. What’s the probability that his stu-
dents will achieve an average score of at least 3?

46. Joining the museum. One of the museum’s phone vol-
unteers sets a personal goal of getting an average dona-
tion of at least $100 from the new members she enrolls
during the membership drive. If she gets 80 new mem-
bers and they can be considered a random sample of all
the museum’s members, what is the probability that she
can achieve her goal?

47. Pollution. Carbon monoxide (CO) emissions for a cer-
tain kind of car vary with mean 2.9 g/mi and standard
deviation 0.4 g/mi. A company has 80 of these cars in its
fleet. Let represent the mean CO level for the com-
pany’s fleet.
a) What’s the approximate model for the distribution 

of ? Explain.
b) Estimate the probability that is between 3.0 and 

3.1 g/mi.
c) There is only a 5% chance that the fleet’s mean CO

level is greater than what value?

48. Potato chips. The weight of potato chips in a medium-
size bag is stated to be 10 ounces. The amount that the
packaging machine puts in these bags is believed to have
a Normal model with mean 10.2 ounces and standard de-
viation 0.12 ounces.
a) What fraction of all bags sold are underweight?
b) Some of the chips are sold in “bargain packs” of 3 bags.

What’s the probability that none of the 3 is underweight?
c) What’s the probability that the mean weight of the 

3 bags is below the stated amount?
d) What’s the probability that the mean weight of a 24-bag

case of potato chips is below 10 ounces?

49. Tips. A waiter believes the distribution of his tips has a
model that is slightly skewed to the right, with a mean of
$9.60 and a standard deviation of $5.40.
a) Explain why you cannot determine the probability

that a given party will tip him at least $20.
b) Can you estimate the probability that the next 4 par-

ties will tip an average of at least $15? Explain.
c) Is it likely that his 10 parties today will tip an average

of at least $15? Explain.

50. Groceries. A grocery store’s receipts show that Sunday
customer purchases have a skewed distribution with a
mean of $32 and a standard deviation of $20.
a) Explain why you cannot determine the probability

that the next Sunday customer will spend at least $40.
b) Can you estimate the probability that the next 10 Sun-

day customers will spend an average of at least $40?
Explain.

c) Is it likely that the next 50 Sunday customers will
spend an average of at least $40? Explain.

y
y

y
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Score Percent of Students

5 12.6
4 22.2
3 25.3
2 18.3
1 21.6

a) Find the mean and standard deviation of the scores.
b) If we select a random sample of 40 AP Statistics stu-

dents, would you expect their scores to follow a
Normal model? Explain.

c) Consider the mean scores of random samples of 40 AP
Statistics students. Describe the sampling model for
these means (shape, center, and spread).

44. Museum membership. A museum offers several levels
of membership, as shown in the table.

Member
Category

Amount of
Donation ($)

Percent of 
Members

Individual 50 41
Family 100 37

Sponsor 250 14
Patron 500 7

Benefactor 1000 1

a) Find the mean and standard deviation of the donations.
b) During their annual membership drive, they hope to

sign up 50 new members each day. Would you expect
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51. More tips. The waiter in Exercise 49 usually waits on
about 40 parties over a weekend of work.
a) Estimate the probability that he will earn at least $500

in tips.
b) How much does he earn on the best 10% of such

weekends?

52. More groceries. Suppose the store in Exercise 50 had
312 customers this Sunday.
a) Estimate the probability that the store’s revenues were

at least $10,000.
b) If, on a typical Sunday, the store serves 312 customers,

how much does the store take in on the worst 10% of
such days?

53. IQs. Suppose that IQs of East State University’s stu-
dents can be described by a Normal model with mean
130 and standard deviation 8 points. Also suppose that
IQs of students from West State University can be de-
scribed by a Normal model with mean 120 and standard
deviation 10.
a) We select a student at random from East State. Find

the probability that this student’s IQ is at least 125
points.

b) We select a student at random from each school. Find
the probability that the East State student’s IQ is at
least 5 points higher than the West State student’s IQ.

c) We select 3 West State students at random. Find the
probability that this group’s average IQ is at least 125
points.

d) We also select 3 East State students at random. What’s
the probability that their average IQ is at least 5 points
higher than the average for the 3 West Staters?

54. Milk. Although most of us buy milk by the quart or
gallon, farmers measure daily production in pounds. 
Ayrshire cows average 47 pounds of milk a day, with a
standard deviation of 6 pounds. For Jersey cows, the
mean daily production is 43 pounds, with a standard 

deviation of 5 pounds. Assume that Normal models 
describe milk production for these breeds.
a) We select an Ayrshire at random. What’s the probabil-

ity that she averages more than 50 pounds of milk 
a day?

b) What’s the probability that a randomly selected 
Ayrshire gives more milk than a randomly selected
Jersey?

c) A farmer has 20 Jerseys. What’s the probability that
the average production for this small herd exceeds 
45 pounds of milk a day?

d) A neighboring farmer has 10 Ayrshires. What’s the
probability that his herd average is at least 5 pounds
higher than the average for part c’s Jersey herd?

438 CHAPTER 18    Sampling Distribution Models

JUST CHECKING
Answers

1. A Normal model (approximately).

2. At the actual proportion of all students who are in 
favor.

3.

4. No, this is a histogram of individuals. It may or may
not be Normal, but we can’t tell from the information
provided.

5. A Normal model (approximately).

6. 266 days

7. days
16

1100
= 1.6

SD(pN) =

A

10.5210.52
100

= 0.05
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Coral reef communities are home to one quarter of all marine plants and
animals worldwide. These reefs support large fisheries by providing
breeding grounds and safe havens for young fish of many species.
Coral reefs are seawalls that protect shorelines against tides, storm

surges, and hurricanes, and are sand “factories” that produce the limestone and
sand of which beaches are made. Beyond the beach, these reefs are major tourist
attractions for snorkelers and divers, driving a tourist industry worth tens of
billions of dollars.

But marine scientists say that 10% of the world’s reef systems have been de-
stroyed in recent times. At current rates of loss, 70% of the reefs could be gone in
40 years. Pollution, global warming, outright destruction of reefs, and increasing
acidification of the oceans are all likely factors in this loss.

Dr. Drew Harvell’s lab studies corals and the diseases that affect them. They
sampled sea fans1 at 19 randomly selected reefs along the Yucatan peninsula and
diagnosed whether the animals were affected by the disease aspergillosis.2 In spec-
imens collected at a depth of 40 feet at the Las Redes Reef in Akumal, Mexico,
these scientists found that 54 of 104 sea fans sampled were infected with that
disease.

Of course, we care about much more than these particular 104 sea fans. We
care about the health of coral reef communities throughout the Caribbean. What
can this study tell us about the prevalence of the disease among sea fans?

We have a sample proportion, which we write as of 54/104, or 51.9%. Our
first guess might be that this observed proportion is close to the population pro-
portion, p. But we also know that because of natural sampling variability, if the
researchers had drawn a second sample of 104 sea fans at roughly the same time, the
proportion infected from that sample probably wouldn’t have been exactly 51.9%.

pN ,

439

CHAPTER

19
Confidence 
Intervals for
Proportions

1 That’s a sea fan in the picture. Although they look like trees, they are actually colonies of
genetically identical animals.
2 K. M. Mullen, C. D. Harvell, A. P. Alker, D. Dube, E. Jordán-Dahlgren, J. R. Ward, and 
L. E. Petes, “Host range and resistance to aspergillosis in three sea fan species from the
Yucatan,” Marine Biology (2006), Springer-Verlag.

WHO Sea fans

WHAT Percent infected

WHEN June 2000

WHERE Las Redes Reef, 
Akumal, Mexico, 
40 feet deep

WHY Research
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Activity: Confidence
Intervals and Sampling
Distributions. Simulate the
sampling distribution, and see
how it gives a confidence
interval.

440 CHAPTER 19    Confidence Intervals for Proportions

3 This isn’t such a great name because it isn’t standard and nobody made an error. But it’s
much shorter and more convenient than saying, “the estimated standard deviation of the
sampling distribution of the sample statistic.”

p – 0.147 p – 0.098 p – 0.049 p + 0.049 p + 0.098 p + 0.147p

FIGURE 19.1
The sampling distribution model for

is Normal with a mean of p and a
standard deviation we estimate to
be 0.049.

pN

Great. What does that tell us? Well, because it’s Normal, it says that about 68% of
all samples of 104 sea fans will have ’s within 1 SE, 0.049, of p. And about 95% of
all these samples will be within SEs. But where is our sample proportion in
this picture? And what value does p have? We still don’t know!

We do know that for 95% of random samples, will be no more than 2 SEs
away from p. So let’s look at this from ’s point of view. If I’m , there’s a 95%pNpN

pN

p ; 2
pN

What can we say about the population proportion, p? To start to answer this
question, think about how different the sample proportion might have been
if we’d taken another random sample from the same population. But wait.
Remember—we aren’t actually going to take more samples. We just want to
imagine how the sample proportions might vary from sample to sample. In other
words, we want to know about the sampling distribution of the sample proportion
of infected sea fans.

A Confidence Interval
Let’s look at our model for the sampling distribution. What do we know about it?
We know it’s approximately Normal (under certain assumptions, which we
should be careful to check) and that its mean is the proportion of all infected sea
fans on the Las Redes Reef. Is the infected proportion of all sea fans 51.9%? No,
that’s just , our estimate. We don’t know the proportion, p, of all the infected sea
fans; that’s what we’re trying to find out. We do know, though, that the sampling
distribution model of is centered at p, and we know that the standard deviation

of the sampling distribution is .

Now we have a problem: Since we don’t know p, we can’t find the true stan-
dard deviation of the sampling distribution model. We do know the observed
proportion, , so, of course we just use what we know, and we estimate. That may
not seem like a big deal, but it gets a special name. Whenever we estimate the
standard deviation of a sampling distribution, we call it a standard error.3 For a
sample proportion,  , the standard error is

For the sea fans, then:

Now we know that the sampling model for should look like this:pN

SE(pN) = A
pNqN

n
= A

(0.519)(0.481)
104

= 0.049 = 4.9%.

SE(pN) = A
pNqN
n

.

pN

pN

A
pq

n

pN

pN

NOTATION ALERT:

Remember that is our
sample-based estimate of the
true proportion p. Recall also
that q is just shorthand for

and 
When we use to estimate

the standard deviation of the
sampling distribution model,
we call that the standard error

and write SE1pN2 = A
pNqN
n

.

pN
qN = 1 - pN .1 - p,

pN
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A Confidence Interval 441

chance that p is no more than 2 SEs away from me. If I reach out 2 SEs, or
away from me on both sides, I’m 95% sure that p will be within my

grasp. Now I’ve got him! Probably. Of course, even if my interval does catch p,
I still don’t know its true value. The best I can do is an interval, and even then
I can’t be positive it contains p.

2 * 0.049,

p p + 2 SE  p  – 2 SEˆ ˆ ˆ

ACME p-trap: Guaranteed*
to capture p.

*with 95% confidence

FIGURE 19.2
Reaching out 2 SEs on either side of 

makes us 95% confident that we’ll 
trap the true proportion, p.
pN

So what can we really say about p? Here’s a list of things we’d like to be able
to say, in order of strongest to weakest and the reasons we can’t say most of them:

1. “51.9 of all sea fans on the Las Redes Reef are infected.” It would be nice
to be able to make absolute statements about population values with cer-
tainty, but we just don’t have enough information to do that. There’s no way
to be sure that the population proportion is the same as the sample propor-
tion; in fact, it almost certainly isn’t. Observations vary. Another sample
would yield a different sample proportion.

2. “It is probably true that 51.9 of all sea fans on the Las Redes Reef are in-
fected.” No. In fact, we can be pretty sure that whatever the true proportion
is, it’s not exactly 51.900%. So the statement is not true.

3. “We don’t know exactly what proportion of sea fans on the Las Redes Reef
is infected, but we know that it’s within the interval
That is, it’s between 42.1 and 61.7 .” This is getting closer, but we still can’t
be certain. We can’t know for sure that the true proportion is in this interval—
or in any particular interval.

4. “We don’t know exactly what proportion of sea fans on the Las Redes Reef
is infected, but the interval from 42.1 to 61.7 probably contains the true
proportion.” We’ve now fudged twice—first by giving an interval and second
by admitting that we only think the interval “probably” contains the true
value. And this statement is true.

That last statement may be true, but it’s a bit wishy-washy. We can tighten it up a
bit by quantifying what we mean by “probably.” We saw that 95% of the time
when we reach out 2 SEs from we capture p, so we can be 95% confident that this is
one of those times. After putting a number on the probability that this interval cov-
ers the true proportion, we’ve given our best guess of where the parameter is and
how certain we are that it’s within some range.

5. “We are 95 confident that between 42.1 and 61.7 of Las Redes sea fans
are infected.” Statements like these are called confidence intervals. They’re
the best we can do.

Each confidence interval discussed in the book has a name. You’ll see many
different kinds of confidence intervals in the following chapters. Some will be

%%%

pN

%%

%%
51.9%_2 : 4.9%.

%

%Activity: Can We Estimate
a Parameter? Consider these four
interpretations of a confidence
interval by simulating to see
whether they could be right.

“Far better an approximate
answer to the right question, . . .
than an exact answer to the
wrong question.”

—John W.Tukey
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4 In fact, this confidence interval is so standard for a single proportion that you may see it
simply called a “confidence interval for the proportion.”

What Does “95% Confidence” Really Mean?
What do we mean when we say we have 95% confidence that our interval con-
tains the true proportion? Formally, what we mean is that “95% of samples of this
size will produce confidence intervals that capture the true proportion.” This is
correct, but a little long winded, so we sometimes say, “we are 95% confident that
the true proportion lies in our interval.” Our uncertainty is about whether the par-
ticular sample we have at hand is one of the successful ones or one of the 5% that
fail to produce an interval that captures the true value.

Back in Chapter 18 we saw that proportions vary from sample to sample. If
other researchers select their own samples of sea fans, they’ll also find some in-
fected by the disease, but each person’s sample proportion will almost certainly
differ from ours. When they each try to estimate the true rate of infection in the
entire population, they’ll center their confidence intervals at the proportions they
observed in their own samples. Each of us will end up with a different interval.

Our interval guessed the true proportion of infected sea fans to be between
about 42% and 62%. Another researcher whose sample contained more infected
fans than ours did might guess between 46% and 66%. Still another who happened
to collect fewer infected fans might estimate the true proportion to be between 23%
and 43%. And so on. Every possible sample would produce yet another confidence
interval. Although wide intervals like these can’t pin down the actual rate of infec-
tion very precisely, we expect that most of them should be winners, capturing the
true value. Nonetheless, some will be duds, missing the population proportion
entirely.

On the next page you’ll see confidence intervals produced by simulating 
20 different random samples. The red dots are the proportions of infected fans in

JUST CHECKING
A Pew Research study regarding cell phones asked questions about cell phone experience. One

growing concern is unsolicited advertising in the form of text messages. Pew asked cell phone owners,
“Have you ever received unsolicited text messages on your cell phone from advertisers?” and 
17% reported that they had. Pew estimates a 95% confidence interval to be or between 
13% and 21%.

Are the following statements about people who have cell phones correct? Explain.

1. In Pew’s sample, somewhere between 13% and 21% of respondents reported that they had received
unsolicited advertising text messages.

2. We can be 95% confident that 17% of U.S. cell phone owners have received unsolicited advertising
text messages.

3. We are 95% confident that between 13% and 21% of all U.S. cell phone owners have received unso-
licited advertising text messages.

4. We know that between 13% and 21% of all U.S. cell phone owners have received unsolicited adver-
tising text messages.

5. 95% of all U.S. cell phone owners have received unsolicited advertising text messages.

0.17 ; 0.04,

about more than one sample, some will be about statistics other than proportions,
and some will use models other than the Normal. The interval calculated and
interpreted here is sometimes called a one-proportion z-interval.4

Activity: Confidence
Intervals for Proportions. This
new interactive tool makes it
easy to construct and experiment
with confidence intervals. We’ll
use this tool for the rest of the
course—sure beats calculating 
by hand!
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5 www.foxnews.com, “Fox News Poll: Most Americans Believe in Global Warming,” Feb 7,
2007.

each sample, and the blue segments show the confidence intervals found for each.
The green line represents the true rate of infection in the population, so you can
see that most of the intervals caught it—but a few missed. (And notice again that
it is the intervals that vary from sample to sample; the green line doesn’t move.)

Polls and margin of errorFOR EXAMPLE

On January 30–31, 2007, Fox News/Opinion Dynamics polled 900 registered voters nationwide.5 When asked, “Do you believe global warming exists?”
82% said “Yes”. Fox reported their margin of error to be 

Question: It is standard among pollsters to use a 95% confidence level unless otherwise stated. Given that, what does Fox News mean by claiming a
margin of error of in this context?

If this polling were done repeatedly, 95% of all random samples would yield estimates that come within of the
true proportion of all registered voters who believe that global warming exists.

;3%

;3%

;3%.

Pr
op

or
tio

n

The horizontal green line shows the true
percentage of all sea fans that are infected.
Most of the 20 simulated samples produced
confidence intervals that captured the true
value, but a few missed.

Of course, there’s a huge number of possible samples that could be drawn,
each with its own sample proportion. These are just some of them. Each sample
proportion can be used to make a confidence interval. That’s a large pile of
possible confidence intervals, and ours is just one of those in the pile. Did our con-
fidence interval “work”? We can never be sure, because we’ll never know the true
proportion of all the sea fans that are infected. However, the Central Limit Theo-
rem assures us that 95% of the intervals in the pile are winners, covering the true
value, and only 5% are duds. That’s why we’re 95% confident that our interval is a
winner!

Margin of Error: Certainty vs. Precision
We’ve just claimed that with a certain confidence we’ve captured the true propor-
tion of all infected sea fans. Our confidence interval had the form

The extent of the interval on either side of is called the margin of error (ME).
We’ll want to use the same approach for many other situations besides estimating
proportions. In general, confidence intervals look like this:

Estimate ; ME.

pN

pN ; 2 SE(pN).

Confidence intervals. Generate
confidence intervals from many
samples to see how often they 
capture the true proportion.
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Finding the margin of error (Take 1)FOR EXAMPLE

Recap: A January 2007 Fox poll of 900 registered voters reported a margin of error of It is a convention among pollsters to use a 95%
confidence level and to report the “worst case” margin of error, based on 

Question: How did Fox calculate their margin of error?

Assuming for random samples of 

For a 95% confidence level, , so Fox’s margin of error is just a bit over .;3%ME = 2(0.0167) = 0.033

SD(pN ) = A
pq
n

= A
(0.5)(0.5)

900
= 0.0167n = 900,p = 0.5,

p = 0.5.
;3%.

444 CHAPTER 19    Confidence Intervals for Proportions

The margin of error for our 95% confidence interval was 2 SE. What if we wanted
to be more confident? To be more confident, we’ll need to capture p more often,
and to do that we’ll need to make the interval wider. For example, if we want to
be 99.7% confident, the margin of error will have to be 3 SE.

FIGURE 19.3
Reaching out 3 SEs on either
side of makes us 99.7%
confident we’ll trap the true
proportion p. Compare with
Figure 19.2.

pN

p p + 3 SE  p  – 3 SE ˆ ˆ ˆ

ACME p-trap: Guaranteed*
to capture p.

*Now with 99.7% confidence !

NEW!!
IMPROVED!!

The more confident we want to be, the larger the margin of error must be. We
can be 100% confident that the proportion of infected sea fans is between 0% and
100%, but this isn’t likely to be very useful. On the other hand, we could give a
confidence interval from 51.8% to 52.0%, but we can’t be very confident about a
precise statement like this. Every confidence interval is a balance between cer-
tainty and precision.

The tension between certainty and precision is always there. Fortunately, in
most cases we can be both sufficiently certain and sufficiently precise to make use-
ful statements. There is no simple answer to the conflict. You must choose a confi-
dence level yourself. The data can’t do it for you. The choice of confidence level is
somewhat arbitrary. The most commonly chosen confidence levels are 90%, 95%,
and 99%, but any percentage can be used. (In practice, though, using something
like 92.9% or 97.2% is likely to make people think you’re up to something.)

Garfield © 1999 Paws, Inc. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

Activity: Balancing
Precision and Certainty. What
percent of parents expect their
kids to pay for college with a
student loan? Investigate the
balance between the precision
and the certainty of a confidence
interval.
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Critical Values
In our sea fans example we used 2SE to give us a 95% confidence interval. To
change the confidence level, we’d need to change the number of SEs so that the
size of the margin of error corresponds to the new level. This number of SEs is
called the critical value. Here it’s based on the Normal model, so we denote it .
For any confidence level, we can find the corresponding critical value from a com-
puter, a calculator, or a Normal probability table, such as Table Z.

For a 95% confidence interval, you’ll find the precise critical value is 
That is, 95% of a Normal model is found within standard deviations of the
mean. We’ve been using from the 68–95–99.7 Rule because it’s easy to
remember.

z* = 2
;1.96

z* = 1.96.

z*

Critical Values 445

NOTATION ALERT:

We’ll put an asterisk on a letter
to indicate a critical value, so z*
is always a critical value from 
a Normal model.

Finding the margin of error (Take 2)FOR EXAMPLE

Recap: In January 2007 a Fox News poll of 900 registered voters found that 82% of the respondents believed that global warming exists. Fox reported a
95% confidence interval with a margin of error of 

Questions: Using the critical value of z and the standard error based on the observed proportion, what would be the margin of error for a 90% confi-
dence interval? What’s good and bad about this change?

With and 

For a 90% confidence level, , so 
Now the margin of error is only about , producing a narrower interval. That makes for a more precise estimate of
voter belief, but provides less certainty that the interval actually contains the true proportion of voters believing in
global warming.

;2%
ME = 1.645(0.0128) = 0.021z* = 1.645

SE(pN) = A
pNqN

n
= A

(0.82)(0.18)
900

= 0.0128pN = 0.82,n = 900

;3%.

–3 –2 –1 1 2 30

–1.645 1.645

0.9

FIGURE 19.4
For a 90% confidence 
interval, the critical value
is 1.645, because, for a
Normal model, 90% of the
values are within 1.645
standard deviations from
the mean.

JUST CHECKING
Think some more about the 95% confidence interval Fox News created for the proportion of regis-

tered voters who believe that global warming exists.

6. If Fox wanted to be 98% confident, would their confidence interval need to be wider or narrower?

7. Fox’s margin of error was about . If they reduced it to , would their level of confidence be
higher or lower?

8. If Fox News had polled more people, would the interval’s margin of error have been larger or
smaller?

;2%;3%
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Assumptions and Conditions
We’ve just made some pretty sweeping statements about sea fans. Those state-
ments were possible because we used a Normal model for the sampling distribu-
tion. But is that model appropriate?

As we’ve seen, all statistical models make assumptions. Different models
make different assumptions. If those assumptions are not true, the model might
be inappropriate and our conclusions based on it may be wrong. Because the con-
fidence interval is built on the Normal model for the sampling distribution, the
assumptions and conditions are the same as those we discussed in Chapter 18.
But, because they are so important, we’ll go over them again.

We can never be certain that an assumption is true, but we can decide intelli-
gently whether it is reasonable. When we have data, we can often decide whether
an assumption is plausible by checking a related condition. However, we want to
make a statement about the world at large, not just about the data we collected.
So the assumptions we make are not just about how our data look, but about how
representative they are.

Independence Assumption
Independence Assumption: We first need to Think about whether the inde-
pendence assumption is plausible. We often look for reasons to suspect that it
fails. We wonder whether there is any reason to believe that the data values
somehow affect each other. (For example, might the disease in sea fans be con-
tagious?) Whether you decide that the Independence Assumption is plausible
depends on your knowledge of the situation. It’s not one you can check by look-
ing at the data.

However, now that we have data, there are two conditions that we can check:
Randomization Condition: Were the data sampled at random or generated

from a properly randomized experiment? Proper randomization can help ensure
independence.

10% Condition: Samples are almost always drawn without replacement.
Usually, of course, we’d like to have as large a sample as we can. But when the
population itself is small we have another concern. When we sample from small
populations, the probability of success may be different for the last few individu-
als we draw than it was for the first few. For example, if most of the women have
already been sampled, the chance of drawing a woman from the remaining popu-
lation is lower. If the sample exceeds 10% of the population, the probability of a
success changes so much during the sampling that our Normal model may no
longer be appropriate. But if less than 10% of the population is sampled, the effect
on independence is negligible.

Sample Size Assumption
The model we use for inference is based on the Central Limit Theorem. The
Sample Size Assumption addresses the question of whether the sample is large
enough to make the sampling model for the sample proportions approximately
Normal. It turns out that we need more data as the proportion gets closer and
closer to either extreme (0 or 1). We can check this assumption with the:

Success/Failure Condition: We must expect at least 10 “successes” and at
least 10 “failures.” Recall that by tradition we arbitrarily label one alternative
(usually the outcome being counted) as a “success” even if it’s something bad
(like a sick sea fan). The other alternative is, of course, then a “failure.”

Activity: Assumptions and
Conditions. Here’s an animated
review of the assumptions and
conditions.
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Activity: A Confidence
Interval for p. View the video
story of pollution in Chesapeake
Bay, and make a confidence
interval for the analysis with the
interactive tool.

ONE-PROPORTION z-INTERVAL
When the conditions are met, we are ready to find the confidence interval
for the population proportion, p. The confidence interval is 

where the standard deviation of the proportion is estimated by SE(pN) = A
pNqN

n
.

pN ; z* * SE(pN)

In May 2006, the Gallup Poll6 asked 510 randomly sampled adults the ques-
tion “Generally speaking, do you believe the death penalty is applied fairly
or unfairly in this country today?”Of these, 60% answered “Fairly,”35% said
“Unfairly,”and 4% said they didn’t know.

Question: From this survey, what can we conclude about the opinions of all
adults?

To answer this question, we’ll build a confidence interval for the proportion
of all U.S. adults who believe the death penalty is applied fairly. There are
four steps to building a confidence interval for proportions: Plan, Model,
Mechanics, and Conclusion.

A Confidence Interval for a ProportionSTEP–BY–STEP EXAMPLE

I want to find an interval that is likely, with 95%
confidence, to contain the true proportion, p, of
U.S. adults who think the death penalty is ap-
plied fairly. I have a random sample of 510 U.S.
adults.

Plan State the problem and the W’s.

Identify the parameter you wish to estimate.

Identify the population about which you
wish to make statements.

Fairly
Unfairly
Don’t Know

WHO Adults in the United
States

WHAT Response to a question
about the death
penalty

WHEN May 2006

WHERE United States

HOW 510 adults were ran-
domly sampled and
asked by the Gallup
Poll

WHY Public opinion research 

Choose and state a confidence level.

Model Think about the assumptions and
check the conditions.

Ç Independence Assumption: Gallup phoned
a random sample of U.S. adults. It is very
unlikely that any of their respondents 
influenced each other.

Ç Randomization Condition: Gallup drew a
random sample from all U.S. adults. I don’t
have details of their randomization but 
assume that I can trust it.

Ç 10% Condition: Although sampling was 
necessarily without replacement, there are
many more U.S. adults than were sampled.
The sample is certainly less than 10% of
the population.

6 www.gallup.com
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Ç Success/Failure Condition:

so the sample appears to be large enough
to use the Normal model.

The conditions are satisfied, so I can use a
Normal model to find a one-proportion
z-interval.

nqN = 510(40%) = 204 Ú 10,
npN = 510(60%) = 306 Ú 10 and

State the sampling distribution model for
the statistic.

Choose your method.

Because the sampling model is Normal, for a 95% 
confidence interval, the critical value 

The margin of error is

So the 95% confidence interval is

0.60 ; 0.043 or (0.557, 0.643)

ME = z* * SE(pN) = 1.96(0.022) = 0.043

z* = 1.96.

SE(pN) = A
pNqN
n

 = A
(0.60)(0.40)

510
= 0.022

n = 510, pN = 0.60, soMechanics Construct the confidence 
interval.

First find the standard error. (Remember:
It’s called the “standard error” because we
don’t know p and have to use instead.)

Next find the margin of error. We could
informally use 2 for our critical value, but
1.96 is more accurate.

Write the confidence interval (CI).

The CI is centered at the sample propor-
tion and about as wide as we might
expect for a sample of 500.

pN

I am 95% confident that between 55.7% and
64.3% of all U.S. adults think that the death
penalty is applied fairly.

Conclusion Interpret the confidence 
interval in the proper context. We’re 95%
confident that our interval captured the
true proportion.

REALITY CHECK

TI Tips Finding confidence intervals

It will come as no surprise that your TI can calculate a confidence interval for
a population proportion. Remember the sea fans? Of 104 sea fans, 54 were
diseased. To find the resulting confidence interval, we first take a look at a
whole new menu.

• Under STAT go to the TESTSmenu. Quite a list! Commands are found here
for the inference procedures you will learn through the coming chapters.

• We’re using a Normal model to find a confidence interval for a proportion
based on one sample. Scroll down the list and select A:1-PropZInt.

• Enter the number of successes observed and the sample size.
• Specify a confidence level and then Calculate.
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Choosing Your Sample Size
The question of how large a sample to take is an important step in planning any
study. We weren’t ready to make that calculation when we first looked at study
design in Chapter 12, but now we can—and we always should.

Suppose a candidate is planning a poll and wants to estimate voter support
within 3% with 95% confidence. How large a sample does she need?

Let’s look at the margin of error:

We want to find n, the sample size. To find n we need a value for . We don’t
know because we don’t have a sample yet, but we can probably guess a value.
The worst case—the value that makes (and therefore n) largest—is 0.50, so if
we use that value for , we’ll certainly be safe. Our candidate probably expects to
be near 50% anyway.

Our equation, then, is

To solve for n, we first multiply both sides of the equation by and then divide
by 0.03:

Notice that evaluating this expression tells us the square root of the sample size.
We need to square that result to find n:

To be safe, we round up and conclude that we need at least 1068 respondents to
keep the margin of error as small as 3% with a confidence level of 95%.

n L (32.67)2
L 1067.1

1n =

1.961(0.5)(0.5)

0.03
L 32.67

0.031n = 1.961(0.5)(0.5)

1n

0.03 = 1.96A
(0.5)(0.5)

n
.

pN
pNqN

pN
pN

 0.03 = 1.96 A
pN qN

n
.

 ME = z*A
pN qN

n

And there it is! Note that the TI calculates the sample proportion for you, but
the important result is the interval itself, 42% to 62%. The calculator did the
easy part—just Show. Tell is harder. It’s your job to interpret that interval
correctly.

Beware: You may run into a problem. When you enter the value of x, you need
a count, not a percentage. Suppose the marine scientists had reported that 52%
of the 104 sea fans were infected. You can enter x:.52*104, and the calcula-
tor will evaluate that as 54.08. Wrong. Unless you fix that result, you’ll get an
error message. Think about it—the number of infected sea fans must have been
a whole number, evidently 54. When the scientists reported the results, they
rounded off the actual percentage (54 104 51.923%) to 52%. Simply
change the value of x to 54 and you should be able to Calculate the correct
interval.

=,

What do I use instead of ?
Often we have an estimate 
of the population proportion
based on experience or
perhaps a previous study.
If so, use that value as in
calculating what size sample
you need. If not, the cautious
approach is to use in
the sample size calculation;
that will determine the
largest sample necessary
regardless of the true
proportion.

p = 0.5

pN

pN
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450 CHAPTER 19    Confidence Intervals for Proportions

Choosing a sample sizeFOR EXAMPLE

Recap: The Fox News poll which estimated that 82% of all voters believed global warming exists had a margin of error of . Suppose an
environmental group planning a follow-up survey of voters’ opinions on global warming wants to determine a 95% confidence interval with a margin of
error of no more than .

Question: How large a sample do they need? Use the Fox News estimate as the basis for your calculation.

The environmental group’s survey will need about 1,418 respondents.

 n = 37.652
= 1,417.55

 1n =

1.961(0.82)(0.18)

0.02
L 37.65

 0.02 = 1.96 A
(0.82)(0.18)

n

 ME = z*A
pNqN
n

;2%

;3%

Unfortunately, bigger samples cost more money and more effort. Because the
standard error declines only with the square root of the sample size, to cut the stan-
dard error (and thus the ME) in half, we must quadruple the sample size.

Generally a margin of error of 5% or less is acceptable, but different circum-
stances call for different standards. For a pilot study, a margin of error of 10% may
be fine, so a sample of 100 will do quite well. In a close election, a polling organi-
zation might want to get the margin of error down to 2%. Drawing a large sample
to get a smaller ME, however, can run into trouble. It takes time to survey 2400
people, and a survey that extends over a week or more may be trying to hit a tar-
get that moves during the time of the survey. An important event can change pub-
lic opinion in the middle of the survey process.

Keep in mind that the sample size for a survey is the number of respondents,
not the number of people to whom questionnaires were sent or whose phone
numbers were dialed. And keep in mind that a low response rate turns any study
essentially into a voluntary response study, which is of little value for inferring
population values. It’s almost always better to spend resources on increasing the
response rate than on surveying a larger group. A full or nearly full response by a
modest-size sample can yield useful results.

Surveys are not the only place where proportions pop up. Banks sample huge
mailing lists to estimate what proportion of people will accept a credit card offer.
Even pilot studies may mail offers to over 50,000 customers. Most don’t respond;
that doesn’t make the sample smaller—they simply said “No thanks”. Those who
do respond want the card. To the bank, the response rate7 is . With a typical suc-
cess rate around 0.5%, the bank needs a very small margin of error—often as low
as 0.1%—to make a sound business decision. That calls for a large sample, and the
bank must take care in estimating the size needed. For our election poll calcula-
tion we used , both because it’s safe and because we honestly believed p to
be near 0.5. If the bank used 0.5, they’d get an absurd answer. Instead, they base
their calculation on a proportion closer to the one they expect to find.

p = 0.5

pN

Public opinion polls often
sample 1000 people, which
gives an ME of 3% when

But businesses and
nonprofit organizations
typically use much larger
samples to estimate the
proportion who will accept 
a direct mail offer. Why?
Because that proportion is
very low—often far below
5%. An ME of 3% wouldn’t
be precise enough. An ME
like 0.1% would be more
useful, and that requires a
very large sample size.

p = 0.5.

7 In marketing studies every mailing yields a response—“yes” or “no”—and “response
rate” means the proportion of customers who accept an offer. That’s not the way we use
the term for survey response.
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Sample size revisitedFOR EXAMPLE

A credit card company is about to send out a mailing to test the market for a new credit card. From that sample, they want to estimate the true proportion
of people who will sign up for the card nationwide. A pilot study suggests that about 0.5% of the people receiving the offer will accept it.

Question: To be within a tenth of a percentage point (0.001) of the true rate with 95% confidence, how big does the test mailing have to be?

Using the estimate :

That’s a lot, but it’s actually a reasonable size for a trial mailing such as this. Note, however, that if they had 
assumed 0.50 for the value of p, they would have found

Quite a different (and unreasonable) result.

 (0.001)2
= 1.962

 

(0.5)(0.5)
n

Q n =

1.962(0.5)(0.5)

(0.001)2 = 960,400.

 ME = 0.001 = z *A
pq
n

= 1.96 A
(0.5)(0.5)

n

= 19,111.96 or 19,112

 (0.001)2
= 1.962 

(0.005)(0.995)
n

Q n =

1.962(0.005)(0.995)

(0.001)2

 ME = 0.001 = z*A
pNqN
n

= 1.96 A
(0.005)(0.995)

n
 pN = 0.5%

WHAT CAN GO WRONG?
Confidence intervals are powerful tools. Not only do they tell what we know about the
parameter value, but—more important—they also tell what we don’t know. In order 
to use confidence intervals effectively, you must be clear about what you say about
them.

Don’t Misstate What the Interval Means
u Don’t suggest that the parameter varies. A statement like “There is a 95% chance that the

true proportion is between 42.7% and 51.3%” sounds as though you think the popu-
lation proportion wanders around and sometimes happens to fall between 42.7%
and 51.3%. When you interpret a confidence interval, make it clear that you know
that the population parameter is fixed and that it is the interval that varies from
sample to sample.

u Don’t claim that other samples will agree with yours. Keep in mind that the confidence
interval makes a statement about the true population proportion. An interpretation
such as “In 95% of samples of U.S. adults, the proportion who think marijuana
should be decriminalized will be between 42.7% and 51.3%” is just wrong. The
interval isn’t about sample proportions but about the population proportion.

u Don’t be certain about the parameter. Saying “Between 42.1% and 61.7% of sea fans are
infected” asserts that the population proportion cannot be outside that interval. Of
course, we can’t be absolutely certain of that. (Just pretty sure.)

u Don’t forget: It’s about the parameter. Don’t say, “I’m 95% confident that is between
42.1% and 61.7%.” Of course you are—in fact, we calculated that of thepN = 51.9%

pN

(continued)
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8 When we are being very careful we say, “95% of samples of this size will produce confi-
dence intervals that capture the true proportion of infected sea fans on the Las Redes Reef.”

fans in our sample were infected. So we already know the sam-
ple proportion. The confidence interval is about the (unknown)
population parameter, p.

u Don’t claim to know too much. Don’t say, “I’m 95% confident that
between 42.1% and 61.7% of all the sea fans in the world are in-
fected.” You didn’t sample from all 500 species of sea fans found
in coral reefs around the world. Just those of this type on the Las
Redes Reef.

u Do take responsibility. Confidence intervals are about uncertainty.
You are the one who is uncertain, not the parameter. You have to
accept the responsibility and consequences of the fact that not all
the intervals you compute will capture the true value. In fact,
about 5% of the 95% confidence intervals you find will fail to
capture the true value of the parameter. You can say, “I am 95%
confident that between 42.1% and 61.7% of the sea fans on the
Las Redes Reef are infected.”8

u Do treat the whole interval equally. Although a confidence interval
is a set of plausible values for the parameter, don’t think that the
values in the middle of a confidence interval are somehow
“more plausible” than the values near the edges. Your interval
provides no information about where in your current interval (if
at all) the parameter value is most likely to be hiding.

Margin of Error Too Large to Be Useful
We know we can’t be exact, but how precise do we need to be? A confidence interval
that says that the percentage of infected sea fans is between 10% and 90% wouldn’t be
of much use. Most likely, you have some sense of how large a margin of error you can
tolerate. What can you do?

One way to make the margin of error smaller is to reduce your level of confidence.
But that may not be a useful solution. It’s a rare study that reports confidence levels
lower than 80%. Levels of 95% or 99% are more common.

The time to think about whether your margin of error is small enough to be useful
is when you design your study. Don’t wait until you compute your confidence interval.
To get a narrower interval without giving up confidence, you need to have less variabil-
ity in your sample proportion. How can you do that? Choose a larger sample.

Violations of Assumptions
Confidence intervals and margins of error are often reported along with poll results and
other analyses. But it’s easy to misuse them and wise to be aware of the ways things can
go wrong.

u Watch out for biased sampling. Don’t forget about the potential sources of bias in surveys
that we discussed in Chapter 12. Just because we have more statistical machinery now
doesn’t mean we can forget what we’ve already learned. A questionnaire that finds
that 85% of people enjoy filling out surveys still suffers from nonresponse bias even
though now we’re able to put confidence intervals around this (biased) estimate.

u Think about independence. The assumption that the values in our sample are mutually
independent is one that we usually cannot check. It always pays to think about it,
though. For example, the disease affecting the sea fans might be contagious, so that
fans growing near a diseased fan are more likely themselves to be diseased. Such con-
tagion would violate the Independence Assumption and could severely affect our
sample proportion. It could be that the proportion of infected sea fans on the entire
reef is actually quite small, and the researchers just happened to find an infected area.
To avoid this, the researchers should be careful to sample sites far enough apart to
make contagion unlikely.

What Can I Say?
Confidence intervals are based on random
samples, so the interval is random, too.The CLT
tells us that 95% of the random samples will yield
intervals that capture the true value.That’s what
we mean by being 95% confident.

Technically, we should say,“I am 95%
confident that the interval from 42.1% to 61.7%
captures the true proportion of infected sea fans.”
That formal phrasing emphasizes that our
confidence (and our uncertainty) is about the interval,
not the true proportion. But you may choose a more
casual phrasing like “I am 95% confident that
between 42.1% and 61.7% of the Las Redes fans
are infected.”Because you’ve made it clear that
the uncertainty is yours and you didn’t suggest
that the randomness is in the true proportion, this
is OK. Keep in mind that it’s the interval that’s
random and is the focus of both our confidence
and doubt.
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CONNECTIONS
Now we can see a practical application of sampling distributions. To find a confidence interval, we
lay out an interval measured in standard deviations. We’re using the standard deviation as a ruler
again. But now the standard deviation we need is the standard deviation of the sampling distribu-
tion. That’s the one that tells how much the proportion varies. (And when we estimate it from the
data, we call it a standard error.)

WHAT HAVE WE LEARNED?

The first 10 chapters of the book explored graphical and numerical ways of summarizing and pre-
senting sample data. We’ve learned (at last!) to use the sample we have at hand to say something
about the world at large. This process, called statistical inference, is based on our understanding of
sampling models and will be our focus for the rest of the book.

As our first step in statistical inference, we’ve learned to use our sample to make a confidence
interval that estimates what proportion of a population has a certain characteristic.

We’ve learned that:

u Our best estimate of the true population proportion is the proportion we observed in the sample,
so we center our confidence interval there.

u Samples don’t represent the population perfectly, so we create our interval with a margin of error.
u This method successfully captures the true population proportion most of the time, providing us

with a level of confidence in our interval.
u The higher the level of confidence we want, the wider our confidence interval becomes.
u The larger the sample size we have, the narrower our confidence interval can be.
u When designing a study, we can calculate the sample size we’ll need to be able to reach conclu-

sions that have a desired degree of precision and level of confidence.
u There are important assumptions and conditions we must check before using this (or any) statis-

tical inference procedure.

We’ve learned to interpret a confidence interval by Telling what we believe is true in the entire pop-
ulation from which we took our random sample. Of course, we can’t be certain. We’ve learned not
to overstate or misinterpret what the confidence interval says.

Terms

Standard error 440. When we estimate the standard deviation of a sampling distribution using statistics found
from the data, the estimate is called a standard error.

Confidence interval 441. A level C confidence interval for a model parameter is an interval of values usually of the form

found from data in such a way that C% of all random samples will yield intervals that capture the
true parameter value.

One-proportion -interval 442–444. A confidence interval for the true value of a proportion. The confidence interval is

where is a critical value from the Standard Normal model corresponding to the specified confi-
dence level.

z*

pN ; z*SE(pN),

z

estimate ; margin of error

SE(pN) = A
pNqN

n
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454 CHAPTER 19    Confidence Intervals for Proportions

Margin of error 443. In a confidence interval, the extent of the interval on either side of the observed statistic value
is called the margin of error. A margin of error is typically the product of a critical value from the
sampling distribution and a standard error from the data. A small margin of error corresponds to a
confidence interval that pins down the parameter precisely. A large margin of error corresponds to
a confidence interval that gives relatively little information about the estimated parameter. For a
proportion,

Critical value 445. The number of standard errors to move away from the mean of the sampling distribution to
correspond to the specified level of confidence. The critical value, denoted z*, is usually found from
a table or with technology.

Skills
u Understand confidence intervals as a balance between the precision and the certainty of a state-

ment about a model parameter.

u Understand that the margin of error of a confidence interval for a proportion changes with the
sample size and the level of confidence.

u Know how to examine your data for violations of conditions that would make inference about a
population proportion unwise or invalid.

u Be able to construct a one-proportion z-interval.

u Be able to interpret a one-proportion z-interval in a simple sentence or two. Write such an inter-
pretation so that it does not state or suggest that the parameter of interest is itself random, but
rather that the bounds of the confidence interval are the random quantities about which we state
our degree of confidence.

ME = z*A
pNqN

n

CONFIDENCE INTERVALS FOR PROPORTIONS
ON THE COMPUTER

Confidence intervals for proportions are so easy and natural that many statistics packages don’t offer special
commands for them. Most statistics programs want the “raw data” for computations. For proportions, the raw
data are the “success” and “failure” status for each case. Usually, these are given as 1 or 0, but they might be
category names like “yes” and “no.” Often we just know the proportion of successes, , and the total count, n.
Computer packages don’t usually deal with summary data like this easily, but the statistics routines found on
many graphing calculators allow you to create confidence intervals from summaries of the data—usually all you
need to enter are the number of successes and the sample size.

In some programs you can reconstruct variables of 0’s and 1’s with the given proportions. But even when you have
(or can reconstruct) the raw data values, you may not get exactly the same margin of error from a computer
package as you would find working by hand. The reason is that some packages make approximations or use other
methods. The result is very close but not exactly the same. Fortunately, Statistics means never having to say
you’re certain, so the approximate result is good enough.

pN
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EXERCISES

1. Margin of error. A TV newscaster reports the results
of a poll of voters, and then says, “The margin of error is
plus or minus 4%.” Explain carefully what that means.

2. Margin of error. A medical researcher estimates the
percentage of children exposed to lead-base paint, adding
that he believes his estimate has a margin of error of
about 3%. Explain what the margin of error means.

3. Conditions. For each situation described below, iden-
tify the population and the sample, explain what p and 
represent, and tell whether the methods of this chapter
can be used to create a confidence interval.
a) Police set up an auto checkpoint at which drivers are

stopped and their cars inspected for safety problems.
They find that 14 of the 134 cars stopped have at least
one safety violation. They want to estimate the per-
centage of all cars that may be unsafe.

b) A TV talk show asks viewers to register their opinions
on prayer in schools by logging on to a Web site. Of
the 602 people who voted, 488 favored prayer in
schools. We want to estimate the level of support
among the general public.

c) A school is considering requiring students to wear
uniforms. The PTA surveys parent opinion by send-
ing a questionnaire home with all 1245 students; 
380 surveys are returned, with 228 families in favor
of the change.

d) A college admits 1632 freshmen one year, and four
years later 1388 of them graduate on time. The college
wants to estimate the percentage of all their freshman
enrollees who graduate on time.

4. More conditions. Consider each situation described.
Identify the population and the sample, explain what p
and represent, and tell whether the methods of this
chapter can be used to create a confidence interval.
a) A consumer group hoping to assess customer experi-

ences with auto dealers surveys 167 people who
recently bought new cars; 3% of them expressed dis-
satisfaction with the salesperson.

b) What percent of college students have cell phones?
2883 students were asked as they entered a football
stadium, and 243 said they had phones with them.

c) 240 potato plants in a field in Maine are randomly
checked, and only 7 show signs of blight. How
severe is the blight problem for the U.S. potato
industry?

d) 12 of the 309 employees of a small company suffered
an injury on the job last year. What can the company
expect in future years?

5. Conclusions. A catalog sales company promises to
deliver orders placed on the Internet within 3 days.
Follow-up calls to a few randomly selected customers
show that a 95% confidence interval for the proportion of
all orders that arrive on time is What does this
mean? Are these conclusions correct? Explain.
a) Between 82% and 94% of all orders arrive on time.

88% ;  6%.

pN

pN

b) 95% of all random samples of customers will show
that 88% of orders arrive on time.

c) 95% of all random samples of customers will show
that 82% to 94% of orders arrive on time.

d) We are 95% sure that between 82% and 94% of the 
orders placed by the sampled customers arrived on
time.

e) On 95% of the days, between 82% and 94% of the 
orders will arrive on time.

6. More conclusions. In January 2002, two students
made worldwide headlines by spinning a Belgian euro
250 times and getting 140 heads—that’s 56%. That makes
the 90% confidence interval (51%, 61%). What does this
mean? Are these conclusions correct? Explain.
a) Between 51% and 61% of all euros are unfair.
b) We are 90% sure that in this experiment this euro

landed heads on between 51% and 61% of the spins.
c) We are 90% sure that spun euros will land heads be-

tween 51% and 61% of the time.
d) If you spin a euro many times, you can be 90% sure 

of getting between 51% and 61% heads.
e) 90% of all spun euros will land heads between 51%

and 61% of the time.

7. Confidence intervals. Several factors are involved in
the creation of a confidence interval. Among them are the
sample size, the level of confidence, and the margin of 
error. Which statements are true?
a) For a given sample size, higher confidence means a

smaller margin of error.
b) For a specified confidence level, larger samples 

provide smaller margins of error.
c) For a fixed margin of error, larger samples provide

greater confidence.
d) For a given confidence level, halving the margin of 

error requires a sample twice as large.

8. Confidence intervals, again. Several factors are in-
volved in the creation of a confidence interval. Among
them are the sample size, the level of confidence, and the
margin of error. Which statements are true?
a) For a given sample size, reducing the margin of error

will mean lower confidence.
b) For a certain confidence level, you can get a smaller

margin of error by selecting a bigger sample.
c) For a fixed margin of error, smaller samples will mean

lower confidence.
d) For a given confidence level, a sample 9 times as large

will make a margin of error one third as big.

9. Cars. What fraction of cars is made in Japan? The 
computer output below summarizes the results of a 
random sample of 50 autos. Explain carefully what it 
tells you.

z-Inter val for propor tion
W ith 90.00% confidence,
0.29938661 , p(japan) , 0.46984416
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10. Parole. A study of 902 decisions made by the Nebraska
Board of Parole produced the following computer output.
Assuming these cases are representative of all cases that
may come before the Board, what can you conclude?

z-Inter val for propor tion
W ith 95.00% confidence,
0.56100658 , p(parole) , 0.62524619

11. Contaminated chicken. In January 2007 Consumer
Reports published their study of bacterial contamination
of chicken sold in the United States. They purchased
525 broiler chickens from various kinds of food stores
in 23 states and tested them for types of bacteria that
cause food-borne illnesses. Laboratory results indicated
that 83% of these chickens were infected with
Campylobacter.
a) Construct a 95% confidence interval.
b) Explain what your confidence interval says about

chicken sold in the United States.
c) A spokesperson for the U.S. Department of Agricul-

ture dismissed the Consumer Reports finding, saying,
“That’s 500 samples out of 9 billion chickens slaugh-
tered a year. . . . With the small numbers they [tested],
I don’t know that one would want to change one’s
buying habits.” Is this criticism valid? Explain.

12. Contaminated chicken, second course. The January
2007 Consumer Reports study described in Exercise 11 also
found that 15% of the 525 broiler chickens tested were 
infected with Salmonella.
a) Are the conditions for creating a confidence interval

satisfied? Explain.
b) Construct a 95% confidence interval.
c) Explain what your confidence interval says about

chicken sold in the United States.

13. Baseball fans. In a poll taken in March of 2007, Gallup
asked 1006 national adults whether they were baseball
fans. 36% said they were. A year previously, 37% of a 
similar-size sample had reported being baseball fans.
a) Find the margin of error for the 2007 poll if we want

90% confidence in our estimate of the percent of 
national adults who are baseball fans.

b) Explain what that margin of error means.
c) If we wanted to be 99% confident, would the margin

of error be larger or smaller? Explain.
d) Find that margin of error.
e) In general, if all other aspects of the situation remain

the same, will smaller margins of error produce
greater or less confidence in the interval?

f) Do you think there’s been a change from 2006 to 2007
in the real proportion of national adults who are base-
ball fans? Explain.

14. Cloning 2007. A May 2007 Gallup Poll found that only
11% of a random sample of 1003 adults approved of at-
tempts to clone a human.
a) Find the margin of error for this poll if we want 95%

confidence in our estimate of the percent of American
adults who approve of cloning humans.

b) Explain what that margin of error means.
c) If we only need to be 90% confident, will the margin

of error be larger or smaller? Explain.
d) Find that margin of error.

e) In general, if all other aspects of the situation remain
the same, would smaller samples produce smaller or
larger margins of error?

15. Contributions, please. The Paralyzed Veterans of
America is a philanthropic organization that relies on
contributions. They send free mailing labels and greeting
cards to potential donors on their list and ask for a volun-
tary contribution. To test a new campaign, they recently
sent letters to a random sample of 100,000 potential
donors and received 4781 donations.
a) Give a 95% confidence interval for the true proportion

of their entire mailing list who may donate.
b) A staff member thinks that the true rate is 5%. Given

the confidence interval you found, do you find that
percentage plausible?

16. Take the offer. First USA, a major credit card company,
is planning a new offer for their current cardholders. The
offer will give double airline miles on purchases for the
next 6 months if the cardholder goes online and registers
for the offer. To test the effectiveness of the campaign,
First USA recently sent out offers to a random sample of
50,000 cardholders. Of those, 1184 registered.
a) Give a 95% confidence interval for the true proportion

of those cardholders who will register for the offer.
b) If the acceptance rate is only 2% or less, the campaign

won’t be worth the expense. Given the confidence in-
terval you found, what would you say?

17. Teenage drivers. An insurance company checks police
records on 582 accidents selected at random and notes
that teenagers were at the wheel in 91 of them.
a) Create a 95% confidence interval for the percentage of

all auto accidents that involve teenage drivers.
b) Explain what your interval means.
c) Explain what “95% confidence” means.
d) A politician urging tighter restrictions on drivers’ 

licenses issued to teens says, “In one of every five auto
accidents, a teenager is behind the wheel.” Does your
confidence interval support or contradict this state-
ment? Explain.

18. Junk mail. Direct mail advertisers send solicitations
(a.k.a. “junk mail”) to thousands of potential customers
in the hope that some will buy the company’s product.
The acceptance rate is usually quite low. Suppose a com-
pany wants to test the response to a new flyer, and sends
it to 1000 people randomly selected from their mailing list
of over 200,000 people. They get orders from 123 of the
recipients.
a) Create a 90% confidence interval for the percentage of

people the company contacts who may buy something.
b) Explain what this interval means.
c) Explain what “90% confidence” means.
d) The company must decide whether to now do a mass

mailing. The mailing won’t be cost-effective unless it
produces at least a 5% return. What does your confi-
dence interval suggest? Explain.

19. Safe food. Some food retailers propose subjecting food
to a low level of radiation in order to improve safety, but
sale of such “irradiated” food is opposed by many people.
Suppose a grocer wants to find out what his customers
think. He has cashiers distribute surveys at checkout and
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ask customers to fill them out and drop them in a box
near the front door. He gets responses from 122 customers,
of whom 78 oppose the radiation treatments. What can
the grocer conclude about the opinions of all his 
customers?

20. Local news. The mayor of a small city has suggested
that the state locate a new prison there, arguing that the
construction project and resulting jobs will be good for
the local economy. A total of 183 residents show up for a
public hearing on the proposal, and a show of hands
finds only 31 in favor of the prison project. What can the
city council conclude about public support for the
mayor’s initiative?

21. Death penalty, again. In the survey on the death
penalty you read about in the chapter, the Gallup Poll ac-
tually split the sample at random, asking 510 respondents
the question quoted earlier, “Generally speaking, do you
believe the death penalty is applied fairly or unfairly in
this country today?” The other 510 were asked “Generally
speaking, do you believe the death penalty is applied un-
fairly or fairly in this country today?” Seems like the same
question, but sometimes the order of the choices matters.
Suppose that for the second way of phrasing it, only 54%
said they thought the death penalty was fairly applied.
a) What kind of bias may be present here?
b) If we combine them, considering the overall group 

to be one larger random sample of 1020 respondents,
what is a 95% confidence interval for the proportion 
of the general public that thinks the death penalty is
being fairly applied?

c) How does the margin of error based on this pooled
sample compare with the margins of error from the
separate groups? Why?

22. Gambling. A city ballot includes a local initiative that
would legalize gambling. The issue is hotly contested, and
two groups decide to conduct polls to predict the outcome.
The local newspaper finds that 53% of 1200 randomly se-
lected voters plan to vote “yes,” while a college Statistics
class finds 54% of 450 randomly selected voters in support.
Both groups will create 95% confidence intervals.
a) Without finding the confidence intervals, explain

which one will have the larger margin of error.
b) Find both confidence intervals.
c) Which group concludes that the outcome is too close

to call? Why?

23. Rickets. Vitamin D, whether ingested as a dietary sup-
plement or produced naturally when sunlight falls on the
skin, is essential for strong, healthy bones. The bone dis-
ease rickets was largely eliminated in England during the
1950s, but now there is concern that a generation of chil-
dren more likely to watch TV or play computer games
than spend time outdoors is at increased risk. A recent
study of 2700 children randomly selected from all parts of
England found 20% of them deficient in vitamin D.
a) Find a 98% confidence interval.
b) Explain carefully what your interval means.
c) Explain what “98% confidence” means.

24. Pregnancy. In 1998 a San Diego reproductive clinic re-
ported 49 live births to 207 women under the age of 40
who had previously been unable to conceive.

a) Find a 90% confidence interval for the success rate at
this clinic.

b) Interpret your interval in this context.
c) Explain what “90% confidence” means.
d) Do these data refute the clinic’s claim of a 25% success

rate? Explain.

25. Payments. In a May 2007 Experian/Gallup Personal
Credit Index poll of 1008 U.S. adults aged 18 and over, 
8% of respondents said they were very uncomfortable
with their ability to make their monthly payments on
their current debt during the next three months. A more
detailed poll surveyed 1288 adults, reporting similar
overall results and also noting differences among four
age groups: 18–29, 30–49, 50–64, and 65+.
a) Do you expect the 95% confidence interval for the true

proportion of all 18- to 29-year-olds who are worried
to be wider or narrower than the 95% confidence in-
terval for the true proportion of all U.S. consumers?
Explain.

b) Do you expect this second poll’s overall margin of er-
ror to be larger or smaller than the Experian/Gallup
poll’s? Explain.

26. Back to campus again. In 2004 ACT, Inc., reported that
74% of 1644 randomly selected college freshmen returned
to college the next year. The study was stratified by type
of college—public or private. The retention rates were
71.9% among 505 students enrolled in public colleges and
74.9% among 1139 students enrolled in private colleges.
a) Will the 95% confidence interval for the true national

retention rate in private colleges be wider or narrower
than the 95% confidence interval for the retention rate
in public colleges? Explain.

b) Do you expect the margin of error for the overall 
retention rate to be larger or smaller? Explain.

27. Deer ticks. Wildlife biologists inspect 153 deer taken
by hunters and find 32 of them carrying ticks that test
positive for Lyme disease.
a) Create a 90% confidence interval for the percentage of

deer that may carry such ticks.
b) If the scientists want to cut the margin of error in half,

how many deer must they inspect?
c) What concerns do you have about this sample?

28. Pregnancy, II. The San Diego reproductive clinic in 
Exercise 24 wants to publish updated information on its
success rate.
a) The clinic wants to cut the stated margin of error in

half. How many patients’ results must be used?
b) Do you have any concerns about this sample?

Explain.

29. Graduation. It’s believed that as many as 25% of adults
over 50 never graduated from high school. We wish to 
see if this percentage is the same among the 25 to 30 age
group.
a) How many of this younger age group must we survey

in order to estimate the proportion of non-grads to
within 6% with 90% confidence?

b) Suppose we want to cut the margin of error to 4%.
What’s the necessary sample size?

c) What sample size would produce a margin of error 
of 3%?
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30. Hiring. In preparing a report on the economy, we need
to estimate the percentage of businesses that plan to hire
additional employees in the next 60 days.
a) How many randomly selected employers must we

contact in order to create an estimate in which we are
98% confident with a margin of error of 5%?

b) Suppose we want to reduce the margin of error to 3%.
What sample size will suffice?

c) Why might it not be worth the effort to try to get an
interval with a margin of error of only 1%?

31. Graduation, again. As in Exercise 29, we hope to 
estimate the percentage of adults aged 25 to 30 who never
graduated from high school. What sample size would 
allow us to increase our confidence level to 95% while 
reducing the margin of error to only 2%?

32. Better hiring info. Editors of the business report in 
Exercise 30 are willing to accept a margin of error of 4%
but want 99% confidence. How many randomly selected
employers will they need to contact?

33. Pilot study. A state’s environmental agency worries
that many cars may be violating clean air emissions stan-
dards. The agency hopes to check a sample of vehicles in
order to estimate that percentage with a margin of error
of 3% and 90% confidence. To gauge the size of the prob-
lem, the agency first picks 60 cars and finds 9 with faulty
emissions systems. How many should be sampled for a
full investigation?

34. Another pilot study. During routine screening, a doctor
notices that 22% of her adult patients show higher than
normal levels of glucose in their blood—a possible warn-
ing signal for diabetes. Hearing this, some medical re-
searchers decide to conduct a large-scale study, hoping to
estimate the proportion to within 4% with 98% confidence.
How many randomly selected adults must they test?

JUST CHECKING 
Answers

1. No. We know that in the sample 17% said “yes”;
there’s no need for a margin of error.

2. No, we are 95% confident that the percentage falls 
in some interval, not exactly on a particular value.

3. Yes. That’s what the confidence interval means.

4. No. We don’t know for sure that’s true; we are only
95% confident.

5. No. That’s our level of confidence, not the proportion
of people receiving unsolicited text messages. The
sample suggests the proportion is much lower.

6. Wider.

7. Lower.

8. Smaller.

35. Approval rating. A newspaper reports that the gover-
nor’s approval rating stands at 65%. The article adds that
the poll is based on a random sample of 972 adults and
has a margin of error of 2.5%. What level of confidence
did the pollsters use?

36. Amendment. A TV news reporter says that a proposed
constitutional amendment is likely to win approval in the
upcoming election because a poll of 1505 likely voters in-
dicated that 52% would vote in favor. The reporter goes
on to say that the margin of error for this poll was 3%.
a) Explain why the poll is actually inconclusive.
b) What confidence level did the pollsters use?
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Ingots are huge pieces of metal, often weighing more than 20,000 pounds,
made in a giant mold. They must be cast in one large piece for use in fabricat-
ing large structural parts for cars and planes. If they crack while being made,
the crack can propagate into the zone required for the part, compromising its

integrity. Airplane manufacturers insist that metal for their planes be defect-free,
so the ingot must be made over if any cracking is detected.

Even though the metal from the cracked ingot is recycled, the scrap cost runs
into the tens of thousands of dollars. Metal manufacturers would like to avoid
cracking if at all possible. But the casting process is complicated and not every-
thing is completely under control. In one plant, only about 80% of the ingots have
been free of cracks. In an attempt to reduce the cracking proportion, the plant en-
gineers and chemists recently tried out some changes in the casting process. Since
then, 400 ingots have been cast and only 17% of them have cracked. Should man-
agement declare victory? Has the cracking rate really decreased, or was 17% just
due to luck?

We can treat the 400 ingots cast with the new method as a random sample. We
know that each random sample will have a somewhat different proportion of
cracked ingots. Is the 17% we observe merely a result of natural sampling vari-
ability, or is this lower cracking rate strong enough evidence to assure manage-
ment that the true cracking rate now is really below 20%?

People want answers to questions like these all the time. Has the president’s
approval rating changed since last month? Has teenage smoking decreased in the
past five years? Is the global temperature increasing? Did the Super Bowl ad we
bought actually increase sales? To answer such questions, we test hypotheses about
models.

Hypotheses
How can we state and test a hypothesis about ingot cracking? Hypotheses are
working models that we adopt temporarily. To test whether the changes made by
the engineers have improved the cracking rate, we assume that they have in fact

459

CHAPTER

20
Testing Hypotheses
About Proportions

“Half the money I spend on
advertising is wasted; the
trouble is I don’t know which
half.”

—John Wanamaker
(attributed)

Activity: Testing a Claim.
Can we really draw a reasonable
conclusion from a random
sample? Run this simulation
before you read the chapter, and
you’ll gain a solid sense of what
we’re doing here.
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made no difference and that any apparent improvement is just random fluctuation
(sampling error). So, our starting hypothesis, called the null hypothesis, is that
the proportion of cracks is still 20%.

The null hypothesis, which we denote , specifies a population model pa-
rameter of interest and proposes a value for that parameter. We usually write
down the null hypothesis in the form . This is a
concise way to specify the two things we need most: the identity of the parameter
we hope to learn about and a specific hypothesized value for that parameter. (We
need a hypothesized value so we can compare our observed statistic value to it.)

Which value to use is often obvious from the Who and What of the data. But
sometimes it takes a bit of thinking to translate the question we hope to answer
into a hypothesis about a parameter. For the ingots we can write 

The alternative hypothesis, which we denote , contains the values of the pa-
rameter that we consider plausible if we reject the null hypothesis. In the ingots ex-
ample, our null hypothesis is that What’s the alternative? Management
is interested in reducing the cracking rate, so their alternative is 

What would convince you that the cracking rate had actually gone down? If
you observed a cracking rate much lower than 20% in your sample, you’d likely be
convinced. If only 3 out of the next 400 ingots crack (for a rate of 0.75%), most
folks would conclude that the changes helped. But if the sample cracking rate is
only slightly lower than 20%, you should be skeptical. After all, observed propor-
tions do vary, so we wouldn’t be surprised to see some difference. How much
smaller must the cracking rate be before we are convinced that it has changed?
Whenever we ask about the size of a statistical difference, we naturally think of
using the standard deviation as a ruler. So let’s start by finding the standard devi-
ation of the sample cracking rate.

Since the company changed the process, 400 new ingots have been cast. The
sample size of 400 is big enough to satisfy the Success/Failure Condition. (We ex-
pect ingots to crack.) We have no reason to think the ingots are
not independent, so the Normal sampling distribution model should work well.
The standard deviation of the sampling model is

SD1pN2 = A
pq

n
= A

10.20210.802

400
= 0.02

0.20 * 400 = 80

HA: p 6 0.20.
p = 0.20.

HA

H0: p = 0.20.

H0: parameter = hypothesized value

H0

Why is this a standard deviation and not a standard error? Because
we haven’t estimated anything. When we assume that the null hypothesis is true, it
gives us a value for the model parameter p. With proportions, if we know p, then
we also automatically know its standard deviation. And because we find the stan-
dard deviation from the model parameter, this is a standard deviation and not a
standard error. When we found a confidence interval for p, we could not assume
that we knew its value, so we estimated the standard deviation from the sample
value .pN

Hypothesis n.; 
pl. {Hypotheses}.

A supposition; a
proposition or principle
which is supposed or taken
for granted, in order to draw
a conclusion or inference 
for proof of the point in
question; something not
proved, but assumed for the
purpose of argument.
—Webster’s Unabridged
Dictionary, 1913

To remind us that the
parameter value comes from
the null hypothesis, it is
sometimes written as and
the standard deviation as

SD1pN2 = A
p0q0

n
.

p0

Now we know both parameters of the Normal sampling distribution model:
and , so we can find out how likely it would be to see the ob-

served value of . Since we are using a Normal model, we find the z-score:

Then we ask, “How likely is it to observe a value at least 1.5 standard deviations
below the mean of a Normal model?” The answer (from a calculator, computer
program, or the Normal table) is about 0.067. This is the probability of observing
a cracking rate of 17% or less in a sample of 400 if the null hypothesis is true.

z =

0.17 - 0.20
0.02

= -1.5

pN = 17%
SD1pN2 = 0.02p = 0.20

NOTATION ALERT:

Capital H is the standard letter
for hypotheses. always labels
the null hypothesis, and 
labels the alternative
hypothesis.

HA

H0
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Management now must decide whether an event that would happen 6.7% of the
time by chance is strong enough evidence to conclude that the true cracking pro-
portion has decreased.

0 1 2 3–1–2–3

–1.5

0.067

FIGURE 20.1
How likely is a z-score of
–1.5 (or lower)? This is
what it looks like. The red
area is 0.067 of the total
area under the curve.

A Trial as a Hypothesis Test
Does the reasoning of hypothesis tests seem backward? That could be because
we usually prefer to think about getting things right rather than getting them
wrong. You have seen this reasoning before in a different context. This is the logic
of jury trials.

Let’s suppose a defendant has been accused of robbery. In British common
law and those systems derived from it (including U.S. law), the null hypothesis is
that the defendant is innocent. Instructions to juries are quite explicit about this.

The evidence takes the form of facts that seem to contradict the presumption
of innocence. For us, this means collecting data. In the trial, the prosecutor pres-
ents evidence. (“If the defendant were innocent, wouldn’t it be remarkable that
the police found him at the scene of the crime with a bag full of money in his
hand, a mask on his face, and a getaway car parked outside?”)

The next step is to judge the evidence. Evaluating the evidence is the respon-
sibility of the jury in a trial, but it falls on your shoulders in hypothesis testing.
The jury considers the evidence in light of the presumption of innocence and
judges whether the evidence against the defendant would be plausible if the defen-
dant were in fact innocent.

Like the jury, you ask, “Could these data plausibly have happened by chance
if the null hypothesis were true?” If they are very unlikely to have occurred, then
the evidence raises a reasonable doubt about the null hypothesis.

Ultimately, you must make a decision. The standard of “beyond a reasonable
doubt” is wonderfully ambiguous because it leaves the jury to decide the degree
to which the evidence contradicts the hypothesis of innocence. Juries don’t explic-
itly use probability to help them decide whether to reject that hypothesis. But
when you ask the same question of your null hypothesis, you have the advantage
of being able to quantify exactly how surprising the evidence would be were the
null hypothesis true.

How unlikely is unlikely? Some people set rigid standards, like 1 time out of
20 (0.05) or 1 time out of 100 (0.01). But if you have to make the decision, you must
judge for yourself in each situation whether the probability of observing your
data is small enough to constitute “reasonable doubt.”

P-Values
The fundamental step in our reasoning is the question “Are the data surprising,
given the null hypothesis?” And the key calculation is to determine exactly how
likely the data we observed would be were the null hypothesis a true model of
the world. So we need a probability. Specifically, we want to find the probability
of seeing data like these (or something even less likely) given that the null hy-
pothesis is true. Statisticians are so thrilled with their ability to measure precisely

Activity: The Reasoning of
Hypothesis Testing. Our reasoning
is based on a rule of logic that
dates back to ancient scholars.
Here’s a modern discussion of it.
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how surprised they are that they give this probability a special
name. It’s called a P-value.1

When the P-value is high, we haven’t seen anything un-
likely or surprising at all. Events that have a high probability of
happening happen often. The data are thus consistent with the
model from the null hypothesis, and we have no reason to reject
the null hypothesis. But we realize that many other similar hy-
potheses could also account for the data we’ve seen, so we
haven’t proven that the null hypothesis is true. The most we can say

is that it doesn’t appear to be false. Formally, we “fail to reject” the null hypothe-
sis. That’s a pretty weak conclusion, but it’s all we’re entitled to.

When the P-value is low enough, it says that it’s very unlikely we’d observe
data like these if our null hypothesis were true. We started with a model. Now
that model tells us that the data we have are unlikely to have happened. The
model and data are at odds with each other, so we have to make a choice. Either
the null hypothesis is correct and we’ve just seen something remarkable, or the
null hypothesis is wrong, and we were wrong to use it as the basis for computing
our P-value. Perhaps another model is correct, and the data really aren’t that re-
markable after all. If you believe in data more than in assumptions, then, given
that choice, you should reject the null hypothesis.

What to Do with an “Innocent” Defendant
If the evidence is not strong enough to reject the defendant’s presumption of in-
nocence, what verdict does the jury return? They say “not guilty.” Notice that
they do not say that the defendant is innocent. All they say is that they have not
seen sufficient evidence to convict, to reject innocence. The defendant may, in fact,
be innocent, but the jury has no way to be sure.

Said statistically, the jury’s null hypothesis is : innocent defendant. If the
evidence is too unlikely given this assumption, the jury rejects the null hypothesis
and finds the defendant guilty. But—and this is an important distinction—if there
is insufficient evidence to convict the defendant, the jury does not decide that is
true and declare the defendant innocent. Juries can only fail to reject the null hy-
pothesis and declare the defendant “not guilty.”

In the same way, if the data are not particularly unlikely under the assump-
tion that the null hypothesis is true, then the most we can do is to “fail to reject”
our null hypothesis. We never declare the null hypothesis to be true (or “accept”
the null), because we simply do not know whether it’s true or not. (After all, more
evidence may come along later.)

In the trial, the burden of proof is on the prosecution. In a hypothesis test, the
burden of proof is on the unusual claim. The null hypothesis is the ordinary state
of affairs, so it’s the alternative to the null hypothesis that we consider unusual
and for which we must marshal evidence.

Imagine a clinical trial testing the effectiveness of a new headache remedy. In
Chapter 13 we saw the value of comparing such treatments to a placebo. The null
hypothesis, then, is that the new treatment is no more effective than the placebo.
This is important, because some patients will improve even when administered
the placebo treatment. If we use only six people to test the drug, the results are
likely not to be clear and we’ll be unable to reject the hypothesis. Does this mean
the drug doesn’t work? Of course not. It simply means that we don’t have enough

H0

H0
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1 You’d think if they were so excited, they’d give it a better name, but “P-value” is about as
excited as statisticians get.

Beyond a Reasonable Doubt
We ask whether the data were unlikely beyond a
reasonable doubt. We’ve just calculated that
probability.The probability that the observed
statistic value (or an even more extreme value)
could occur if the null model were true—in this
case, 0.067—is the P-value.

NOTATION ALERT:

We have many P’s to keep
straight. We use an uppercase P
for probabilities, as in P(A), and
for the special probability we
care about in hypothesis
testing, the P-value.

We use lowercase p to
denote our model’s underlying
proportion parameter and to
denote our observed proportion
statistic.

pN

“If the People fail to satisfy their
burden of proof, you must find
the defendant not guilty.”

—NY state jury
instructions

Don’t “Accept” the Null
Hypothesis
Every child knows that he (or
she) is at the “center of the
universe,” so it’s natural to
suppose that the sun
revolves around the earth.
The fact that the sun appears
to rise in the east every
morning and set in the west
every evening is consistent
with this hypothesis and
seems to lend support to it,
but it certainly doesn’t prove
it, as we all eventually come
to understand.
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“The null hypothesis is never
proved or established, but is
possibly disproved, in the
course of experimentation.
Every experiment may be said
to exist only in order to give
the facts a chance of disproving
the null hypothesis.”

—Sir Ronald Fisher, The
Design of Experiments
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evidence to reject our assumption. That’s why we don’t start by assuming that the
drug is more effective. If we were to do that, then we could test just a few people,
find that the results aren’t clear, and claim that since we’ve been unable to reject
our original assumption the drug must be effective. The FDA is unlikely to be im-
pressed by that argument.

JUST CHECKING
1. A research team wants to know if aspirin helps to thin blood. The null hypothesis says that it doesn’t. They test 

12 patients, observe the proportion with thinner blood, and get a P-value of 0.32. They proclaim that aspirin 
doesn’t work. What would you say?

2. An allergy drug has been tested and found to give relief to 75% of the patients in a large clinical trial. Now the sci-
entists want to see if the new, improved version works even better. What would the null hypothesis be?

3. The new drug is tested and the P-value is 0.0001. What would you conclude about the new drug?

The Reasoning of Hypothesis Testing
Hypothesis tests follow a carefully structured path. To avoid getting lost as we
navigate down it, we divide that path into four distinct sections.

1. Hypotheses
First we state the null hypothesis. That’s usually the skeptical claim that noth-
ing’s different. Are we considering a (New! Improved!) possibly better method?
The null hypothesis says, “Oh yeah? Convince me!” To convert a skeptic, we
must pile up enough evidence against the null hypothesis that we can reason-
ably reject it.

In statistical hypothesis testing, hypotheses are almost always about model
parameters. To assess how unlikely our data may be, we need a null model. The
null hypothesis specifies a particular parameter value to use in our model. In the
usual shorthand, we write . The alternative hy-
pothesis, , contains the values of the parameter we consider plausible when
we reject the null.

HA

H0: parameter = hypothesized value

Writing hypothesesFOR EXAMPLE

A large city’s Department of Motor Vehicles claimed that 80% of candidates pass driving tests, but a newspaper reporter’s survey of 90 randomly se-
lected local teens who had taken the test found only 61 who passed.

Question: Does this finding suggest that the passing rate for teenagers is lower than the DMV reported? Write appropriate hypotheses.

I’ll assume that the passing rate for teenagers is the same as the DMV’s overall rate of 80%, unless there’s strong
evidence that it’s lower.

HA: p 6 0.80
H0: p = 0.80

Some folks pronounce the
hypothesis labels “Ho!” and
“Ha!” (but it makes them
seem overexcitable). We
prefer to pronounce 
“H naught” (as in “all is 
for naught”).

H0
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Checking the conditionsFOR EXAMPLE

Recap: A large city’s DMV claimed that 80% of candidates pass driving tests. A reporter has results from a survey of 90 randomly selected local teens
who had taken the test.

Question: Are the conditions for inference satisfied?

Ç The 90 teens surveyed were a random sample of local teenage driving candidates.
Ç 90 is fewer than 10% of the teenagers who take driving tests in a large city.
Ç We expect successes and failures. Both are at least 10.

The conditions are satisfied, so it’s okay to use a Normal model and perform a one-proportion z-test.

nq0 = 90(0.20) = 18np0 = 90(0.80) = 72

Activity: Was the
Observed Outcome Unlikely?
Complete the test you started in
the first activity for this chapter.
The narration explains the steps
of the hypothesis test.

464 CHAPTER 20    Testing Hypotheses About Proportions

2 It’s also called the “one-sample test for a proportion.”

ONE-PROPORTION z-TEST
The conditions for the one-proportion z-test are the same as for the 
one-proportion z-interval. We test the hypothesis using the 

statistic . We use the hypothesized proportion to find the

standard deviation, .

When the conditions are met and the null hypothesis is true, this statistic
follows the standard Normal model, so we can use that model to obtain a 
P-value.

SD1pN2 = A
p0q0

n

z =

1pN - p02

SD1pN2

H0: p = p0

2. Model
To plan a statistical hypothesis test, specify the model you will use to test the null
hypothesis and the parameter of interest. Of course, all models require assump-
tions, so you will need to state them and check any corresponding conditions.

Your Model step should end with a statement such as

Because the conditions are satisfied, I can model the sampling distribution of the propor-
tion with a Normal model.

Watch out, though. Your Model step could end with

Because the conditions are not satisfied, I can’t proceed with the test. (If that’s the case,
stop and reconsider.)

Each test in the book has a name that you should include in your report. We’ll
see many tests in the chapters that follow. Some will be about more than one sam-
ple, some will involve statistics other than proportions, and some will use models
other than the Normal (and so will not use z-scores). The test about proportions is
called a one-proportion z-test.2

When the Conditions Fail . . .
You might proceed with
caution, explicitly stating
your concerns. Or you may
need to do the analysis with
and without an outlier, or on
different subgroups, or after
re-expressing the response
variable. Or you may not be
able to proceed at all.

3. Mechanics
Under “Mechanics,” we place the actual calculation of our test statistic from the
data. Different tests we encounter will have different formulas and different test
statistics. Usually, the mechanics are handled by a statistics program or calcula-
tor, but it’s good to have the formulas recorded for reference and to know what’s

Conditional Probability
Did you notice that a P-value
is a conditional probability?
It’s the probability that the
observed results could 
have happened if the null
hypothesis is true.
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being computed. The ultimate goal of the calculation is to obtain a P-value—the
probability that the observed statistic value (or an even more extreme value) oc-
cur if the null model is correct. If the P-value is small enough, we’ll reject the null
hypothesis.

Finding a P-valueFOR EXAMPLE

Recap: A large city’s DMV claimed that 80% of candidates pass driving tests, but a survey of 90 randomly selected local teens who had taken the test
found only 61 who passed.

Question: What’s the P-value for the one-proportion z-test?

I have , and a hypothesized p = 0.80.n = 90, x = 61

P-value = P(z 6 -2.90) = 0.002

z =

pN - p0

SD(pN)
=

0.678 - 0.800
0.042

L -2.90

SD(pN) = A
p0q0

n
= A

(0.8)(0.2)
90

L 0.042

pN =

61
90

L 0.678

0.674 0.716 0.758 0.8 0.842 0.884 0.926

0.002

0.678

4. Conclusion
The conclusion in a hypothesis test is always a statement about the null hypothe-
sis. The conclusion must state either that we reject or that we fail to reject the null
hypothesis. And, as always, the conclusion should be stated in context.

Stating the conclusionFOR EXAMPLE

Recap: A large city’s DMV claimed that 80% of candidates pass driving tests. Data from a reporter’s survey of randomly selected local teens who had
taken the test produced a P-value of 0.002.

Question: What can the reporter conclude? And how might the reporter explain what the P-value means for the newspaper story?

Because the P-value of 0.002 is very low, I reject the null hypothesis. These survey data provide strong evidence that
the passing rate for teenagers taking the driving test is lower than 80%.
If the passing rate for teenage driving candidates were actually 80%, we’d expect to see success rates this low in only
about 1 in 500 samples (0.2%). This seems quite unlikely, casting doubt that the DMV’s stated success rate applies
to teens.

Your conclusion about the null hypothesis should never be the end of a test-
ing procedure. Often there are actions to take or policies to change. In our ingot
example, management must decide whether to continue the changes proposed by
the engineers. The decision always includes the practical consideration of
whether the new method is worth the cost. Suppose management decides to re-
ject the null hypothesis of 20% cracking in favor of the alternative that the per-
centage has been reduced. They must still evaluate how much the cracking rate
has been reduced and how much it cost to accomplish the reduction. The size of
the effect is always a concern when we test hypotheses. A good way to look at the
effect size is to examine a confidence interval.

“. . . They make things
admirably plain, 
But one hard question will
remain: 
If one hypothesis you lose,
Another in its place you 
choose . . .”

—James Russell Lowell,
Credidimus Jovem

Regnare
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How much does it cost? Formal tests of a null hypothesis base the decision
of whether to reject the null hypothesis solely on the size of the P-value. But in real
life, we want to evaluate the costs of our decisions as well. How much would you
be willing to pay for a faster computer? Shouldn’t your decision depend on how
much faster? And on how much more it costs? Costs are not just monetary either.
Would you use the same standard of proof for testing the safety of an airplane as for
the speed of your new computer?

3 It is also called a two-tailed alternative, because the probabilities we care about are found
in both tails of the sampling distribution.

Alternative Alternatives
Tests on the ingot data can be viewed in two different ways. We know the old
cracking rate is 20%, so the null hypothesis is

But we have a choice of alternative hypotheses. A metallurgist working for
the company might be interested in any change in the cracking rate due to the new
process. Even if the rate got worse, she might learn something useful from it.
She’s interested in possible changes on both sides of the null hypothesis. So she
would write her alternative hypothesis as

An alternative hypothesis such as this is known
as a two-sided alternative,3 because we are equally
interested in deviations on either side of the null hy-
pothesis value. For two-sided alternatives, the P-value
is the probability of deviating in either direction from
the null hypothesis value.

But management is really interested only in low-
ering the cracking rate below 20%. The scientific value
of knowing how to increase the cracking rate may not

appeal to them. The only alternative of interest to them is that the cracking rate
decreases. They would write their alternative hypothesis as

An alternative hypothesis that focuses on devia-
tions from the null hypothesis value in only one direc-
tion is called a one-sided alternative.

For a hypothesis test with a one-sided alternative,
the P-value is the probability of deviating only in the
direction of the alternative away from the null hypothe-
sis value. For the same data, the one-sided P-value is
half the two-sided P-value. So, a one-sided test will
reject the null hypothesis more often. If you aren’t

sure which to use, a two-sided test is always more conservative. Be sure you can
justify the choice of a one-sided test from the Why of the situation.

HA: p 6 0.20

HA: p Z 0.20

H0: p = 0.20

0.2 0.22 0.24 0.260.180.160.14

0.17 0.23

0.067 0.067

0.2 0.22 0.24 0.260.180.160.14

0.17

0.067

Activity: the Alternative
Hypotheses. This interactive tool
provides easy ways to visualize
how one- and two-tailed
alternative hypotheses work.
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Anyone who plays or watches sports has heard of the “home field advantage.” Teams tend to win
more often when they play at home. Or do they?

If there were no home field advantage, the home teams would win about half of all games
played. In the 2007 Major League Baseball season, there were 2431 regular-season games. (Tied at
the end of the regular season, the Colorado Rockies and San Diego Padres played an extra game
to determine who won the Wild Card playoff spot.) It turns out that the home team won 1319 of
the 2431 games, or 54.26% of the time.

Question: Could this deviation from 50% be explained just from natural sampling variability, or is
it evidence to suggest that there really is a home field advantage, at least in professional baseball?

Testing a HypothesisSTEP-BY-STEP EXAMPLE

I want to know whether the home team in pro-
fessional baseball is more likely to win. The data
are all 2431 games from the 2007 Major
League Baseball season. The variable is whether
or not the home team won. The parameter of
interest is the proportion of home team wins. If
there’s no advantage, I’d expect that propor-
tion to be 0.50.

Plan State what we want to know.

Define the variables and discuss the W’s.

Hypotheses The null hypothesis makes
the claim of no difference from the base-
line. Here, that means no home field
advantage.

Ç Independence Assumption: Generally, the
outcome of one game has no effect on the
outcome of another game. But this may
not be strictly true. For example, if a key
player is injured, the probability that the
team will win in the next couple of games
may decrease slightly, but independence is
still roughly true. The data come from one
entire season, but I expect other seasons
to be similar.

Ç Randomization Condition: I have results
for all 2431 games of the 2007 season.
But I’m not just interested in 2007, and
those games, while not randomly selected,
should be a reasonable representative
sample of all Major League Baseball games
in the recent past and near future.

Ç 10% Condition: We are interested in home
field advantage for Major League Baseball
for all seasons. While not a random sample,
these 2431 games are fewer than 10% of
all games played over the years.

Ç Success/Failure Condition: Both
and
are at 

least 10.
nq0 = 2431(0.50) = 1215.5
np0 = 2431(0.50) = 1215.5

HA: p 7 0.50
H0: p = 0.50We are interested only in a home field

advantage, so the alternative hypothesis is
one-sided.

Model Think about the assumptions and
check the appropriate conditions.

Activity: Practice with
Testing Hypotheses About
Proportions. Here’s an interactive
tool that makes it easy to see
what’s going on in a hypothesis
test.
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The null model is a Normal distribution with a
mean of 0.50 and a standard deviation of

 = 0.01014

 SD(pN) = A
p0q0

n = A
(0.5)(1 - 0.5)

2431

Mechanics The null model gives us the
mean, and (because we are working with
proportions) the mean gives us the stan-
dard deviation.

The observed proportion, , is 0.5426.

So the z-value is

The sample proportion lies 4.20 standard devi-
ations above the mean.

z =

0.5426 - 0.5
0.01014

= 4.20

pNNext, we find the z-score for the observed
proportion, to find out how many stan-
dard deviations it is from the hypothesized
proportion.

From the z-score, we can find the P-value,
which tells us the probability of observ-
ing a value that extreme (or more).

The probability of observing a value 4.20
or more standard deviations above the
mean of a Normal model can be found 
by computer, calculator, or table to be

.6  0.001

Because the conditions are satisfied, I’ll use a
Normal model for the sampling distribution of
the proportion and do a one-proportion z-test.

Specify the sampling distribution model.

State what test you plan to use.

The P-value of says that if the true
proportion of home team wins were 0.50, then
an observed value of 0.5426 (or larger) would
occur less than 1 time in 1000. With a P-value
so small, I reject . I have evidence that the
true proportion of home team wins is not 50%.
It appears there is a home field advantage.

H0

6 0.001Conclusion State your conclusion about
the parameter—in context, of course!

0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

0.9360.5426

The corresponding P-value is .6 0.001

Ok, but how big is the home field advantage? Measuring the size of the effect in-
volves a confidence interval. (Use your calculator.)

TI Tips Testing a hypothesis

By now probably nothing surprises you about your calculator. Of course it can
help you with the mechanics of a hypothesis test. But that’s not much. It can-
not write the correct hypotheses, check the appropriate conditions, interpret
the results, or state a conclusion. You have to do the tough stuff!
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Let’s do the mechanics of the Step-By-Step example about home field advantage
in baseball. We hypothesized that home teams would win 50% of all games, but
during this  2431-game season they actually won 54.26% of the time.

• Go to the STAT TESTS menu. Scroll down the list and select 
5:1-Prop ZTest.

• Specify the hypothesized proportion p„.
• Enter x, the observed number of wins: 1319.
• Specify the sample size.
• Since this is a one-tail upper tail test, indicate that you want to see if the ob-

served proportion is significantly greater than what was hypothesized.
• Calculate the result.

Ok, the rest is up to you. The calculator reports a z-score of 4.20 and a P-value
(in scientific notation) of , or about 0.00001. Such a small P-value in-
dicates that the high percentage of home team wins is highly unlikely to be
sampling error. State your conclusion in the appropriate context.

And how big is the advantage for the home team? In the last chapter you
learned to create a 95% confidence interval. Try it here.

Looks like we can be 95% confident that in major league baseball games the
home team wins between 52.3% and 56.2% of the time. Over a full season, the
low end of this interval, 52.3% of the 81 home games, is nearly 2 extra victories,
on average. The upper end, 56.2%, is 5 extra wins.

1.35 * 10-5

P-Values and Decisions: What to Tell About 
a Hypothesis Test

Hypothesis tests are particularly useful when we must make a decision. Is the
defendant guilty or not? Should we choose print advertising or television? Ques-
tions like these cannot always be answered with the margins of error of confi-
dence intervals. The absolute nature of the hypothesis test decision, however,
makes some people (including the authors) uneasy. If possible, it’s often a good
idea to report a confidence interval for the parameter of interest as well.

How small should the P-value be in order for you to reject the null hypothe-
sis? A jury needs enough evidence to show the defendant guilty “beyond a rea-
sonable doubt.” How does that translate to P-values? The answer is that it’s
highly context-dependent. When we’re screening for a disease and want to be
sure we treat all those who are sick, we may be willing to reject the null hypothesis
of no disease with a P-value as large as 0.10. We would rather treat the occasional
healthy person than fail to treat someone who was really sick. But a long-standing
hypothesis, believed by many to be true, needs stronger evidence (and a corre-
spondingly small P-value) to reject it.

See if you require the same P-value to reject each of the following null 
hypotheses:

u A renowned musicologist claims that she can distinguish between the works
of Mozart and Haydn simply by hearing a randomly selected 20 seconds of
music from any work by either composer. What’s the null hypothesis? If
she’s just guessing, she’ll get 50% of the pieces correct, on average. So our
null hypothesis is that p is 50%. If she’s for real, she’ll get more than 50% cor-
rect. Now, we present her with 10 pieces of Mozart or Haydn chosen at ran-
dom. She gets 9 out of 10 correct. It turns out that the P-value associated with

MORE
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that result is 0.011. (In other words, if you tried to just guess, you’d get at least
9 out of 10 correct only about 1% of the time.) What would you conclude?
Most people would probably reject the null hypothesis and be convinced that
she has some ability to do as she claims. Why? Because the P-value is small
and we don’t have any particular reason to doubt the alternative.

u On the other hand, imagine a student who bets that he can make a flipped
coin land the way he wants just by thinking hard. To test him, we flip a fair
coin 10 times. Suppose he gets 9 out of 10 right. This also has a P-value of
0.011. Are you willing now to reject this null hypothesis? Are you convinced
that he’s not just lucky? What amount of evidence would convince you? We
require more evidence if rejecting the null hypothesis would contradict long-
standing beliefs or other scientific results. Of course, with sufficient evidence
we would revise our opinions (and scientific theories). That’s how science
makes progress.

Another factor in choosing a P-value is the importance of the issue being tested.
Consider the following two tests:

u A researcher claims that the proportion of college students who hold part-
time jobs now is higher than the proportion known to hold such jobs a decade
ago. You might be willing to believe the claim (and reject the null hypothesis
of no change) with a P-value of 10%.

u An engineer claims that the proportion of rivets holding the wing on an
airplane that are likely to fail is below the proportion at which the wing
would fall off. What P-value would be small enough to get you to fly on
that plane?

Your conclusion about any null hypothesis should be accompanied by the P-
value of the test. Don’t just declare the null hypothesis rejected or not rejected. Re-
port the P-value to show the strength of the evidence against the hypothesis and
the effect size. This will let each reader decide whether or not to reject the null hy-
pothesis and whether or not to consider the result important if it is statistically
significant.

To complete your analysis, follow your test with a confidence interval for
the parameter of interest, to report the size of the effect.

Activity: Hypothesis Tests
for Proportions. You’ve probably
noticed that the tools for
confidence intervals and for
hypothesis tests are similar. See
how tests and intervals for
proportions are related—and an
important way in which they
differ.

“Extraordinary claims require
extraordinary proof.”

—Carl Sagan

JUST CHECKING
4. A bank is testing a new method for getting delinquent customers to pay their past-due credit card

bills. The standard way was to send a letter (costing about $0.40) asking the customer to pay. That
worked 30% of the time. They want to test a new method that involves sending a DVD to cus-
tomers encouraging them to contact the bank and set up a payment plan. Developing and sending
the video costs about $10.00 per customer. What is the parameter of interest? What are the null and
alternative hypotheses?

5. The bank sets up an experiment to test the effectiveness of the DVD. They mail it out to several ran-
domly selected delinquent customers and keep track of how many actually do contact the bank to
arrange payments. The bank’s statistician calculates a P-value of 0.003. What does this P-value sug-
gest about the DVD?

6. The statistician tells the bank’s management that the results are clear and that they should switch to
the DVD method. Do you agree? What else might you want to know?
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Advances in medical care such as prenatal ultrasound examination now make it possible to deter-
mine a child’s sex early in a pregnancy.There is a fear that in some cultures some parents may use
this technology to select the sex of their children. A study from Punjab, India (E. E. Booth, M.
Verma, and R. S. Beri, “Fetal Sex Determination in Infants in Punjab, India: Correlations and Im-
plications,” BMJ 309 [12 November 1994]: 1259–1261), reports that, in 1993, in one hospital, 56.9%
of the 550 live births that year were boys. It’s a medical fact that male babies are slightly more
common than female babies. The study’s authors report a baseline for this region of 51.7% male
live births.

Question: Is there evidence that the proportion of male births has changed?

Tests and IntervalsSTEP-BY-STEP EXAMPLE

I want to know whether the proportion of male
births has changed from the established base-
line of 51.7%. The data are the recorded sexes
of the 550 live births from a hospital in Punjab,
India, in 1993, collected for a study on fetal sex
determination. The parameter of interest, p, is
the proportion of male births:

HA: p Z 0.517
H0: p = 0.517

Plan State what we want to know.

Define the variables and discuss the W’s.

Ç Independence Assumption: There is no rea-
son to think that the sex of one baby can
affect the sex of other babies, so births can
reasonably be assumed to be independent
with regard to the sex of the child.

Ç Randomization Condition: The 550 live
births are not a random sample, so I must
be cautious about any general conclusions.
I hope that this is a representative year,
and I think that the births at this hospital
may be typical of this area of India.

Ç 10% Condition: I would like to be able to
make statements about births at similar
hospitals in India. These 550 births are
fewer than 10% of all of those births.

Ç Success/Failure Condition: Both
and

are
greater than 10; I expect the births of at
least 10 boys and at least 10 girls, so the
sample is large enough.

nq0 = 550(0.483) = 265.65
np0 = 550(0.517) = 284.35

Hypotheses The null hypothesis makes
the claim of no difference from the 
baseline.

Before seeing the data, we were interested
in any change in male births, so the alter-
native hypothesis is two-sided.

Model Think about the assumptions and
check the appropriate conditions.

For testing proportions, the conditions are
the same ones we had for making confi-
dence intervals, except that we check the
Success/Failure Condition with the
hypothesized proportions rather than with
the observed proportions.

The conditions are satisfied, so I can use a
Normal model and perform a one-proportion 
z-test.

Specify the sampling distribution model.

Tell what test you plan to use.
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The null model is a Normal distribution with a
mean of 0.517 and a standard deviation of

The observed proportion, , is 0.569, so

z =

pN - p0

SD(pN)
=

0.569 - 0.517
0.0213

= 2.44

pN

 = 0.0213

 SD(pN) = A
p0q0

n
= A

(0.517)(1 - 0.517)
550

Mechanics The null model gives us the
mean, and (because we are working with
proportions) the mean gives us the stan-
dard deviation.

We find the z-score for the observed pro-
portion to find out how many standard
deviations it is from the hypothesized
proportion.

The sample proportion lies 2.44 standard devi-
ations above the mean.

Make a picture. Sketch a Normal model
centered at . Shade the region to
the right of the observed proportion, and
because this is a two-tail test, also shade
the corresponding region in the other tail.

From the z-score, we can find the P-value,
which tells us the probability of observ-
ing a value that extreme (or more). Use
technology or a table (see p. 473.).

Because this is a two-tail test, the P-value
is the probability of observing an out-
come more than 2.44 standard deviations
from the mean of a Normal model in ei-
ther direction. We must therefore double the
probability we find in the upper tail.

p0 = 0.517

P = 2P(z 7 2.44) = 2(0.0073) = 0.0146

0.007

0.453 0.474 0.496 0.517 0.538 0.560 0.581

p̂

0.569

The P-value of 0.0146 says that if the true
proportion of male babies were still at 51.7%,
then an observed proportion as different as
56.9% male babies would occur at random only
about 15 times in 1000. With a P-value this
small, I reject . This is strong evidence that
the birth ratio of boys to girls is not equal to
its natural level. It appears that the proportion
of boys may have increased.

HO

Conclusion State your conclusion in
context.

This P-value is roughly 1 time in 70.
That’s clearly significant, but don’t jump
to other conclusions. We can’t be sure
how this deviation came about. For in-
stance, we don’t know whether this
hospital is typical, or whether the time
period studied was selected at random.

AGAIN Ç Success/Failure Condition: Both 
and 

are at least 10.nqN = 237
npN = 550(0.569) = 313

Model Check the conditions.

The conditions are identical to those for
the hypothesis test, with one difference.
Now we are not given a hypothesized
proportion, , so we must instead work
with the observed proportion .pN

p0

How big an increase are we talking about? Let’s find a confidence interval for the proportion of male births.
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The conditions are satisfied, so I can model the
sampling distribution of the proportion with a
Normal model and find a one-proportion 
z-interval.

The sampling model is Normal, so for a 95%
confidence interval, the critical value .z* = 1.96

 = 0.0211

 SE(pN) = A
pNqN
n

= A
(0.569)(1 - 0.569)

550
Mechanics We can’t find the sampling
model standard deviation from the null
model proportion. (In fact, we’ve just re-
jected it.) Instead, we find the standard
error of from the observed proportions.
Other than that substitution, the calcula-
tion looks the same as for the hypothesis
test.

With this large a sample size, the differ-
ence is negligible, but in smaller samples,
it could make a bigger difference.

pN

MORE

We are 95% confident that the true proportion
of male births is between 52.8% and 61.0%.

Conclusion Confidence intervals help us
think about the size of the effect. Here we
can see that the change from the baseline
of 51.7% male births might be quite 
substantial.

ALL

The margin of error is

So the 95% confidence interval is

0.569 ; 0.041 or (0.528, 0.610).

ME = z* * SE(pN) = 1.96(0.0211) = 0.041

Specify the sampling distribution model.

Tell what method you plan to use.

Here’s a portion of a Normal table that gives the probability
we needed for the hypothesis test. At , the table gives the
percentile as 0.9927. The upper-tail probability (shaded red) is,
therefore, ; so, for our two-sided test, the 
P-value is .210.00732 = 0.0146

1 - 0.9927 = 0.0073

z = 2.44

–3s –2s –1s 1s 2s 3s0
z (hundredths)

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960

z 0.00 0.01 0.02 0.03 0.04 0.05
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WHAT CAN GO WRONG?
Hypothesis tests are so widely used—and so widely misused—that we’ve devoted all
of the next chapter to discussing the pitfalls involved, but there are a few issues that we
can talk about already.
u Don’t base your null hypotheses on what you see in the data. You are not allowed to look at

the data first and then adjust your null hypothesis so that it will be rejected. When
your sample value turns out to be , with a standard deviation of 1%, don’t
form a null hypothesis like , knowing that you can reject it. You
should always Think about the situation you are investigating and make your null
hypothesis describe the “nothing interesting” or “nothing has changed” scenario.
No peeking at the data!

u Don’t base your alternative hypothesis on the data, either. Again, you need to Think about
the situation. Are you interested only in knowing whether something has increased?
Then write a one-sided (upper-tail) alternative. Or would you be equally interested
in a change in either direction? Then you want a two-sided alternative. You should
decide whether to do a one- or two-sided test based on what results would be of in-
terest to you, not what you see in the data.

u Don’t make your null hypothesis what you want to show to be true. Remember, the null hy-
pothesis is the status quo, the nothing-is-strange-here position a skeptic would take.
You wonder whether the data cast doubt on that. You can reject the null hypothesis,
but you can never “accept” or “prove” the null.

u Don’t forget to check the conditions. The reasoning of inference depends on randomiza-
tion. No amount of care in calculating a test result can recover from biased sampling.
The probabilities we compute depend on the independence assumption. And our
sample must be large enough to justify our use of a Normal model.

u Don’t accept the null hypothesis. You may not have found enough evidence to reject it,
but you surely have not proven it’s true!

u If you fail to reject the null hypothesis, don’t think that a bigger sample would be more likely to lead
to rejection. If the results you looked at were “almost” significant, it’s enticing to think
that because you would have rejected the null had these same observations come from
a larger sample, then a larger sample would surely lead to rejection. Don’t be misled.
Remember, each sample is different, and a larger sample won’t necessarily duplicate
your current observations. Indeed, the Central Limit Theorem tells us that statistics will
vary less in larger samples. We should therefore expect such results to be less extreme.
Maybe they’d be statistically significant but maybe (perhaps even probably) not. Even
if you fail to reject the null hypothesis, it’s a good idea to examine a confidence interval.
If none of the plausible parameter values in the interval would matter to you (for ex-
ample, because none would be practically significant), then even a larger study with a
correspondingly smaller standard error is unlikely to be worthwhile.

H0: p = 49.8%
pN = 51.8%

CONNECTIONS
Hypothesis tests and confidence intervals share many of the same concepts. Both rely on sampling
distribution models, and because the models are the same and require the same assumptions, both
check the same conditions. They also calculate many of the same statistics. Like confidence inter-
vals, hypothesis tests use the standard deviation of the sampling distribution as a ruler, as we first
saw in Chapter 6.

For testing, we find ourselves looking once again at z-scores, and we compute the P-value by
finding the distance of our test statistic from the center of the null model. P-values are conditional
probabilities. They give the probability of observing the result we have seen (or one even more ex-
treme) given that the null hypothesis is true.

The Standard Normal model is here again as our connection between z-score values and 
probabilities.

Don’t We Want to Reject
the Null?
Often the folks who collect
the data or perform the
experiment hope to reject
the null. (They hope the
new drug is better than the
placebo, or new ad campaign
is better than the old one.) But
when we practice Statistics,
we can’t allow that hope 
to affect our decision.
The essential attitude for 
a hypothesis tester is
skepticism. Until we become
convinced otherwise, we
cling to the null’s assertion
that there’s nothing unusual,
no effect, no difference, etc.
As in a jury trial, the burden
of proof rests with the
alternative hypothesis—
innocent until proven guilty.
When you test a hypothesis,
you must act as judge and
jury, but you are not the
prosecutor.
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WHAT HAVE WE LEARNED?

We’ve learned to use what we see in a random sample to test a particular hypothesis about the
world. This is our second step in statistical inference, complementing our use of confidence intervals.

We’ve learned that testing a hypothesis involves proposing a model, then seeing whether the
data we observe are consistent with that model or are so unusual that we must reject it. We do this
by finding a P-value—the probability that data like ours could have occurred if the model is correct.

We’ve learned that:

u We start with a null hypothesis specifying the parameter of a model we’ll test using our data.
u Our alternative hypothesis can be one- or two-sided, depending on what we want to learn.
u We must check the appropriate assumptions and conditions before proceeding with our test.
u If the data are out of line with the null hypothesis model, the P-value will be small and we will

reject the null hypothesis.
u If the data are consistent with the null hypothesis model, the P-value will be large and we will

not reject the null hypothesis.
u We must always state our conclusion in the context of the original question.

And we’ve learned that confidence intervals and hypothesis tests go hand in hand in helping us
think about models. A hypothesis test makes a yes/no decision about the plausibility of a parame-
ter value. The confidence interval shows us the range of plausible values for the parameter.

Terms
Null hypothesis 460. The claim being assessed in a hypothesis test is called the null hypothesis. Usually, the null

hypothesis is a statement of “no change from the traditional value,” “no effect,” “no difference,” or
“no relationship.” For a claim to be a testable null hypothesis, it must specify a value for some pop-
ulation parameter that can form the basis for assuming a sampling distribution for a test statistic.

Alternative hypothesis 460. The alternative hypothesis proposes what we should conclude if we find the null hypothesis to
be unlikely.

Two-sided alternative 466. An alternative hypothesis is two-sided when we are interested in deviations in
(Two-tailed alternative) either direction away from the hypothesized parameter value.

One-sided alternative 466. An alternative hypothesis is one-sided (e.g., ) when we are interested
(One-tailed alternative) in deviations in only one direction away from the hypothesized parameter value.

P-value 461. The probability of observing a value for a test statistic at least as far from the hypothesized
value as the statistic value actually observed if the null hypothesis is true. A small P-value indicates
either that the observation is improbable or that the probability calculation was based on incorrect
assumptions. The assumed truth of the null hypothesis is the assumption under suspicion.

One-proportion z-test 464. A test of the null hypothesis that the proportion of a single sample equals a specified value

( ) by referring the statistic to a Standard Normal model.

Skills
u Be able to state the null and alternative hypotheses for a one-proportion z-test.

u Know the conditions that must be true for a one-proportion z-test to be appropriate, and know
how to examine your data for violations of those conditions.

u Be able to identify and use the alternative hypothesis when testing hypotheses. Understand how
to choose between a one-sided and two-sided alternative hypothesis, and be able to explain your
choice.

u Be able to perform a one-proportion z-test.

u Be able to write a sentence interpreting the results of a one-proportion z-test.

u Know how to interpret the meaning of a P-value in nontechnical language, making clear that the
probability claim is made about computed values under the assumption that the null model is
true and not about the population parameter of interest.

z =

pN - p0

SD1pN2
H0: p = p0

HA: p 7 p0 or HA: p 6 p0

1HA: p Z p02
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HYPOTHESIS TESTS FOR PROPORTIONS 
ON THE COMPUTER

Hypothesis tests for proportions are so easy and natural that many statistics packages don’t offer special
commands for them. Most statistics programs want to know the “success” and “failure” status for each case.
Usually these are given as 1 or 0, but they might be category names like “yes” and “no.” Often we just know the
proportion of successes, and the total count, n. Computer packages don’t usually deal naturally with summary
data like this, but the statistics routines found on many graphing calculators do. These calculators allow you to
test hypotheses from summaries of the data—usually, all you need to enter are the number of successes and
the sample size.

pN ,

EXERCISES

1. Hypotheses. Write the null and alternative hypotheses
you would use to test each of the following situations:
a) A governor is concerned about his “negatives”—the

percentage of state residents who express disapproval
of his job performance. His political committee pays
for a series of TV ads, hoping that they can keep the
negatives below 30%. They will use follow-up polling
to assess the ads’ effectiveness.

b) Is a coin fair?
c) Only about 20% of people who try to quit smoking

succeed. Sellers of a motivational tape claim that lis-
tening to the recorded messages can help people
quit.

2. More hypotheses. Write the null and alternative hy-
potheses you would use to test each situation.
a) In the 1950s only about 40% of high school graduates

went on to college. Has the percentage changed?
b) 20% of cars of a certain model have needed costly

transmission work after being driven between 50,000
and 100,000 miles. The manufacturer hopes that a re-
design of a transmission component has solved this
problem.

c) We field-test a new-flavor soft drink, planning to mar-
ket it only if we are sure that over 60% of the people
like the flavor.

3. Negatives. After the political ad campaign described 
in Exercise 1a, pollsters check the governor’s negatives.
They test the hypothesis that the ads produced no change
against the alternative that the negatives are now below
30% and find a P-value of 0.22. Which conclusion is ap-
propriate? Explain.
a) There’s a 22% chance that the ads worked.
b) There’s a 78% chance that the ads worked.
c) There’s a 22% chance that their poll is correct.
d) There’s a 22% chance that natural sampling variation

could produce poll results like these if there’s really
no change in public opinion.

4. Dice. The seller of a loaded die claims that it will favor
the outcome 6. We don’t believe that claim, and roll the
die 200 times to test an appropriate hypothesis. Our 

P-value turns out to be 0.03. Which conclusion is appro-
priate? Explain.
a) There’s a 3% chance that the die is fair.
b) There’s a 97% chance that the die is fair.
c) There’s a 3% chance that a loaded die could randomly

produce the results we observed, so it’s reasonable to
conclude that the die is fair.

d) There’s a 3% chance that a fair die could randomly
produce the results we observed, so it’s reasonable to
conclude that the die is loaded.

5. Relief. A company’s old antacid formula provided re-
lief for 70% of the people who used it. The company tests
a new formula to see if it is better and gets a P-value of
0.27. Is it reasonable to conclude that the new formula
and the old one are equally effective? Explain.

6. Cars. A survey investigating whether the proportion of
today’s high school seniors who own their own cars is
higher than it was a decade ago finds a P-value of 0.017.
Is it reasonable to conclude that more high-schoolers
have cars? Explain.

7. He cheats! A friend of yours claims that when he
tosses a coin he can control the outcome. You are skepti-
cal and want him to prove it. He tosses the coin, and you
call heads; it’s tails. You try again and lose again.
a) Do two losses in a row convince you that he really can

control the toss? Explain.
b) You try a third time, and again you lose. What’s the

probability of losing three tosses in a row if the
process is fair?

c) Would three losses in a row convince you that your
friend cheats? Explain.

d) How many times in a row would you have to lose in
order to be pretty sure that this friend really can con-
trol the toss? Justify your answer by calculating a
probability and explaining what it means.

8. Candy. Someone hands you a box of a dozen chocolate-
covered candies, telling you that half are vanilla creams
and the other half peanut butter. You pick candies at ran-
dom and discover the first three you eat are all vanilla.
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a) If there really were 6 vanilla and 6 peanut butter can-
dies in the box, what is the probability that you would
have picked three vanillas in a row?

b) Do you think there really might have been 6 of each?
Explain.

c) Would you continue to believe that half are vanilla if
the fourth one you try is also vanilla? Explain.

9. Cell phones. Many people have trouble setting up all
the features of their cell phones, so a company has devel-
oped what it hopes will be easier instructions. The goal is
to have at least 96% of customers succeed. The company
tests the new system on 200 people, of whom 188 were
successful. Is this strong evidence that the new system
fails to meet the company’s goal? A student’s test of this
hypothesis is shown. How many mistakes can you find?

There is strong evidence the new instructions don’t work.

10. Got milk? In November 2001, the Ag Globe Trotter
newsletter reported that 90% of adults drink milk. A re-
gional farmers’ organization planning a new marketing
campaign across its multicounty area polls a random
sample of 750 adults living there. In this sample, 657 peo-
ple said that they drink milk. Do these responses provide
strong evidence that the 90% figure is not accurate for
this region? Correct the mistakes you find in a student’s
attempt to test an appropriate hypothesis.

There is more than a 97% chance that the stated percent-
age is correct for this region.

11. Dowsing. In a rural area, only about 30% of the wells
that are drilled find adequate water at a depth of 100 feet
or less. A local man claims to be able to find water by
“dowsing”—using a forked stick to indicate where the
well should be drilled. You check with 80 of his cus-
tomers and find that 27 have wells less than 100 feet
deep. What do you conclude about his claim?
a) Write appropriate hypotheses.
b) Check the necessary assumptions.
c) Perform the mechanics of the test. What is the 

P-value?
d) Explain carefully what the P-value means in context.
e) What’s your conclusion?

P = P1z 7 -22 = 0.977

z =

0.876 - 0.90
0.012

= -2

657
750

= 0.876; SD1pN2 = A
10.88210.122

750
= 0.012

SRS, 750 7 10
HA: pN 6 0.9
H0: pN = 0.9

P = P1z 7 1.182 = 0.12

z =

0.96 - 0.94
0.017

= 1.18

188
200

= 0.94; SD1pN2 = B
10.94210.062

200
= 0.017

SRS, 0.9612002 7 10

HA: pN Z 0.96
H0: pN = 0.96

12. Abnormalities. In the 1980s it was generally believed
that congenital abnormalities affected about 5% of the na-
tion’s children. Some people believe that the increase in
the number of chemicals in the environment has led to an
increase in the incidence of abnormalities. A recent study
examined 384 children and found that 46 of them showed
signs of an abnormality. Is this strong evidence that the
risk has increased?
a) Write appropriate hypotheses.
b) Check the necessary assumptions.
c) Perform the mechanics of the test. What is the 

P-value?
d) Explain carefully what the P-value means in context.
e) What’s your conclusion?
f ) Do environmental chemicals cause congenital 

abnormalities?

13. Absentees. The National Center for Education Statis-
tics monitors many aspects of elementary and secondary
education nationwide. Their 1996 numbers are often used
as a baseline to assess changes. In 1996 34% of students
had not been absent from school even once during the
previous month. In the 2000 survey, responses from 8302
students showed that this figure had slipped to 33%. Offi-
cials would, of course, be concerned if student attendance
were declining. Do these figures give evidence of a
change in student attendance?
a) Write appropriate hypotheses.
b) Check the assumptions and conditions.
c) Perform the test and find the P-value.
d) State your conclusion.
e) Do you think this difference is meaningful? Explain.

14. Educated mothers. The National Center for Education
Statistics monitors many aspects of elementary and sec-
ondary education nationwide. Their 1996 numbers are of-
ten used as a baseline to assess changes. In 1996, 31% of
students reported that their mothers had graduated from
college. In 2000, responses from 8368 students found that
this figure had grown to 32%. Is this evidence of a change
in education level among mothers?
a) Write appropriate hypotheses.
b) Check the assumptions and conditions.
c) Perform the test and find the P-value.
d) State your conclusion.
e) Do you think this difference is meaningful? Explain.

15. Contributions, please, part II. In Exercise 19.15 you
learned that the Paralyzed Veterans of America is a phil-
anthropic organization that relies on contributions. They
send free mailing labels and greeting cards to potential
donors on their list and ask for a voluntary contribution.
To test a new campaign, the organization recently sent
letters to a random sample of 100,000 potential donors
and received 4781 donations. They’ve had a contribution
rate of 5% in past campaigns, but a staff member worries
that the rate will be lower if they run this campaign as
currently designed.
a) What are the hypotheses?
b) Are the assumptions and conditions for inference

met?
c) Do you think the rate would drop? Explain.

Exercises 477
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16. Take the offer, part II. In Exercise 19.16 you learned
that First USA, a major credit card company, is planning a
new offer for their current cardholders. First USA will give
double airline miles on purchases for the next 6 months if
the cardholder goes online and registers for this offer. To
test the effectiveness of this campaign, the company 
recently sent out offers to a random sample of 50,000
cardholders. Of those, 1184 registered. A staff member
suspects that the success rate for the full campaign will be
comparable to the standard 2% rate that they are used to
seeing in similar campaigns. What do you predict?
a) What are the hypotheses?
b) Are the assumptions and conditions for inference

met?
c) Do you think the rate would change if they use this

fundraising campaign? Explain.

17. Law School. According to the Law School Admission
Council, in the fall of 2006, 63% of law school applicants
were accepted to some law school.4 The training program
LSATisfaction claims that 163 of the 240 students trained
in 2006 were admitted to law school. You can safely con-
sider these trainees to be representative of the population
of law school applicants. Has LSATisfaction demonstrated
a real improvement over the national average?
a) What are the hypotheses?
b) Check the conditions and find the P-value.
c) Would you recommend this program based on what

you see here? Explain.

18. Med School. According to the Association of American
Medical Colleges, only 46% of medical school applicants
were admitted to a medical school in the fall of 2006.5

Upon hearing this, the trustees of Striving College ex-
pressed concern that only 77 of the 180 students in their
class of 2006 who applied to medical school were admit-
ted. The college president assured the trustees that this
was just the kind of year-to-year fluctuation in fortunes
that is to be expected and that, in fact, the school’s suc-
cess rate was consistent with the national average. Who 
is right?
a) What are the hypotheses?
b) Check the conditions and find the P-value.
c) Are the trustees right to be concerned, or is the presi-

dent correct? Explain.

19. Pollution. A company with a fleet of 150 cars found
that the emissions systems of 7 out of the 22 they tested
failed to meet pollution control guidelines. Is this strong
evidence that more than 20% of the fleet might be out of
compliance? Test an appropriate hypothesis and state
your conclusion. Be sure the appropriate assumptions
and conditions are satisfied before you proceed.

20. Scratch and dent. An appliance manufacturer stock-
piles washers and dryers in a large warehouse for 
shipment to retail stores. Sometimes in handling them the
appliances get damaged. Even though the damage may

be minor, the company must sell those machines at dras-
tically reduced prices. The company goal is to keep the
level of damaged machines below 2%. One day an in-
spector randomly checks 60 washers and finds that 5 of
them have scratches or dents. Is this strong evidence that
the warehouse is failing to meet the company goal? Test
an appropriate hypothesis and state your conclusion. Be
sure the appropriate assumptions and conditions are sat-
isfied before you proceed.

21. Twins. In 2001 a national vital statistics report indicated
that about 3% of all births produced twins. Is the rate of
twin births the same among very young mothers? Data
from a large city hospital found that only 7 sets of twins
were born to 469 teenage girls. Test an appropriate hy-
pothesis and state your conclusion. Be sure the appropri-
ate assumptions and conditions are satisfied before you
proceed.

22. Football 2006. During the 2006 season, the home team
won 136 of the 240 regular-season National Football
League games. Is this strong evidence of a home field 
advantage in professional football? Test an appropriate
hypothesis and state your conclusion. Be sure the appro-
priate assumptions and conditions are satisfied before
you proceed.

23. WebZine. A magazine is considering the launch of an
online edition. The magazine plans to go ahead only if it’s
convinced that more than 25% of current readers would
subscribe. The magazine contacted a simple random sam-
ple of 500 current subscribers, and 137 of those surveyed
expressed interest. What should the company do? Test an
appropriate hypothesis and state your conclusion. Be
sure the appropriate assumptions and conditions are sat-
isfied before you proceed.

24. Seeds. A garden center wants to store leftover packets
of vegetable seeds for sale the following spring, but the
center is concerned that the seeds may not germinate at
the same rate a year later. The manager finds a packet of
last year’s green bean seeds and plants them as a test. Al-
though the packet claims a germination rate of 92%, only
171 of 200 test seeds sprout. Is this evidence that the seeds
have lost viability during a year in storage? Test an ap-
propriate hypothesis and state your conclusion. Be sure
the appropriate assumptions and conditions are satisfied
before you proceed.

25. Women executives. A company is criticized because
only 13 of 43 people in executive-level positions are
women. The company explains that although this propor-
tion is lower than it might wish, it’s not surprising given
that only 40% of all its employees are women. What do
you think? Test an appropriate hypothesis and state your
conclusion. Be sure the appropriate assumptions and con-
ditions are satisfied before you proceed.

26. Jury. Census data for a certain county show that 19% of
the adult residents are Hispanic. Suppose 72 people are
called for jury duty and only 9 of them are Hispanic.
Does this apparent underrepresentation of Hispanics call
into question the fairness of the jury selection system? 
Explain.

478 CHAPTER 20    Testing Hypotheses About Proportions

4 As reported by the Cornell office of career services in their
Class of 2006 Postgraduate Report.
5 Ibid.
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27. Dropouts. Some people are concerned that new
tougher standards and high-stakes tests adopted in many
states have driven up the high school dropout rate. The
National Center for Education Statistics reported that the
high school dropout rate for the year 2004 was 10.3%. One
school district whose dropout rate has always been very
close to the national average reports that 210 of their 1782
high school students dropped out last year. Is this evi-
dence that their dropout rate may be increasing? Explain.

28. Acid rain. A study of the effects of acid rain on trees in
the Hopkins Forest shows that 25 of 100 trees sampled 
exhibited some sort of damage from acid rain. This rate
seemed to be higher than the 15% quoted in a recent
Environmetrics article on the average proportion of dam-
aged trees in the Northeast. Does the sample suggest that
trees in the Hopkins Forest are more susceptible than
trees from the rest of the region? Comment, and write up
your own conclusions based on an appropriate confi-
dence interval as well as a hypothesis test. Include any
assumptions you made about the data.

29. Lost luggage. An airline’s public relations department
says that the airline rarely loses passengers’ luggage. It
further claims that on those occasions when luggage is
lost, 90% is recovered and delivered to its owner within
24 hours. A consumer group that surveyed a large num-
ber of air travelers found that only 103 of 122 people who
lost luggage on that airline were reunited with the miss-
ing items by the next day. Does this cast doubt on the air-
line’s claim? Explain.

30. TV ads. A start-up company is about to market a new
computer printer. It decides to gamble by running com-
mercials during the Super Bowl. The company hopes that
name recognition will be worth the high cost of the ads.
The goal of the company is that over 40% of the public
recognize its brand name and associate it with computer
equipment. The day after the game, a pollster contacts
420 randomly chosen adults and finds that 181 of them
know that this company manufactures printers. Would
you recommend that the company continue to advertise
during Super Bowls? Explain.

31. John Wayne. Like a lot of other Americans, John
Wayne died of cancer. But is there more to this story? In
1955 Wayne was in Utah shooting the film The Conqueror.
Across the state line, in Nevada, the United States mili-
tary was testing atomic bombs. Radioactive fallout from
those tests drifted across the filming location. A total of 46
of the 220 people working on the film eventually died of

cancer. Cancer experts estimate that one would expect
only about 30 cancer deaths in a group this size.
a) Is the death rate among the movie crew unusually

high?
b) Does this prove that exposure to radiation increases

the risk of cancer?

32. AP Stats. The College Board reported that 60% of all
students who took the 2006 AP Statistics exam earned
scores of 3 or higher. One teacher wondered if the per-
formance of her school was different. She believed that
year’s students to be typical of those who will take AP
Stats at that school and was pleased when 65% of her 54
students achieved scores of 3 or better. Can she claim that
her school is different? Explain.

Exercises 479

JUST CHECKING 
Answers

1. You can’t conclude that the null hypothesis is true.
You can conclude only that the experiment was un-
able to reject the null hypothesis. They were unable,
on the basis of 12 patients, to show that aspirin was
effective.

2. The null hypothesis is 

3. With a P-value of 0.0001, this is very strong evidence
against the null hypothesis. We can reject H0 and con-
clude that the improved version of the drug gives 
relief to a higher proportion of patients.

4. The parameter of interest is the proportion, p, of all
delinquent customers who will pay their bills.

and .

5. The very low P-value leads us to reject the null hy-
pothesis. There is strong evidence that the DVD is
more effective in getting people to start paying their
debts than just sending a letter had been.

6. All we know is that there is strong evidence to sug-
gest that . We don’t know how much higher
than 30% the new proportion is. We’d like to see a
confidence interval to see if the new method is worth
the cost.

p 7 0.30

HA: p 7 0.30H0: p = 0.30

H0: p = 0.75.
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CHAPTER

21
More About Tests 
and Intervals

In 2000 Florida changed its motorcycle helmet law. No longer are riders 
21 and older required to wear helmets. Under the new law, those under 
21 still must wear helmets, but a report by the Preusser Group (www
.preussergroup. com) suggests that helmet use may have declined in this

group, too.
It isn’t practical to survey young motorcycle riders. (For example, how can you

construct a sampling frame? If you contacted licensed riders, would they admit to
riding illegally without a helmet?) The researchers adopted a different strategy.
Police reports of motorcycle accidents record whether the rider wore a helmet and
give the rider’s age. Before the change in the helmet law, 60% of youths involved in
a motorcycle accident had been wearing their helmets. The Preusser study looked
at accident reports during 2001–2003, the three years following the law change, con-
sidering these riders to be a representative sample of the larger population. They
observed 781 young riders who were involved in accidents. Of these, 396 (or 50.7%)
were wearing helmets. Is this evidence of a decline in helmet-wearing, or just the
natural fluctuation of such statistics?

Zero In on the Null
Null hypotheses have special requirements. In order to perform a statistical test
of the hypothesis, the null must be a statement about the value of a parameter for
a model. We use this value to compute the probability that the observed sample
statistic—or something even farther from the null value—might occur.

How do we choose the null hypothesis? The appropriate null arises directly
from the context of the problem. It is dictated, not by the data, but by the situation.
One good way to identify both the null and alternative hypotheses is to think about
the Why of the situation. Typical null hypotheses might be that the proportion of
patients recovering after receiving a new drug is the same as we would expect of
patients receiving a placebo or that the mean strength attained by athletes training
with new equipment is the same as with the old equipment. The alternative hy-
potheses would be that the new drug cures a higher proportion of patients or that
the new equipment results in a greater mean strength.

WHO Florida motorcycle
riders aged 20 and
younger involved in
motorcycle accidents

WHAT % wearing helmets

WHEN 2001–2003

WHERE Florida

WHY Assessment of injury
rates commissioned 
by the National 
Highway Traffic 
Safety Administration
(NHTSA)

BOCK_C21_0321570448 pp3.qxd  12/2/08  2:39 PM  Page 480



Zero In on the Null 481

Writing hypothesesFOR EXAMPLE

The diabetes drug Avandia® was approved to treat Type 2 diabetes in 1999. But in 2007 an article in the New England Journal of Medicine (NEJM)1

raised concerns that the drug might carry an increased risk of heart attack. This study combined results from a number of other separate studies to
obtain an overall sample of 4485 diabetes patients taking Avandia. People with Type 2 diabetes are known to have about a 20.2% chance of suffering a
heart attack within a seven-year period. According to the article’s author, Dr. Steven E. Nissen,2 the risk found in the NEJM study was equivalent to a
28.9% chance of heart attack over seven years. The FDA is the government agency responsible for relabeling Avandia to warn of the risk if it is judged to
be unsafe. Although the statistical methods they use are more sophisticated, we can get an idea of their reasoning with the tools we have learned.

Question: What null hypothesis and alternative hypothesis about seven-year heart attack risk would you test? Explain.

The parameter of interest is the proportion of diabetes patients suffering a heart attack in seven years. The FDA is
concerned only with whether Avandia increases the seven-year risk of heart attacks above the baseline value of
20.2%, so a one-sided upper-tail test is appropriate.

HA: p 7 0.202
H0: p = 0.202

1 Steven E. Nissen, M.D., and Kathy Wolski, M.P.H., “Effect of Rosiglitazone on the Risk of
Myocardial Infarction and Death from Cardiovascular Causes,” NEJM 2007; 356.
2 Interview reported in the New York Times [May 26, 2007].

To write a null hypothesis, you can’t just choose any parameter value you like.
The null must relate to the question at hand. Even though the null usually means
no difference or no change, you can’t automatically interpret “null” to mean zero.
A claim that “nobody” wears a motorcycle helmet would be absurd. The null hy-
pothesis for the Florida study could be that the true rate of helmet use remained
the same among young riders after the law changed. You need to find the value for
the parameter in the null hypothesis from the context of the problem.

There is a temptation to state your claim as the null hypothesis. As we have
seen, however, you cannot prove a null hypothesis true any more than you can
prove a defendant innocent. So, it makes more sense to use what you want to
show as the alternative. This way, if you reject the null, you are left with what you
want to show.

One-sided or two? In the 1930s, a series of experiments was performed at
Duke University in an attempt to see whether humans were capable of extrasensory
perception, or ESP. Psychologist Karl Zener designed a set of cards with 5 symbols,
later made infamous in the movie Ghostbusters:

In the experiment, the “sender” selects one of the 5 cards at random from a deck
and then concentrates on it. The “receiver” tries to determine which card it is. If we
let p be the proportion of correct responses, what’s the null hypothesis? The null hy-
pothesis is that ESP makes no difference. Without ESP, the receiver would just be
guessing, and since there are 5 possible responses, there would be a 20% chance
of guessing each card correctly. So, is What’s the alternative? It seems
that it should be a one-sided alternative. But some ESP researchers have
expressed the claim that if the proportion guessed were much lower than expected,
that would show an “interference” and should be considered evidence for ESP as
well. So they argue for a two-sided alternative.

p 7 0.20,
p = 0.20.H0
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Let’s try to answer the question raised at the start of the chapter.

Question: Has helmet use in Florida declined among riders under the age of 21 subsequent to the
change in the helmet laws?

Another One-Proportion z-TestSTEP-BY-STEP EXAMPLE

I want to know whether the rate of helmet
wearing among Florida’s motorcycle riders 
under the age of 21 remained at 60% after the
law changed to allow older riders to go without
helmets. I have data from accident records
showing 396 of 781 young riders were wearing
helmets.

HA: p 6 0.60
H0: p = 0.60

Plan State the problem and discuss the
variables and the W’s.

Hypotheses The null hypothesis is es-
tablished by the rate set before the change
in the law. The study was concerned with
safety, so they’ll want to know of any 
decline in helmet use, making this a
lower-tail test.

Ç Independence Assumption: The data 
are for riders involved in accidents during 
a three-year period. Individuals are inde-
pendent of one another.

l Randomization Condition: No randomiza-
tion was applied, but we are considering
these riders involved in accidents to be a
representative sample of all riders. We should
take care in generalizing our conclusions.

Ç 10% Condition: These 781 riders are a
small sample of a larger population of all
young motorcycle riders.

Ç Success/Failure Condition: We’d expect
helmeted riders

and non-helmeted.
Both are at least 10.

nq = 78110.42 = 312.4
np = 78110.62 = 468.6

Model Check the conditions.

The Risky Behavior Surveillance survey is
in fact a complex, multistage sample, but
it is randomized and great effort is taken
to make it representative. It is safe to treat
it as though it were a random sample.

Specify the sampling distribution model
and name the test.

The conditions are satisfied, so I can use a
Normal model and perform a one-proportion
z-test.

Mechanics Find the standard deviation
of the sampling model using the hypothe-
sized proportion.

There were 396 helmet wearers among the 781 
accident victims.

z =

pN - p0

SD(pN)
=

0.507 - 0.60
0.0175

= -5.31

 SD(pN) = B
p0q0

n
= B

10.60210.402
781

= 0.0175

 pN =

396
781

= 0.507

Find the z-score for the observed 
proportion.
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How to Think About P-values
A P-value actually is a conditional probability. It tells us the probability of getting re-
sults at least as unusual as the observed statistic, given that the null hypothesis is true.
We can write 

Writing the P-value this way helps to make clear that the P-value is not the
probability that the null hypothesis is true. It is a probability about the data. Let’s
say that again:

The P-value is not the probability that the null hypothesis is true.

The P-value is not even the conditional probability that the null hypothesis is
true given the data. We would write that probability as observed statistic
value). This is a conditional probability but in reverse. It would be nice to know
this, but it’s impossible to calculate without making additional assumptions. As
we saw in Chapter 15, reversing the order in a conditional probability is difficult,
and the results can be counterintuitive.

We can find the P-value, P(observed statistic ), because gives the
parameter values that we need to find the required probability. But there’s no direct
way to find observed statistic value).3 As tempting as it may be to say that 
a P-value of 0.03 means there’s a 3% chance that the null hypothesis is true, that just
isn’t right. All we can say is that, given the null hypothesis, there’s a 3% chance of
observing the statistic value that we have actually observed (or one more unlike the
null value).

P1H0|

H0value|H0

P1H0|

P-value = P1observed statistic value [or even more extreme]|H02.

3 The approach to statistical inference known as Bayesian Statistics addresses the question
in just this way, but it requires more advanced mathematics and more assumptions. See
p. 358 for more about the founding father of this approach.

The observed helmet rate is 5.31 standard devi-
ations below the former rate. The corresponding
P-value is less than 0.001.

Make a picture. Sketch a Normal model
centered at the hypothesized helmet rate
of 60%. This is a lower-tail test, so shade
the region to the left of the observed rate.

0.600.507 p

Given this z-score, the P-value is obvi-
ously very low.

Conclusion Link the P-value to your de-
cision about the null hypothesis, and then
state your conclusion in context.

The very small P-value says that if the true rate
of helmet-wearing among riders under 21 were
still 60%, the probability of observing a rate no
higher than 50.7% in a sample like this is less
than 1 chance in 1000, so I reject the null hy-
pothesis. There is strong evidence that there
has been a decline in helmet use among riders
under 21.

Which Conditional?
Suppose that as a political
science major you are offered
the chance to be a White
House intern.There would
be a very high probability
that next summer you’d be in
Washington, D.C.That is,
P(Washington | Intern) would
be high. But if we find a
student in Washington, D.C.,
is it likely that he’s a White
House intern? Almost surely
not; P(Intern | Washington) is
low.You can’t switch around
conditional probabilities.The
P-value is We
might wish we could report

but these two
quantities are NOT the same.
P1H0 | data2,

P1data | H02.
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Thinking about the P-valueFOR EXAMPLE

Recap: A New England Journal of Medicine paper reported that the seven-year risk of heart attack in diabetes patients taking the drug Avandia was
increased from the baseline of 20.2% to an estimated risk of 28.9% and said the P-value was 0.03.

Question: How should the P-value be interpreted in this context?

The . That is, it’s the probability of seeing such a high heart attack rate among
the people studied if, in fact, taking Avandia really didn’t increase the risk at all.

P-value = P(pN Ú 28.9% ƒ  p = 20.2%)

How guilty is the suspect? We might like to know but when
you think about it, we can’t talk about the probability that the null hypothesis is
true. The null is not a random event, so either it is true or it isn’t. The data, how-
ever, are random in the sense that if we were to repeat a randomized experiment or
draw another random sample, we’d get different data and expect to find a different
statistic value. So we can talk about the probability of the data given the null
hypothesis, and that’s the P-value.

But it does make sense that the smaller the P-value, the more confident we can be
in declaring that we doubt the null hypothesis. Think again about the jury trial. Our null
hypothesis is that the defendant is innocent. Then the evidence starts rolling in. A car
the same color as his was parked in front of the bank. Well, there are lots of cars that
color. The probability of that happening (given his innocence) is pretty high, so we’re
not persuaded that he’s guilty. The bank’s security camera showed the robber was male
and about the dependant’s height and weight. Hmmm. Could that be a coincidence? If
he’s innocent, then it’s a little less likely that the car and description would both match,
so our P-value goes down. We’re starting to question his innocence a little. Witnesses
said the robber wore a blue jacket just like the one the police found in a garbage can
behind the defendant’s house. Well, if he’s innocent, then that doesn’t seem very likely,
does it? If he’s really innocent, the probability that all of these could have happened
is getting pretty low. Now our P-value may be small enough to be called “beyond a rea-
sonable doubt” and lead to a conviction. Each new piece of evidence strains our skepti-
cism a bit more. The more compelling the evidence—the more unlikely it would be
were he innocent—the more convinced we become that he’s guilty.

But even though it may make us more confident in declaring him guilty, additional
evidence does not make him any guiltier. Either he robbed the bank or he didn’t.
Additional evidence (like the teller picking him out of a police lineup) just makes us
more confident that we did the right thing when we convicted him. The lower the
P-value, the more comfortable we feel about our decision to reject the null hypothe-
sis, but the null hypothesis doesn’t get any more false.

P1H0|data2,

What to Do with a High P-value
Therapeutic touch (TT), taught in many schools of nursing, is a therapy in which
the practitioner moves her hands near, but does not touch, a patient in an attempt
to manipulate a “human energy field.” Therapeutic touch practitioners believe
that by adjusting this field they can promote healing. However, no instrument has
ever detected a human energy field, and no experiment has ever shown that TT
practitioners can detect such a field.

In 1998, the Journal of the American Medical Association published a paper report-
ing work by a then nine-year-old girl.4 She had performed a simple experiment in

“You’re so guilty now.”
—Rearview Mirror

“The wise man proportions his
belief to the evidence.”

—David Hume, 
“Enquiry Concerning Human

Understanding,” 1748

4 L. Rosa, E. Rosa, L. Sarner, and S. Barrett, “A Close Look at Therapeutic Touch,” JAMA
279(13) [1 April 1998]: 1005–1010.
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which she challenged 15 TT practitioners to detect whether her unseen hand was
hovering over their left or right hand (selected by the flip of a coin).

The practitioners “warmed up” with a period during which they could see
the experimenter’s hand, and each said that they could detect the girl’s human
energy field. Then a screen was placed so that the practitioners could not see the
girl’s hand, and they attempted 10 trials each. Overall, of 150 trials, the TT practi-
tioners were successful 70 times, for a success proportion of 46.7%. Is there
evidence from this experiment that TT practitioners can successfully detect a
“human energy field”?

When we see a small P-value, we could continue to believe the null hypothe-
sis and conclude that we just witnessed a rare event. But instead, we trust the data
and use it as evidence to reject the null hypothesis.

In the therapeutic touch example, the null hypothesis is that the practitioners
are guessing, so we expect them to be right about half the time by chance. That’s
why we say They claim that they can detect a “human energy field”
and that their success rate should be well above chance, so our alternative is that

they would do better than guessing. That’s a one-sided alternative
hypothesis: With a one-sided hypothesis, our P-value
is the probability the practitioners could achieve the observed
number of successes or more even if they were just guessing.

If the practitioners had been highly successful, that would
have been unusually lucky for guessing, so we would have seen a
correspondingly low P-value. Since we don’t believe in rare events,
we would then have concluded that they weren’t guessing.

But that’s not what happened. What we actually observed was that they did
slightly worse than 50%, with a success rate.

As the figure shows, the probability of a success rate of 0.467
or more is even bigger than 0.5. In this case, it turns out to be 0.793.
Obviously, we won’t be rejecting the null hypothesis; for us to re-
ject it, the P-value would have to be quite small. But a P-value of
0.788 seems so big it is almost awkward. With a success rate even
lower than chance, we could have concluded right away that we
have no evidence for rejecting 

Big P-values just mean that what we’ve observed isn’t surpris-
ing. That is, the results are in line with our assumption that the null
hypothesis models the world, so we have no reason to reject it.
A big P-value doesn’t prove that the null hypothesis is true, but it

certainly offers no evidence that it’s not true. When we see a large P-value, all we
can say is that we “don’t reject the null hypothesis.”

H0.

pN = 0.467

HA: p 7 0.5.

H0: p = 0.5.

More about P-valuesFOR EXAMPLE

Recap: The question of whether the diabetes drug Avandia increased the risk of heart attack was raised by a study in the New England Journal of
Medicine. This study estimated the seven-year risk of heart attack to be 28.9% and reported a P-value of 0.03 for a test of whether this risk was higher
than the baseline seven-year risk of 20.2%. An earlier study (the ADOPT study) had estimated the seven-year risk to be 26.9% and reported a P-value
of 0.27.

Question: Why did the researchers in the ADOPT study not express alarm about the increased risk they had seen?

A P-value of 0.27 means that a heart attack rate at least as high as the one they observed could be expected in 27%
of similar experiments even if, in fact, there were no increased risk from taking Avandia. That’s not remarkable enough
to reject the null hypothesis. In other words, the ADOPT study wasn’t convincing.

Activity: Testing
Therapeutic Touch. Perform the
one-proportion z-test using
ActivStats technology. The test in
ActivStats is two-sided. Do you
think this is the appropriate
choice?

Video: Is There Evidence
for Therapeutic Touch? This
video shows the experiment and
tells the story.

0.50 p̂

0.467 0.50 p̂
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It Could Happen to You!
Of course, if the null
hypothesis is true, no matter
what alpha level you choose,
you still have a probability 

of rejecting the null
hypothesis by mistake.This 
is the rare event we want to
protect ourselves against.
When we do reject the null
hypothesis, no one ever
thinks that this is one of those
rare times. As statistician Stu
Hunter notes,“The statistician
says ‘rare events do happen—
but not to me!’”

a

Alpha Levels
Sometimes we need to make a firm decision about whether or not to reject the null
hypothesis. A jury must decide whether the evidence reaches the level of “beyond
a reasonable doubt.” A business must select a Web design. You need to decide
which section of Statistics to enroll in.

When the P-value is small, it tells us that our data are rare, given the null
hypothesis. As humans, we are suspicious of rare events. If the data are “rare
enough,” we just don’t think that could have happened due to chance. Since the
data did happen, something must be wrong. All we can do now is reject the null
hypothesis.

But how rare is “rare”?
We can define “rare event” arbitrarily by setting a threshold for our P-value.

If our P-value falls below that point, we’ll reject the null hypothesis. We call such
results statistically significant. The threshold is called an alpha level. Not sur-
prisingly, it’s labeled with the Greek letter . Common levels are 0.10, 0.05, and
0.01. You have the option—almost the obligation—to consider your alpha level
carefully and choose an appropriate one for the situation. If you’re assessing the
safety of air bags, you’ll want a low alpha level; even 0.01 might not be low
enough. If you’re just wondering whether folks prefer their pizza with or without
pepperoni, you might be happy with . It can be hard to justify your
choice of , though, so often we arbitrarily choose 0.05. Note, however: You must
select the alpha level before you look at the data. Otherwise you can be accused of
cheating by tuning your alpha level to suit the data.

a

a = 0.10

aa

Activity: Rejecting the
Null Hypothesis. See alpha
levels at work in the animated
hypothesis-testing tool.

Where did the value 0.05 come from? In 1931, in a famous book called
The Design of Experiments, Sir Ronald Fisher discussed the amount of evidence
needed to reject a null hypothesis. He said that it was situation dependent, but re-
marked, somewhat casually, that for many scientific applications, 1 out of 20 might
be a reasonable value. Since then, some people—indeed some entire disciplines—
have treated the number 0.05 as sacrosanct.

The alpha level is also called the significance level. When we reject the null
hypothesis, we say that the test is “significant at that level.” For example, we
might say that we reject the null hypothesis “at the 5% level of significance.”

What can you say if the P-value does not fall below ?
When you have not found sufficient evidence to reject the null according to

the standard you have established, you should say that “The data have failed to
provide sufficient evidence to reject the null hypothesis.” Don’t say that you “ac-
cept the null hypothesis.” You certainly haven’t proven or established it; it was
merely assumed to begin with. Say that you’ve failed to reject it.

Think again about the therapeutic touch example. The P-value was 0.788. This
is so much larger than any reasonable alpha level that we can’t reject For this
test, we’d conclude, “We fail to reject the null hypothesis. There is insufficient evi-
dence to conclude that the practitioners are performing better than they would if
they were just guessing.”

The automatic nature of the reject/fail-to-reject decision when we use an al-
pha level may make you uncomfortable. If your P-value falls just slightly above
your alpha level, you’re not allowed to reject the null. Yet a P-value just barely be-
low the alpha level leads to rejection. If this bothers you, you’re in good company.
Many statisticians think it better to report the P-value than to base a decision on
an arbitrary alpha level.

H0.

a

NOTATION ALERT:
The first Greek letter, , is used
in Statistics for the threshold
value of a hypothesis test.You’ll
hear it referred to as the alpha
level. Common values are 0.10,
0.05, 0.01, and 0.001.

a

Sir Ronald Fisher (1890–1962) was
one of the founders of modern 
Statistics.
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When you decide to declare a verdict, it’s always a good idea to report the
P-value as an indication of the strength of the evidence. Sometimes it’s best to
report that the conclusion is not yet clear and to suggest that more data be gath-
ered. (In a trial, a jury may “hang” and be unable to return a verdict.) In these
cases, the P-value is the best summary we have of what the data say or fail to say
about the null hypothesis.

Significant vs. Important
What do we mean when we say that a test is statistically signifi-
cant? All we mean is that the test statistic had a P-value lower
than our alpha level. Don’t be lulled into thinking that statisti-
cal significance carries with it any sense of practical importance
or impact.

For large samples, even small, unimportant (“insignifi-
cant”) deviations from the null hypothesis can be statistically
significant. On the other hand, if the sample is not large enough,
even large financially or scientifically “significant” differences
may not be statistically significant.

It’s good practice to report the magnitude of the difference
between the observed statistic value and the null hypothesis
value (in the data units) along with the P-value on which we
base statistical significance.

Confidence Intervals and Hypothesis Tests
For the motorcycle helmet example, a 95% confidence interval would give 

, or 47.2% to 54.2%. If the previous rate of helmet com-
pliance had been, say, 50%, we would not have been able to reject the null hypothesis
because 50% is in the interval, so it’s a plausible value. Indeed, any hypothesized
value for the true proportion of helmet wearers in this interval is consistent with the
data. Any value outside the confidence interval would make a null hypothesis that
we would reject, but we’d feel more strongly about values far outside the interval.

Confidence intervals and hypothesis tests are built from the same calculations.5

They have the same assumptions and conditions. As we have just seen, you can

1.96 * 0.0179 = 10.472, 0.5422
0.507 ;

It’s in the stars Some disciplines carry the idea further and code P-values by
their size. In this scheme, a P-value between 0.05 and 0.01 gets highlighted by *.
A P-value between 0.01 and 0.001 gets **, and a P-value less than 0.001 gets ***.
This can be a convenient summary of the weight of evidence against the null hy-
pothesis if it’s not taken too literally. But we warn you against taking the distinctions
too seriously and against making a black-and-white decision near the boundaries.
The boundaries are a matter of tradition, not science; there is nothing special about
0.05. A P-value of 0.051 should be looked at very seriously and not casually
thrown away just because it’s larger than 0.05, and one that’s 0.009 is not very
different from one that’s 0.011.

Practical vs. Statistical Significance
A large insurance company mined its data and
found a statistically significant 
difference between the mean value of policies
sold in 2001 and 2002.The difference in the mean
values was $9.83. Even though it was statistically
significant, management did not see this as an
important difference when a typical policy sold
for more than $1000. On the other hand, even a
clinically important improvement of 10% in cure
rate with a new treatment is not likely to be
statistically significant in a study of fewer than
225 patients. A small clinical trial would probably
not be conclusive.

1P = 0.042

5 As we saw in Chapter 20, this is not exactly true for proportions. For a confidence interval,
we estimate the standard deviation of from itself. Because we estimate it from the data,
we have a standard error. For the corresponding hypothesis test, we use the model’s stan-
dard deviation for , based on the null hypothesis value When and are close, these
calculations give similar results. When they differ, you’re likely to reject (because the
observed proportion is far from your hypothesized value). In that case, you’re better off
building your confidence interval with a standard error estimated from the data.

H0

p0pNp0.pN

pNpN
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approximate a hypothesis test by examining the confidence interval. Just ask
whether the null hypothesis value is consistent with a confidence interval for the
parameter at the corresponding confidence level. Because confidence intervals are
naturally two-sided, they correspond to two-sided tests. For example, a 95% confi-
dence interval corresponds to a two-sided hypothesis test at . In general, a
confidence interval with a confidence level of C% corresponds to a two-sided
hypothesis test with an level of .

The relationship between confidence intervals and one-sided hypothesis tests
is a little more complicated. For a one-sided test with , the corresponding
confidence interval has a confidence level of 90%—that’s 5% in each tail. In gen-
eral, a confidence interval with a confidence level of C% corresponds to a one-
sided hypothesis test with an level of .1

21100 - C2%a

a = 5%

100 - C%a

a = 5%

Making a decision based on a confidence intervalFOR EXAMPLE

JUST CHECKING
1. An experiment to test the fairness of a roulette wheel gives a z-score of 0.62. What would you conclude?

2. In the last chapter we encountered a bank that wondered if it could get more customers to make payments on delin-
quent balances by sending them a DVD urging them to set up a payment plan. Well, the bank just got back the results
on their test of this strategy. A 90% confidence interval for the success rate is (0.29, 0.45). Their old send-a-letter method
had worked 30% of the time. Can you reject the null hypothesis that the proportion is still 30% at ? Explain.

3. Given the confidence interval the bank found in their trial of DVDs, what would you recommend that they do?
Should they scrap the DVD strategy?

a = 0.05

Teens are at the greatest risk of being killed or injured in traffic crashes. According
to the National Highway Traffic Safety Administration, 65% of young people killed
were not wearing a safety belt. In 2001, a total of 3322 teens were killed in motor ve-
hicle crashes, an average of 9 teenagers a day. Because many of these deaths could
easily be prevented by the use of safety belts, several states have begun “Click It or
Ticket” campaigns in which increased enforcement and publicity have resulted in
significantly higher seatbelt use. Overall use in Massachusetts quickly increased
from 51% in 2002 to 64.8% in 2006, with a goal of surpassing the national average of
82%. Recently, a local newspaper reported that a roadblock resulted in 23 tickets to
drivers who were unbelted out of 134 stopped for inspection.

Wear that Seatbelt!STEP-BY-STEP EXAMPLE

Recap: The baseline seven-year risk of heart attacks for diabetics is 20.2%. In 2007 a NEJM study reported a 95% confidence interval equivalent to
20.8% to 40.0% for the risk among patients taking the diabetes drug Avandia.

Question: What did this confidence interval suggest to the FDA about the safety of the drug?

The FDA could be 95% confident that the interval from 20.8% to 40.0% included the true risk of heart attack for 
diabetes patients taking Avandia. Because the lower limit of this interval was higher than the baseline risk of 20.2%,
there was evidence of an increased risk.
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Question: Does this provide evidence that the goal of over 82% compliance was met?

Let’s use a confidence interval to test this hypothesis.

The data come from a local newspaper report
that tells the number of tickets issued and
number of drivers stopped at a recent road-
block. I want to know whether the rate of
compliance with the seatbelt law is greater
than 82%.

Ç Independence Assumption: Drivers are
not likely to influence one another when it
comes to wearing a seatbelt.

Ç Randomization Condition: This wasn’t a
random sample, but I assume these drivers
are representative of the driving public.

Ç 10% Condition: The police stopped fewer
than 10% of all drivers.

Ç Success/Failure Condition: There were 
111 successes and 23 failures, both 
at least 10. The sample is large enough.

Under these conditions, the sampling model is
Normal. I’ll create a one-proportion z-interval.

HA: p 7 0.82
H0: p = 0.82

Plan State the problem and discuss the
variables and the W’s.

Hypotheses The null hypothesis is 
that the compliance rate is only 82%. 
The alternative is that it is now higher. 
It’s clearly a one-sided test, so if we use 
a confidence interval, we’ll have to be
careful about what level we use.

Model Think about the assumptions and
check the conditions.

We are finding a confidence interval, so
we work from the data rather than the
null model.

State your method.

Mechanics Write down the given 
information, and determine the sample
proportion.

To use a confidence interval, we need a
confidence level that corresponds to the
alpha level of the test. If we use ,
we should construct a 90% confidence 
interval, because this is a one-sided test.

That will leave 5% on each side of the 
observed proportion. Determine the 
standard error of the sample proportion
and the margin of error. The critical value
is .

The confidence interval is

estimate ; margin of error.

z* = 1.645

a = 0.05

so

The 90% confidence interval is

(0.774, 0.882).
0.828 ; 0.054 or

 = 1.645(0.033) = 0.054
 ME = z* * SE1pN2

SE(pN) = B
pNqN

n
= B

(0.828)(0.172)
134

= 0.033

 pN =

111
134

= 0.828 and

n = 134,
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*A 95% Confidence Interval for Small Samples
When the Success/Failure Condition fails, all is not lost. A simple adjustment to
the calculation lets us make a 95% confidence interval anyway.

All we do is add four phony observations—two to the successes, two to the

failures. So instead of the proportion , we use the adjusted proportion

and, for convenience, we write . We modify the interval by
using these adjusted values for both the center of the interval and the margin of
error. Now the adjusted interval is

This adjusted form gives better performance overall6 and works much better for
proportions near 0 or 1. It has the additional advantage that we no longer need to
check the Success/Failure Condition that and are greater than 10.nqNnpN

p
'

; z*B
p
'

11 - p
'

2

n
' .

n
'

= n + 4p
'

=

y + 2

n + 4

pN =

y

n

I am 90% confident that between 77.4% and
88.2% of all drivers wear their seatbelts. 
Because the hypothesized rate of 82% is 
within this interval, I do not reject the null
hypothesis. There is insufficient evidence to
conclude that the campaign was truly effective
and now more than 82% of all drivers are wear-
ing seatbelts.

The upper limit of the confidence interval shows
it’s possible that the campaign is quite suc-
cessful, but the small sample size makes the
interval too wide to be very specific.

Conclusion Link the confidence interval
to your decision about the null hypothe-
sis, and then state your conclusion in 
context.

6 By “better performance,” we mean that a 95% confidence interval has more nearly a 95%
chance of covering the true population proportion. Simulation studies have shown that our
original, simpler confidence interval in fact is less likely than 95% to cover the true popula-
tion proportion when the sample size is small or the proportion very close to 0 or 1. The orig-
inal idea for this method can be attributed to E. B. Wilson. The simpler approach discussed
here was proposed by Agresti and Coull (A. Agresti and B. A. Coull, “Approximate Is Better
Than ‘Exact’ for Interval Estimation of Binomial Proportions,” The American Statistician,
52[1998]: 119–129).

An Agresti-Coull “plus-four” intervalFOR EXAMPLE

Surgeons examined their results to compare two methods for a surgical procedure used to alleviate pain on the outside of the wrist. A new method was
compared with the traditional “freehand” method for the procedure. Of 45 operations using the “freehand” method, three were unsuccessful, for a fail-
ure rate of 6.7%. With only 3 failures, the data don’t satisfy the Success/Failure Condition, so we can’t use a standard confidence interval.

Question: What’s the confidence interval using the “plus-four” method?
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Making Errors
Nobody’s perfect. Even with lots of evidence, we can still make the wrong decision.
In fact, when we perform a hypothesis test, we can make mistakes in two ways:

I. The null hypothesis is true, but we mistakenly reject it.
II. The null hypothesis is false, but we fail to reject it.

These two types of errors are known as Type I and Type II errors. One way
to keep the names straight is to remember that we start by assuming the null
hypothesis is true, so a Type I error is the first kind of error we could make.

In medical disease testing, the null hypothesis is usually the assumption that
a person is healthy. The alternative is that he or she has the disease we’re testing
for. So a Type I error is a false positive: A healthy person is diagnosed with the dis-
ease. A Type II error, in which an infected person is diagnosed as disease free, is a
false negative. These errors have other names, depending on the particular disci-
pline and context.

Which type of error is more serious depends on the situation. In the jury trial,
a Type I error occurs if the jury convicts an innocent person. A Type II error occurs
if the jury fails to convict a guilty person. Which seems more serious? In medical
diagnosis, a false negative could mean that a sick patient goes untreated. A false
positive might mean that the person must undergo further tests. In a Statistics
final exam (with the student has learned only 60% of the material), a Type I
error would be passing a student who in fact learned less than 60% of the mate-
rial, while a Type II error would be failing a student who knew enough to pass.
Which of these errors seems more serious? It depends on the situation, the cost,
and your point of view.

Here’s an illustration of the situations:

H0:

There were 42 successes and 3 failures. Adding 2 “pseudo-successes” and 2 “pseudo-failures,” we find

A 95% confidence interval is then

Notice that although the observed failure rate of 0.067 is contained in the interval, it is not at the center of the interval—something we haven’t seen
with any of the other confidence intervals we’ve considered.

0.102 ; 1.96 B
0.102(1 - 0.102)

49
= 0.102 ; 0.085 or (0.017, 0.187).

p' =

3 + 2
45 + 4

= 0.102

Activity: Type I and Type II
Errors. View an animated
exploration of Type I and Type II
errors—a good backup for the
reading in this section.

Some false-positive results
mean no more than an
unnecessary chest X-ray. But
for a drug test or a disease
like AIDS, a false-positive
result that is not kept
confidential could have
serious consequences.

My
Decision

The Truth

Reject H0

H0 True H0 False

Fail to
reject H0 

Type I
Error

Type II
ErrorOK

OK

How often will a Type I error occur? It happens when the null hypothesis is true
but we’ve had the bad luck to draw an unusual sample. To reject the P-valueH0,

Activity: Hypothesis 
Tests Are Random. Simulate
hypothesis tests and watch Type I
errors occur. When you conduct
real hypothesis tests you’ll never
know, but simulation can tell you
when you’ve made an error.
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must fall below . When is true, that happens exactly with probability . So when
you choose level , you’re setting the probability of a Type I error to .

What if is not true? Then we can’t possibly make a Type I error. You can’t
get a false positive from a sick person. A Type I error can happen only when 
is true.

When is false and we reject it, we have done the right thing. A test’s ability
to detect a false null hypothesis is called the power of the test. In a jury trial,
power is the ability of the criminal justice system to convict people who are
guilty—a good thing! We’ll have a lot more to say about power soon.

When is false but we fail to reject it, we have made a Type II error. We
assign the letter to the probability of this mistake. What’s the value of ? That’s
harder to assess than because we don’t know what the value of the parameter
really is. When is true, it specifies a single parameter value. But when is
false, we don’t have a specific one; we have many possible values. We can com-
pute the probability for any parameter value in . But which one should we
choose?

One way to focus our attention is by thinking about the effect size. That is, we
ask ”How big a difference would matter?” Suppose a charity wants to test whether
placing personalized address labels in the envelope along with a request for a
donation increases the response rate above the baseline of 5%. If the minimum
response that would pay for the address labels is 6%, they would calculate for
the alternative .

We could reduce for all alternative parameter values by increasing . By
making it easier to reject the null, we’d be more likely to reject it whether it’s true
or not. So we’d reduce , the chance that we fail to reject a false null—but we’d
make more Type I errors. This tension between Type I and Type II errors is
inevitable. In the political arena, think of the ongoing debate between those who
favor provisions to reduce Type I errors in the courts (supporting Miranda rights,
requiring warrants for wiretaps, providing legal representation for those who
can’t afford it) and those who advocate changes to reduce Type II errors (admit-
ting into evidence confessions made when no lawyer is present, eavesdropping
on conferences with lawyers, restricting paths of appeal, etc.).

The only way to reduce both types of error is to collect more evidence or, in
statistical terms, to collect more data. Too often, studies fail because their sample
sizes are too small to detect the change they are looking for.

b

ab

p = 0.06
b

HAb

H0H0

a

bb

H0

H0

H0

H0

aa

aH0aNOTATION ALERT:
In Statistics, is almost always
saved for the alpha level. But 
has already been used for the
parameters of a linear model.
Fortunately, it’s usually clear
whether we’re talking about a
Type II error probability or the
slope or intercept of a regression
model.

b

a

The null hypothesis specifies a
single value for the parameter.
So it’s easy to calculate the
probability of a Type I error.
But the alternative gives a
whole range of possible
values, and we may want to
find a for several of them.b

We have seen ways to find a
sample size by specifying the
margin of error. Choosing the
sample size to achieve a
specified (for a particular
alternative value) is
sometimes more appropriate,
but the calculation is more
complex and lies beyond the
scope of this book.

b

Thinking about errorsFOR EXAMPLE

Recap: A published study found the risk of heart attack to be increased in patients taking the diabetes drug Avandia. The issue of the New England
Journal of Medicine (NEJM) in which that study appeared also included an editorial that said, in part, “A few events either way might have changed the
findings for myocardial infarction7 or for death from cardiovascular causes. In this setting, the possibility that the findings were due to chance cannot be
excluded.”

Question: What kind of error would the researchers have made if, in fact, their findings were due to chance? What could be the consequences of 
this error?

The null hypothesis said the risk didn’t change, but the researchers rejected that model and claimed evidence of a 
higher risk. If these findings were just due to chance, they rejected a true null hypothesis—a Type I error.
If, in fact, Avandia carried no extra risk, then patients might be deprived of its benefits for no good reason.

7 Doctorese for “heart attack.”
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Power
When we failed to reject the null hypothesis about TT practitioners, did we prove
that they were just guessing? No, it could be that they actually can discern a hu-
man energy field but we just couldn’t tell. For example, suppose they really have
the ability to get 53% of the trials right but just happened to get only 47% in our
experiment. Our confidence interval shows that with these data we wouldn’t
have rejected the null. And if we retained the null even though the true propor-
tion was actually greater than 50%, we would have made a Type II error because
we failed to detect their ability.

Remember, we can never prove a null hypothesis true. We can only fail to re-
ject it. But when we fail to reject a null hypothesis, it’s natural to wonder whether
we looked hard enough. Might the null hypothesis actually be false and our test
too weak to tell?

When the null hypothesis actually is false, we hope our test is strong enough to
reject it. We’d like to know how likely we are to succeed. The power of the test gives
us a way to think about that. The power of a test is the probability that it correctly re-
jects a false null hypothesis. When the power is high, we can be confident that we’ve
looked hard enough. We know that is the probability that a test fails to reject a false
null hypothesis, so the power of the test is the probability that it does reject: .

Whenever a study fails to reject its null hypothesis, the test’s power comes
into question. Was the sample size big enough to detect an effect had there been
one? Might we have missed an effect large enough to be interesting just because
we failed to gather sufficient data or because there was too much variability in the
data we could gather? The therapeutic touch experiment failed to reject the null
hypothesis that the TT practitioners were just guessing. Might the problem be that
the experiment simply lacked adequate power to detect their ability?

1 - b

b

Errors and powerFOR EXAMPLE

Recap: The study of Avandia published in the NEJM combined results from 47 different trials—a method called meta-analysis. The drug’s manu-
facturer, GlaxoSmithKline (GSK), issued a statement that pointed out, “Each study is designed differently and looks at unique questions: For example,
individual studies vary in size and length, in the type of patients who participated, and in the outcomes they investigate.” Nevertheless, by combining data
from many studies, meta-analyses can achieve a much larger sample size.

Question: How could this larger sample size help?

If Avandia really did increase the seven-year heart attack rate, doctors needed to know. To overlook that would have
been a Type II error (failing to detect a false null hypothesis), resulting in patients being put at greater risk. Increas-
ing the sample size could increase the power of the analysis, making it more likely that researchers will detect the
danger if there is one.

When we calculate power, we imagine that the null hypothesis is false. The
value of the power depends on how far the truth lies from the null hypothesis
value. We call the distance between the null hypothesis value, and the truth, p,
the effect size. The power depends directly on the effect size. It’s easier to see
larger effects, so the farther is from p, the greater the power. If the therapeutic
touch practitioners were in fact able to detect human energy fields 90% of the time,
it should be easy to see that they aren’t guessing. With an effect size this large,
we’d have a powerful test. If their true success rate were only 53%, however, we’d
need a larger sample size to have a good chance of noticing that (and rejecting ).

How can we decide what power we need? Choice of power is more a finan-
cial or scientific decision than a statistical one because to calculate the power, we
need to specify the “true” parameter value we’re interested in. In other words,

H0

p0

p0,

Activity: The Power of a
Test. Power is a concept that’s
much easier to understand 
when you can visualize what’s
happening.
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power is calculated for a particular effect size, and it changes depending on the
size of the effect we want to detect. For example, do you think that health insur-
ance companies should pay for therapeutic touch if practitioners could detect a
human energy field only 53% of the time—just slightly better than chance? That
doesn’t seem clinically useful.8 How about 75% of the time? No therapy works all
the time, and insurers might be quite willing to pay for such a success rate. Let’s
take 75% as a reasonably interesting effect size (keeping in mind that 50% is the
level of guessing). With 150 trials, the TT experiment would have been able to de-
tect such an ability with a power of 99.99%. So power was not an issue in this
study. There is only a very small chance that the study would have failed to de-
tect a practitioner’s ability, had it existed. The sample size was clearly big enough.

JUST CHECKING
4. Remember our bank that’s sending out DVDs to try to get customers to make payments on delinquent loans? It is

looking for evidence that the costlier DVD strategy produces a higher success rate than the letters it has been sending.
Explain what a Type I error is in this context and what the consequences would be to the bank.

5. What’s a Type II error in the bank experiment context, and what would the consequences be?

6. For the bank, which situation has higher power: a strategy that works really well, actually getting 60% of people
to pay off their balances, or a strategy that barely increases the payoff rate to 32%? Explain briefly.

A Picture Worth Words

It makes intuitive sense that the larger the effect size, the easier it should be to see
it. Obtaining a larger sample size decreases the probability of a Type II error, so it
increases the power. It also makes sense that the more we’re willing to accept a
Type I error, the less likely we will be to make a Type II error.

1
P1z 7 3.092

Suppose the Null
Hypothesis is true.

Suppose the Null
Hypothesis is not true.

Type I Error

Type II Error

p0

B

p

Fail to reject H0 Reject H0

Power

p*

FIGURE 21.1
The power of a test is the probability that it re-
jects a false null hypothesis. The upper figure
shows the null hypothesis model. We’d reject
the null in a one-sided test if we observed a
value of in the red region to the right of the
critical value, The lower figure shows the
true model. If the true value of is greater than

then we’re more likely to observe a value
that exceeds the critical value and make the
correct decision to reject the null hypothesis.
The power of the test is the purple region on
the right of the lower figure. Of course, even
drawing samples whose observed proportions
are distributed around , we’ll sometimes get a
value in the red region on the left and make a
Type II error of failing to reject the null.

p

p0,
p

p*.
pN

8 On the other hand, a scientist might be interested in anything clearly different from the
50% guessing rate because that might suggest an entirely new physics at work. In fact, it
could lead to a Nobel prize.
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Figure 21.1 shows a good way to visualize the relationships among these con-
cepts. Suppose we are testing against the alternative We’ll re-
ject the null if the observed proportion, , is big enough. By big enough, we mean

for some critical value, (shown as the red region in the right tail of the up-
per curve). For example, we might be willing to believe the ability of therapeutic
touch practitioners if they were successful in 65% of our trials. This is what the upper
model shows. It’s a picture of the sampling distribution model for the proportion if
the null hypothesis were true. We’d make a Type I error whenever the sample gave
us , because we would reject the (true) null hypothesis. And unusual samples
like that would happen only with probability .

In reality, though, the null hypothesis is rarely exactly true.
The lower probability model supposes that is not true. In par-
ticular, it supposes that the true value is p, not (Perhaps the TT
practitioner really can detect the human energy field 72% of the
time.) It shows a distribution of possible observed values around
this true value. Because of sampling variability, sometimes 
and we fail to reject the (false) null hypothesis. Suppose a TT prac-
titioner with a true ability level of 72% is actually successful on
fewer than 65% of our tests. Then we’d make a Type II error. The
area under the curve to the left of in the bottom model repre-
sents how often this happens. The probability is . In this picture,

is less than half, so most of the time we do make the right deci-
sion. The power of the test—the probability that we make the right
decision—is shown as the region to the right of It’s .

We calculate based on the upper model because depends
only on the null model and the alpha level. No matter what the
true proportion, no matter whether the practitioners can detect a
human energy field 90%, 53%, or 2% of the time, doesn’t
change. After all, we don’t know the truth, so we can’t use it to de-
termine the critical value. But we always reject when .

How often we correctly reject when it’s false depends on
the effect size. We can see from the picture that if the effect size
were larger (the true proportion were farther above the hypoth-
esized value), the bottom curve would shift to the right, making
the power greater.

We can see several important relationships from this figure:

u .

u Reducing to lower the chance of committing a Type I error will move the criti-
cal value, to the right (in this example). This will have the effect of increasing

, the probability of a Type II error, and correspondingly reducing the power.

u The larger the real difference between the hypothesized value, and the true
population value, p, the smaller the chance of making a Type II error and the
greater the power of the test. If the two proportions are very far apart, the two
models will barely overlap, and we will not be likely to make any Type II errors
at all—but then, we are unlikely to really need a formal hypothesis-testing pro-
cedure to see such an obvious difference. If the TT practitioners were successful
almost all the time, we’d be able to see that with even a small experiment.

Reducing Both Type I and Type II Errors
Figure 21.1 seems to show that if we reduce Type I error, we automatically must
increase Type II error. But there is a way to reduce both. Can you think of it?

If we can make both curves narrower, as shown in Figure 21.2, then both the
probability of Type I errors and the probability of Type II errors will decrease, and
the power of the test will increase.

p0,
b

p*,
a

Power = 1 - b

H0

pN 7 p* H0

p*

p*p*
1 - bp*.

b

b

p*

pN 6 p*
pN

p0.
H0

a

pN 7 p*

p*pN 7 p*
pN

HA: p 7 p0.H0: p = p0

Activity: Power and
Sample Size. Investigate how the
power of a test changes with the
sample size. The interactive tool
is really the only way you can see
this easily.

NOTATION ALERT:
We’ve attached symbols to
many of the p’s. Let’s keep them
straight. p is a true proportion
parameter. is a hypothesized
value of p. is an observed
proportion. p* is a critical value
of a proportion corresponding
to a specified .a

pN
p0

Fisher and a 5 0.05
Why did Sir Ronald Fisher suggest 0.05 as a
criterion for testing hypotheses? It turns out that
he had in mind small initial studies. Small studies
have relatively little power. Fisher was concerned
that they might make too many Type II errors—
failing to discover an important effect—if too strict
a criterion were used. Once a test failed to reject a
null hypothesis, it was unlikely that researchers
would return to that hypothesis to try again.

On the other hand, the increased risk of 
Type I errors arising from a generous criterion
didn’t concern him as much for exploratory
studies because these are ordinarily followed by a
replication or a larger study.The probability of 
a Type I error is —in this case, 0.05.The
probability that two independent studies would
both make Type I errors is , so
Fisher was confident that Type I errors in initial
studies were not a major concern.

The widespread use of the relatively
generous 0.05 criterion even in large studies is
most likely not what Fisher had in mind.

0.05 * 0.05 = 0.0025

a
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496 CHAPTER 21    More About Tests and Intervals

How can we accomplish that? The only way is to reduce the standard deviations
by increasing the sample size. (Remember, these are pictures of sampling distribu-
tion models, not of data.) Increasing the sample size works regardless of the true
population parameters. But recall the curse of diminishing returns. The standard de-
viation of the sampling distribution model decreases only as the square root of the
sample size, so to halve the standard deviations we must quadruple the sample size.

Suppose the Null
Hypothesis is true.

Suppose the Null
Hypothesis is not true.

Type I Error

Type II Error

p0

p
Fail to Reject H0 Reject H0

Power

p*

FIGURE 21.2
Making the standard deviations
smaller increases the power without
changing the corresponding critical
value. The means are just as far apart
as in Figure 21.1, but the error rates
are reduced.

Sample size, errors, and powerFOR EXAMPLE

Recap: The meta-analysis of the risks of heart attacks in patients taking the diabetes drug Avandia combined results from 47 smaller studies. As
GlaxoSmith-Kline (GSK), the drug’s manufacturer, pointed out in their rebuttal, “Data from the ADOPT clinical trial did show a small increase in reports
of myocardial infarction among the Avandia-treated group . . . however, the number of events is too small to reach a reliable conclusion about the role
any of the medicines may have played in this finding.”

Question: Why would this smaller study have been less likely to detect the difference in risk? What are the appropriate statistical concepts for com-
paring the smaller studies?

Smaller studies are subject to greater sampling variability; that is, the sampling distributions they estimate have a larger
standard deviation for the sample proportion. That gives small studies less power: They’d be less able to discern whether
an apparently higher risk was merely the result of chance variation or evidence of real danger. The FDA doesn’t want to re-
strict the use of a drug that’s safe and effective (Type I error), nor do they want patients to continue taking a medication
that puts them at risk (Type II error). Larger sample sizes can reduce the risk of both kinds of error. Greater power (the
probability of rejecting a false null hypothesis) means a better chance of spotting a genuinely higher risk of heart attacks.

WHAT CAN GO WRONG?
u Don’t interpret the P-value as the probability that H0 is true. The P-value is about the data,

not the hypothesis. It’s the probability of observing data this unusual, given that 
is true, not the other way around.

u Don’t believe too strongly in arbitrary alpha levels. There’s not really much difference be-
tween a P-value of 0.051 and a P-value of 0.049, but sometimes it’s regarded as the dif-
ference between night (having to refrain from rejecting ) and day (being able toH0

H0

Errors and power. Explore the rela-
tionships among Type I and Type II
errors, sample size, effect size, and
the power of a test.
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shout to the world that your results are “statistically significant”). It may just be better
to report the P-value and a confidence interval and let the world decide along with you.

u Don’t confuse practical and statistical significance. A large sample size can make it easy
to discern even a trivial change from the null hypothesis value. On the other hand,
an important difference can be missed if your test lacks sufficient power.

u Don’t forget that in spite of all your care, you might make a wrong decision. We can never re-
duce the probability of a Type I error ( ) or of a Type II error ( ) to zero (but increas-
ing the sample size helps).

ba

CONNECTIONS
All of the hypothesis tests we’ll see boil down to the same question: “Is the difference between two
quantities large?” We always measure “how large” by finding a ratio of this difference to the stan-
dard deviation of the sampling distribution of the statistic. Using the standard deviation as our
ruler for inference is one of the core ideas of statistical thinking.

We’ve discussed the close relationship between hypothesis tests and confidence intervals. They
are two sides of the same coin.

This chapter also has natural links to the discussion of probability, to the Normal model, and to
the two previous chapters on inference.

WHAT HAVE WE LEARNED?

We’ve learned that there’s a lot more to hypothesis testing than a simple yes/no decision.

u We’ve learned that the P-value can indicate evidence against the null hypothesis when it’s small,
but it does not tell us the probability that the null hypothesis is true.

u We’ve learned that the alpha level of the test establishes the level of proof we’ll require. That 
determines the critical value of z that will lead us to reject the null hypothesis.

u We’ve also learned more about the connection between hypothesis tests and confidence inter-
vals; they’re really two ways of looking at the same question. The hypothesis test gives us the
answer to a decision about a parameter; the confidence interval tells us the plausible values of
that parameter.

We’ve learned about the two kinds of errors we might make, and we’ve seen why in the end we’re
never sure we’ve made the right decision.

u If the null hypothesis is really true and we reject it, that’s a Type I error; the alpha level of the
test is the probability that this could happen.

u If the null hypothesis is really false but we fail to reject it, that’s a Type II error.
u The power of the test is the probability that we reject the null hypothesis when it’s false. The

larger the size of the effect we’re testing for, the greater the power of the test to detect it.
u We’ve seen that tests with a greater likelihood of Type I error have more power and less chance

of a Type II error. We can increase power while reducing the chances of both kinds of error by in-
creasing the sample size.

Terms
Alpha level 486. The threshold P-value that determines when we reject a null hypothesis. If we observe a sta-

tistic whose P-value based on the null hypothesis is less than , we reject that null hypothesis.

Statistically significant 486. When the P-value falls below the alpha level, we say that the test is “statistically significant”
at that alpha level.

a

BOCK_C21_0321570448 pp3.qxd  12/2/08  2:40 PM  Page 497



Significance level 486. The alpha level is also called the significance level, most often in a phrase such as a conclu-
sion that a particular test is “significant at the 5% significance level.”

Type I error 491. The error of rejecting a null hypothesis when in fact it is true (also called a “false positive”).
The probability of a Type I error is .

Type II error 491. The error of failing to reject a null hypothesis when in fact it is false (also called a “false nega-
tive”). The probability of a Type II error is commonly denoted and depends on the effect size.

Power 492, 493. The probability that a hypothesis test will correctly reject a false null hypothesis is the
power of the test. To find power, we must specify a particular alternative parameter value as the
“true” value. For any specific value in the alternative, the power is .

Effect size 493. The difference between the null hypothesis value and true value of a model parameter is called
the effect size.

Skills
u Understand that statistical significance does not measure the importance or magnitude of an

effect. Recognize when others misinterpret statistical significance as proof of practical importance.

u Understand the close relationship between hypothesis tests and confidence intervals.

u Be able to identify and use the alternative hypothesis when testing hypotheses. Understand how
to choose between a one-sided and two-sided alternative hypothesis, and know how to defend
the choice of a one-sided alternative.

u Understand how the critical value for a test is related to the specified alpha level.

u Understand that the power of a test gives the probability that it correctly rejects a false null hy-
pothesis when a specified alternative is true.

u Understand that the power of a test depends in part on the sample size. Larger sample sizes lead
to greater power (and thus fewer Type II errors).

u Know how to complete a hypothesis test for a population proportion.

u Be able to interpret the meaning of a P-value in nontechnical language.

u Understand that the P-value of a test does not give the probability that the null hypothesis is 
correct.

u Know that we do not “accept” a null hypothesis if we cannot reject it but, rather, that we can
only “fail to reject” the hypothesis for lack of evidence against it.

1 - b

b

a

HYPOTHESIS TESTS ON THE COMPUTER

Reports about hypothesis tests generated by technologies don’t follow a standard form. Most will name the
test and provide the test statistic value, its standard deviation, and the P-value. But these elements may not
be labeled clearly. For example, the expression “ ” means the probability (the “Prob”) of observing a test
statistic whose magnitude (the absolute value tells us this) is larger than that of the one (the “z”) found in the
data (which, because it is written as “z,” we know follows a Normal model). That is a fancy (and not very clear)
way of saying P-value. In some packages, you can specify that the test be one-sided. Others might report three
P-values, covering the ground for both one-sided tests and the two-sided test.

Sometimes a confidence interval and hypothesis test are automatically given together. The CI ought to be for
the corresponding confidence level: for 2-tailed tests, for 1-tailed tests.

Often, the standard deviation of the statistic is called the “standard error,” and usually that’s appropriate
because we’ve had to estimate its value from the data. That’s not the case for proportions, however: We get the

1 - 2a1 - a

Prob 7 ƒ z ƒ
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BOCK_C21_0321570448 pp3.qxd  12/2/08  2:40 PM  Page 498



Exercises 499

standard deviation for a proportion from the null hypothesis value. Nevertheless, you may see the standard devi-
ation called a “standard error” even for tests with proportions.

It’s common for statistics packages and calculators to report more digits of “precision” than could possibly
have been found from the data. You can safely ignore them. Round values such as the standard deviation to one
digit more than the number of digits reported in your data.

Here are the kind of results you might see. This is not from any program or calculator we know of, but it shows
some of the things you might see in typical computer output.

For information on hypothesis testing with particular statistics packages, see the table for Chapter 20 in
Appendix B.

Usually, the test is named

Might offer a CI as well
These are bounds for the 95% CI
because a = 0.05—a fact not
clearly stated

test statistic
value

Actually,
a standard
deviation
because this
is a test

P-value

2-sided 
alternative

Test of p = 0.5

Estimate  0.467 
Std Err  0.04073
Upper 95% 0.547
Lower 95% 0.387

Value Test Stat Prob > ❘z❘
–0.825 0.42

p̂

EXERCISES

1. One sided or two? In each of the following situations,
is the alternative hypothesis one-sided or two-sided?
What are the hypotheses?
a) A business student conducts a taste test to see whether

students prefer Diet Coke or Diet Pepsi.
b) PepsiCo recently reformulated Diet Pepsi in an at-

tempt to appeal to teenagers. They run a taste test to
see if the new formula appeals to more teenagers than
the standard formula.

c) A budget override in a small town requires a two-
thirds majority to pass. A local newspaper conducts a
poll to see if there’s evidence it will pass.

d) One financial theory states that the stock market will
go up or down with equal probability. A student col-
lects data over several years to test the theory.

2. Which alternative? In each of the following situations,
is the alternative hypothesis one-sided or two-sided?
What are the hypotheses?
a) A college dining service conducts a survey to see if

students prefer plastic or metal cutlery.
b) In recent years, 10% of college juniors have applied for

study abroad. The dean’s office conducts a survey to
see if that’s changed this year.

c) A pharmaceutical company conducts a clinical trial to
see if more patients who take a new drug experience
headache relief than the 22% who claimed relief after
taking the placebo.

d) At a small computer peripherals company, only 
60% of the hard drives produced passed all their per-
formance tests the first time. Management recently
invested a lot of resources into the production system
and now conducts a test to see if it helped.

3. P-value. A medical researcher tested a new treatment
for poison ivy against the traditional ointment. He con-
cluded that the new treatment is more effective. Explain
what the P-value of 0.047 means in this context.

4. Another P-value. Have harsher penalties and ad 
campaigns increased seat-belt use among drivers and
passengers? Observations of commuter traffic failed to
find evidence of a significant change compared with
three years ago. Explain what the study’s P-value of 0.17
means in this context.

5. Alpha. A researcher developing scanners to search for
hidden weapons at airports has concluded that a new de-
vice is significantly better than the current scanner. He
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standard deviation for a proportion from the null hypothesis value. Nevertheless, you may see the standard devi-
ation called a “standard error” even for tests with proportions.

It’s common for statistics packages and calculators to report more digits of “precision” than could possibly
have been found from the data. You can safely ignore them. Round values such as the standard deviation to one
digit more than the number of digits reported in your data.

Here are the kind of results you might see. This is not from any program or calculator we know of, but it shows
some of the things you might see in typical computer output.

For information on hypothesis testing with particular statistics packages, see the table for Chapter 20 in
Appendix B.

Usually, the test is named

Might offer a CI as well
These are bounds for the 95% CI
because a = 0.05—a fact not
clearly stated

test statistic
value

Actually,
a standard
deviation
because this
is a test

P-value

2-sided 
alternative

Test of p = 0.5

Estimate  0.467 
Std Err  0.04073
Upper 95% 0.547
Lower 95% 0.387

Value Test Stat Prob > ❘z❘
–0.825 0.42

p̂

EXERCISES

1. One sided or two? In each of the following situations,
is the alternative hypothesis one-sided or two-sided?
What are the hypotheses?
a) A business student conducts a taste test to see whether

students prefer Diet Coke or Diet Pepsi.
b) PepsiCo recently reformulated Diet Pepsi in an at-

tempt to appeal to teenagers. They run a taste test to
see if the new formula appeals to more teenagers than
the standard formula.

c) A budget override in a small town requires a two-
thirds majority to pass. A local newspaper conducts a
poll to see if there’s evidence it will pass.

d) One financial theory states that the stock market will
go up or down with equal probability. A student col-
lects data over several years to test the theory.

2. Which alternative? In each of the following situations,
is the alternative hypothesis one-sided or two-sided?
What are the hypotheses?
a) A college dining service conducts a survey to see if

students prefer plastic or metal cutlery.
b) In recent years, 10% of college juniors have applied for

study abroad. The dean’s office conducts a survey to
see if that’s changed this year.

c) A pharmaceutical company conducts a clinical trial to
see if more patients who take a new drug experience
headache relief than the 22% who claimed relief after
taking the placebo.

d) At a small computer peripherals company, only 
60% of the hard drives produced passed all their per-
formance tests the first time. Management recently
invested a lot of resources into the production system
and now conducts a test to see if it helped.

3. P-value. A medical researcher tested a new treatment
for poison ivy against the traditional ointment. He con-
cluded that the new treatment is more effective. Explain
what the P-value of 0.047 means in this context.

4. Another P-value. Have harsher penalties and ad 
campaigns increased seat-belt use among drivers and
passengers? Observations of commuter traffic failed to
find evidence of a significant change compared with
three years ago. Explain what the study’s P-value of 0.17
means in this context.

5. Alpha. A researcher developing scanners to search for
hidden weapons at airports has concluded that a new de-
vice is significantly better than the current scanner. He
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made this decision based on a test using . Would
he have made the same decision at ? How about

? Explain.

6. Alpha again. Environmentalists concerned about the
impact of high-frequency radio transmissions on birds
found that there was no evidence of a higher mortality
rate among hatchlings in nests near cell towers. They
based this conclusion on a test using . Would
they have made the same decision at ? How
about ? Explain.

7. Significant? Public health officials believe that 90% of
children have been vaccinated against measles. A random
survey of medical records at many schools across the
country found that, among more than 13,000 children,
only 89.4% had been vaccinated. A statistician would re-
ject the 90% hypothesis with a P-value of .
a) Explain what the P-value means in this context.
b) The result is statistically significant, but is it impor-

tant? Comment.

8. Significant again? A new reading program may re-
duce the number of elementary school students who read
below grade level. The company that developed this 
program supplied materials and teacher training for a
large-scale test involving nearly 8500 children in several
different school districts. Statistical analysis of the results
showed that the percentage of students who did not meet
the grade-level goal was reduced from 15.9% to 15.1%.
The hypothesis that the new reading program produced
no improvement was rejected with a P-value of 0.023.
a) Explain what the P-value means in this context.
b) Even though this reading method has been shown to

be significantly better, why might you not recommend
that your local school adopt it?

9. Success. In August 2004, Time magazine reported the
results of a random telephone poll commissioned by the
Spike network. Of the 1302 men who responded, only 39
said that their most important measure of success was
their work.
a) Estimate the percentage of all American males who

measure success primarily from their work. Use a 98%
confidence interval. Check the conditions first.

b) Some believe that few contemporary men judge their
success primarily by their work. Suppose we wished
to conduct a hypothesis test to see if the fraction has
fallen below the 5% mark. What does your confidence
interval indicate? Explain.

c) What is the level of significance of this test? Explain.

10. Is the Euro fair? Soon after the Euro was introduced
as currency in Europe, it was widely reported that some-
one had spun a Euro coin 250 times and gotten heads 140
times. We wish to test a hypothesis about the fairness of
spinning the coin.
a) Estimate the true proportion of heads. Use a 95% con-

fidence interval. Don’t forget to check the conditions.
b) Does your confidence interval provide evidence that

the coin is unfair when spun? Explain.
c) What is the significance level of this test? Explain.

11. Approval 2007. In May 2007, George W. Bush’s ap-
proval rating stood at 30% according to a CBS News/New

P = 0.011

a = 0.01
a = 0.10
a = 0.05

a = 0.01
a = 0.10

a = 0.05 York Times national survey of 1125 randomly selected
adults.
a) Make a 95% confidence interval for his approval rat-

ing by all U.S. adults.
b) Based on the confidence interval, test the null hypoth-

esis that Bush’s approval rating was no better than the
27% level established by Richard Nixon during the
Watergate scandal.

12. Superdads. The Spike network commissioned a tele-
phone poll of randomly sampled U.S. men. Of the 712 
respondents who had children, 22% said “yes” to the
question “Are you a stay-at-home dad?” (Time, August 
23, 2004)
a) To help market commercial time, Spike wants an accu-

rate estimate of the true percentage of stay-at-home
dads. Construct a 95% confidence interval.

b) An advertiser of baby-carrying slings for dads will
buy commercial time if at least 25% of men are stay-
at-home dads. Use your confidence interval to test an
appropriate hypothesis, and make a recommendation
to the advertiser.

c) Could Spike claim to the advertiser that it is possible
that 25% of men with young children are stay-at-home
dads? What is wrong with the reasoning?

13. Dogs. Canine hip dysplasia is a degenerative disease
that causes pain in many dogs. Sometimes advanced
warning signs appear in puppies as young as 6 months.
A veterinarian checked 42 puppies whose owners
brought them to a vaccination clinic, and she found 5
with early hip dysplasia. She considers this group to be a
random sample of all puppies.
a) Explain we cannot use this information to construct a

confidence interval for the rate of occurrence of early
hip dysplasia among all 6-month-old puppies.

*b) Construct a “plus-four” confidence interval and inter-
pret it in this context.

14. Fans. A survey of 81 randomly selected people stand-
ing in line to enter a football game found that 73 of them
were home team fans. 
a) Explain why we cannot use this information to con-

struct a confidence interval for the proportion of all
people at the game who are fans of the home team.

*b) Construct a “plus-four” confidence interval and inter-
pret it in this context.

15. Loans. Before lending someone money, banks must de-
cide whether they believe the applicant will repay the
loan. One strategy used is a point system. Loan officers
assess information about the applicant, totaling points
they award for the person’s income level, credit history,
current debt burden, and so on. The higher the point 
total, the more convinced the bank is that it’s safe to make
the loan. Any applicant with a lower point total than a
certain cutoff score is denied a loan.

We can think of this decision as a hypothesis test.
Since the bank makes its profit from the interest col-
lected on repaid loans, their null hypothesis is that the
applicant will repay the loan and therefore should get
the money. Only if the person’s score falls below the
minimum cutoff will the bank reject the null and deny
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the loan. This system is reasonably reliable, but, of
course, sometimes there are mistakes.
a) When a person defaults on a loan, which type of error

did the bank make?
b) Which kind of error is it when the bank misses an op-

portunity to make a loan to someone who would have
repaid it?

c) Suppose the bank decides to lower the cutoff score
from 250 points to 200. Is that analogous to choosing a
higher or lower value of for a hypothesis test? 
Explain.

d) What impact does this change in the cutoff value have
on the chance of each type of error?

16. Spam. Spam filters try to sort your e-mails, deciding
which are real messages and which are unwanted. One
method used is a point system. The filter reads each in-
coming e-mail and assigns points to the sender, the sub-
ject, key words in the message, and so on. The higher the
point total, the more likely it is that the message is un-
wanted. The filter has a cutoff value for the point total;
any message rated lower than that cutoff passes through
to your inbox, and the rest, suspected to be spam, are di-
verted to the junk mailbox.

We can think of the filter’s decision as a hypothesis
test. The null hypothesis is that the e-mail is a real mes-
sage and should go to your inbox. A higher point total
provides evidence that the message may be spam; when
there’s sufficient evidence, the filter rejects the null, classi-
fying the message as junk. This usually works pretty
well, but, of course, sometimes the filter makes a mistake.
a) When the filter allows spam to slip through into your

inbox, which kind of error is that?
b) Which kind of error is it when a real message gets

classified as junk?
c) Some filters allow the user (that’s you) to adjust the

cutoff. Suppose your filter has a default cutoff of 50
points, but you reset it to 60. Is that analogous to
choosing a higher or lower value of for a hypothesis
test? Explain.

d) What impact does this change in the cutoff value have
on the chance of each type of error?

17. Second loan. Exercise 15 describes the loan score
method a bank uses to decide which applicants it will
lend money. Only if the total points awarded for various
aspects of an applicant’s financial condition fail to add up
to a minimum cutoff score set by the bank will the loan be
denied.
a) In this context, what is meant by the power of the test?
b) What could the bank do to increase the power?
c) What’s the disadvantage of doing that?

18. More spam. Consider again the points-based spam
filter described in Exercise 16. When the points assigned
to various components of an e-mail exceed the cutoff
value you’ve set, the filter rejects its null hypothesis
(that the message is real) and diverts that e-mail to a
junk mailbox.
a) In this context, what is meant by the power of the test?
b) What could you do to increase the filter’s power?
c) What’s the disadvantage of doing that?

a

a

19. Homeowners 2005. In 2005 the U.S. Census Bureau 
reported that 68.9% of American families owned their
homes. Census data reveal that the ownership rate in one
small city is much lower. The city council is debating a
plan to offer tax breaks to first-time home buyers in order
to encourage people to become homeowners. They de-
cide to adopt the plan on a 2-year trial basis and use the
data they collect to make a decision about continuing the
tax breaks. Since this plan costs the city tax revenues, they
will continue to use it only if there is strong evidence that
the rate of home ownership is increasing.
a) In words, what will their hypotheses be?
b) What would a Type I error be?
c) What would a Type II error be?
d) For each type of error, tell who would be harmed.
e) What would the power of the test represent in this

context?

20. Alzheimer’s. Testing for Alzheimer’s disease can be a
long and expensive process, consisting of lengthy tests
and medical diagnosis. Recently, a group of researchers
(Solomon et al., 1998) devised a 7-minute test to serve as a
quick screen for the disease for use in the general popula-
tion of senior citizens. A patient who tested positive
would then go through the more expensive battery of
tests and medical diagnosis. The authors reported a false
positive rate of 4% and a false negative rate of 8%.
a) Put this in the context of a hypothesis test. What are

the null and alternative hypotheses?
b) What would a Type I error mean?
c) What would a Type II error mean?
d) Which is worse here, a Type I or Type II error? Explain.
e) What is the power of this test?

21. Testing cars. A clean air standard requires that vehicle
exhaust emissions not exceed specified limits for various
pollutants. Many states require that cars be tested annu-
ally to be sure they meet these standards. Suppose state
regulators double-check a random sample of cars that a
suspect repair shop has certified as okay. They will revoke
the shop’s license if they find significant evidence that the
shop is certifying vehicles that do not meet standards.
a) In this context, what is a Type I error?
b) In this context, what is a Type II error?
c) Which type of error would the shop’s owner consider

more serious?
d) Which type of error might environmentalists consider

more serious?

22. Quality control. Production managers on an assembly
line must monitor the output to be sure that the level of
defective products remains small. They periodically in-
spect a random sample of the items produced. If they find
a significant increase in the proportion of items that must
be rejected, they will halt the assembly process until the
problem can be identified and repaired.
a) In this context, what is a Type I error?
b) In this context, what is a Type II error?
c) Which type of error would the factory owner consider

more serious?
d) Which type of error might customers consider more

serious?
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23. Cars again. As in Exercise 21, state regulators are
checking up on repair shops to see if they are certifying
vehicles that do not meet pollution standards.
a) In this context, what is meant by the power of the test

the regulators are conducting?
b) Will the power be greater if they test 20 or 40 cars? Why?
c) Will the power be greater if they use a 5% or a 10%

level of significance? Why?
d) Will the power be greater if the repair shop’s inspec-

tors are only a little out of compliance or a lot? Why?

24. Production. Consider again the task of the quality con-
trol inspectors in Exercise 22.
a) In this context, what is meant by the power of the test

the inspectors conduct?
b) They are currently testing 5 items each hour. Someone

has proposed that they test 10 instead. What are the
advantages and disadvantages of such a change?

c) Their test currently uses a 5% level of significance.
What are the advantages and disadvantages of chang-
ing to an alpha level of 1%?

d) Suppose that, as a day passes, one of the machines on
the assembly line produces more and more items that
are defective. How will this affect the power of the test?

25. Equal opportunity? A company is sued for job dis-
crimination because only 19% of the newly hired candi-
dates were minorities when 27% of all applicants were
minorities. Is this strong evidence that the company’s hir-
ing practices are discriminatory?
a) Is this a one-tailed or a two-tailed test? Why?
b) In this context, what would a Type I error be?
c) In this context, what would a Type II error be?
d) In this context, what is meant by the power of the test?
e) If the hypothesis is tested at the 5% level of signifi-

cance instead of 1%, how will this affect the power of
the test?

f) The lawsuit is based on the hiring of 37 employees. Is
the power of the test higher than, lower than, or the
same as it would be if it were based on 87 hires?

26. Stop signs. Highway safety engineers test new road
signs, hoping that increased reflectivity will make them
more visible to drivers. Volunteers drive through a test
course with several of the new- and old-style signs and
rate which kind shows up the best.
a) Is this a one-tailed or a two-tailed test? Why?
b) In this context, what would a Type I error be?
c) In this context, what would a Type II error be?
d) In this context, what is meant by the power of the test?
e) If the hypothesis is tested at the 1% level of signifi-

cance instead of 5%, how will this affect the power of
the test?

f) The engineers hoped to base their decision on the re-
actions of 50 drivers, but time and budget constraints
may force them to cut back to 20. How would this af-
fect the power of the test? Explain.

27. Dropouts. A Statistics professor has observed that for
several years about 13% of the students who initially en-
roll in his Introductory Statistics course withdraw before
the end of the semester. A salesman suggests that he try a

statistics software package that gets students more in-
volved with computers, predicting that it will cut the
dropout rate. The software is expensive, and the sales-
man offers to let the professor use it for a semester to see
if the dropout rate goes down significantly. The professor
will have to pay for the software only if he chooses to
continue using it.
a) Is this a one-tailed or two-tailed test? Explain.
b) Write the null and alternative hypotheses.
c) In this context, explain what would happen if the pro-

fessor makes a Type I error.
d) In this context, explain what would happen if the pro-

fessor makes a Type II error.
e) What is meant by the power of this test?

28. Ads. A company is willing to renew its advertising con-
tract with a local radio station only if the station can prove
that more than 20% of the residents of the city have heard
the ad and recognize the company’s product. The radio
station conducts a random phone survey of 400 people.
a) What are the hypotheses?
b) The station plans to conduct this test using a 10% level

of significance, but the company wants the signifi-
cance level lowered to 5%. Why?

c) What is meant by the power of this test?
d) For which level of significance will the power of this

test be higher? Why?
e) They finally agree to use , but the company

proposes that the station call 600 people instead of the
400 initially proposed. Will that make the risk of Type
II error higher or lower? Explain.

29. Dropouts, part II. Initially, 203 students signed up for
the Stats course in Exercise 27. They used the software
suggested by the salesman, and only 11 dropped out of
the course.
a) Should the professor spend the money for this soft-

ware? Support your recommendation with an
appropriate test.

b) Explain what your P-value means in this context.

30. Testing the ads. The company in Exercise 28 contacts
600 people selected at random, and only 133 remember
the ad.
a) Should the company renew the contract? Support

your recommendation with an appropriate test.
b) Explain what your P-value means in this context.

31. Two coins. In a drawer are two coins. They look the
same, but one coin produces heads 90% of the time when
spun while the other one produces heads only 30% of the
time. You select one of the coins. You are allowed to spin
it once and then must decide whether the coin is the 
90%- or the 30%-head coin. Your null hypothesis is that
your coin produces 90% heads.
a) What is the alternative hypothesis?
b) Given that the outcome of your spin is tails, what

would you decide? What if it were heads?
c) How large is in this case?
d) How large is the power of this test? (Hint: How many

possibilities are in the alternative hypothesis?)
e) How could you lower the probability of a Type I error

and increase the power of the test at the same time?

a

a = 0.05
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32. Faulty or not? You are in charge of shipping comput-
ers to customers. You learn that a faulty disk drive was
put into some of the machines. There’s a simple test you
can perform, but it’s not perfect. All but 4% of the time, a
good disk drive passes the test, but unfortunately, 35% of
the bad disk drives pass the test, too. You have to decide
on the basis of one test whether the disk drive is good or
bad. Make this a hypothesis test.
a) What are the null and alternative hypotheses?
b) Given that a computer fails the test, what would you

decide? What if it passes the test?
c) How large is for this test?
d) What is the power of this test? (Hint: How many pos-

sibilities are in the alternative hypothesis?)

33. Hoops. A basketball player with a poor foul-shot
record practices intensively during the off-season. He
tells the coach that he has raised his proficiency from 60%
to 80%. Dubious, the coach asks him to take 10 shots, and
is surprised when the player hits 9 out of 10. Did the
player prove that he has improved?
a) Suppose the player really is no better than before—

still a 60% shooter. What’s the probability he can hit at
least 9 of 10 shots anyway? (Hint: Use a Binomial
model.)

b) If that is what happened, now the coach thinks the
player has improved when he has not. Which type of
error is that?

c) If the player really can hit 80% now, and it takes at
least 9 out of 10 successful shots to convince the coach,
what’s the power of the test?

d) List two ways the coach and player could increase the
power to detect any improvement.

34. Pottery. An artist experimenting with clay to create
pottery with a special texture has been experiencing diffi-
culty with these special pieces. About 40% break in the
kiln during firing. Hoping to solve this problem, she buys
some more expensive clay from another supplier. She
plans to make and fire 10 pieces and will decide to use
the new clay if at most one of them breaks.
a) Suppose the new, expensive clay really is no better

than her usual clay. What’s the probability that this
test convinces her to use it anyway? (Hint: Use a Bino-
mial model.)

a JUST CHECKING
Answers

1. With a z-score of 0.62, you can’t reject the null hy-
pothesis. The experiment shows no evidence that the
wheel is not fair.

2. At , you can’t reject the null hypothesis 
because 0.30 is contained in the 90% confidence 
interval—it’s plausible that sending the DVDs is no
more effective than just sending letters.

3. The confidence interval is from 29% to 45%. The DVD
strategy is more expensive and may not be worth it.
We can’t distinguish the success rate from 30% given
the results of this experiment, but 45% would repre-
sent a large improvement. The bank should consider
another trial, increasing their sample size to get a nar-
rower confidence interval.

4. A Type I error would mean deciding that the DVD
success rate is higher than 30% when it really isn’t.
They would adopt a more expensive method for col-
lecting payments that’s no better than the less expen-
sive strategy.

5. A Type II error would mean deciding that there’s not
enough evidence to say that the DVD strategy works
when in fact it does. The bank would fail to discover
an effective method for increasing their revenue from
delinquent accounts.

6. 60%; the larger the effect size, the greater the power.
It’s easier to detect an improvement to a 60% success
rate than to a 32% rate.

a = 0.05

b) If she decides to switch to the new clay and it is no
better, what kind of error did she commit?

c) If the new clay really can reduce breakage to only
20%, what’s the probability that her test will not detect
the improvement?

d) How can she improve the power of her test? Offer at
least two suggestions.
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CHAPTER

22
Comparing Two
Proportions

Do men take more risks than women? Psychologists have documented
that in many situations, men choose riskier behavior than women do.
But what is the effect of having a woman by their side? A recent seat-
belt observation study in Massachusetts1 found that, not surprisingly,

male drivers wear seatbelts less often than women do. The study also noted that
men’s belt-wearing jumped more than 16 percentage points when they had a fe-
male passenger. Seatbelt use was recorded at 161 locations in Massachusetts, us-
ing random-sampling methods developed by the National Highway Traffic Safety
Administration (NHTSA). Female drivers wore belts more than 70% of the time,
regardless of the sex of their passengers. Of 4208 male drivers with female pas-
sengers, 2777 (66.0%) were belted. But among 2763 male drivers with male pas-
sengers only, 1363 (49.3%) wore seatbelts. This was only a random sample, but it
suggests there may be a shift in men’s risk-taking behavior when women are pres-
ent. What would we estimate the true size of that gap to be?

Comparisons between two percentages are much more common than ques-
tions about isolated percentages. And they are more interesting. We often want to
know how two groups differ, whether a treatment is better than a placebo control,
or whether this year’s results are better than last year’s.

Another Ruler
We know the difference between the proportions of men wearing seatbelts seen in
the sample. It’s 16.7%. But what’s the true difference for all men? We know that our
estimate probably isn’t exactly right. To say more, we need a new ruler—the
standard deviation of the sampling distribution model for the difference in the
proportions. Now we have two proportions, and each will vary from sample to
sample. We are interested in the difference between them. So what is the correct
standard deviation?

WHO 6971 male drivers

WHAT Seatbelt use

WHY Highway safety

WHEN 2007

WHERE

1 Massachusetts Traffic Safety Research Program [June 2007].
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The Standard Deviation of the Difference Between Two Proportions 505

Combining independent
random quantities always
increases the overall
variation, so even for
differences of independent
random variables, variances
add.

For independent random
variables, variances add.

The answer comes to us from Chapter 16. Remember the Pythagorean Theo-
rem of Statistics?

The variance of the sum or difference of two independent random variables is the sum of
their variances.

This is such an important (and powerful) idea in Statistics that it’s worth
pausing a moment to review the reasoning. Here’s some intuition about why vari-
ation increases even when we subtract two random quantities.

Grab a full box of cereal. The box claims to contain 16 ounces of cereal. We
know that’s not exact: There’s some small variation from box to box. Now pour a
bowl of cereal. Of course, your 2-ounce serving will not be exactly 2 ounces.
There’ll be some variation there, too. How much cereal would you guess was left
in the box? Do you think your guess will be as close as your guess for the full box?
After you pour your bowl, the amount of cereal in the box is still a random quan-
tity (with a smaller mean than before), but it is even more variable because of the
additional variation in the amount you poured.

According to our rule, the variance of the amount of cereal left in the box
would now be the sum of the two variances.

We want a standard deviation, not a variance, but that’s just a square root
away. We can write symbolically what we’ve just said:

Be careful, though––this simple formula applies only when X and Y are in-
dependent. Just as the Pythagorean Theorem2 works only for right triangles, our
formula works only for independent random variables. Always check for inde-
pendence before using it.

The Standard Deviation of the Difference
Between Two Proportions

Fortunately, proportions observed in independent random samples are indepen-
dent, so we can put the two proportions in for X and Y and add their variances.
We just need to use careful notation to keep things straight.

When we have two samples, each can have a different size and proportion
value, so we keep them straight with subscripts. Often we choose subscripts that
remind us of the groups. For our example, we might use “M” and “F”, but generi-
cally we’ll just use “1” and “2”. We will represent the two sample proportions as

and , and the two sample sizes as and .

The standard deviations of the sample proportions are and

, so the variance of the difference in the proportions is

The standard deviation is the square root of that variance:

SD1pN1 - pN22 = B
p1q1

n1
+

p2q2

n2
.

Var1pN1 - pN22 = aB
p1q1

n1
b

2
+ aB

p2q2

n2
b

2
=

p1q1

n1
+

p2q2

n2
.

SD1pN22 = A
p2q2

n2

SD1pN12 = A
p1q1

n1

n2n1pN2pN1

SD1X - Y2 = 2SD 
21X2 + SD 

21Y2 = 2Var1X2 + Var1Y2.

Var1X - Y2 = Var1X2 + Var1Y2, so

2 If you don’t remember the formula, don’t rely on the Scarecrow’s version from The Wizard
of Oz. He may have a brain and have been awarded his Th.D. (Doctor of Thinkology), but
he gets the formula wrong.

SD (X )

SD (Y )
SD 2 (X ) +

 SD 2 (Y ) 

!
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We usually don’t know the true values of and . When we have the sample pro-
portions in hand from the data, we use them to estimate the variances. So the stan-
dard error is

SE1pN1 - pN22 = B
pN1qN1

n1
+

pN2  qN2

n2
.

p2p1

3 Princeton Survey Research Associates International for the Pew Internet & American Life
Project.

Finding the standard error of a difference in proportionsFOR EXAMPLE

A recent survey of 886 randomly selected teenagers (aged 12–17) found that more than half of them had online profiles.3 Some researchers and privacy
advocates are concerned about the possible access to personal information about teens in public places on the Internet. There appear to be differences
between boys and girls in their online behavior. Among teens aged 15–17, 57% of the 248 boys had posted profiles, compared to 70% of the 256 girls.
Let’s start the process of estimating how large the true gender gap might be.

Question: What’s the standard error of the difference in sample proportions?

Because the boys and girls were selected at random, it’s reasonable to assume their behaviors are independent, so
it’s okay to use the Pythagorean Theorem of Statistics and add the variances:

 SE(pNgirls - pNboys) = 20.03142
+ 0.02862

= 0.0425

SE(pNgirls) = B
0.70 * 0.30

256
= 0.0286 SE(pNboys) = B

0.57 * 0.43
248

= 0.0314

Assumptions and Conditions
Before we look at our example, we need to check assumptions and conditions.

Independence Assumptions
Independence Assumption: Within each group, the data should be based on re-
sults for independent individuals. We can’t check that for certain, but we can
check the following:

Randomization Condition: The data in each group should be drawn inde-
pendently and at random from a homogeneous population or generated by a ran-
domized comparative experiment.

The 10% Condition: If the data are sampled without replacement, the sample
should not exceed 10% of the population.

Because we are comparing two groups in this way, we need an additional In-
dependence Assumption. In fact, this is the most important of these assumptions.
If it is violated, these methods just won’t work.

Independent Groups Assumption: The two groups we’re comparing must
also be independent of each other. Usually, the independence of the groups from
each other is evident from the way the data were collected.

Why is the Independent Groups Assumption so important? If we compare
husbands with their wives, or a group of subjects before and after some treatment,
we can’t just add the variances. Subjects’ performance before a treatment might
very well be related to their performance after the treatment. So the proportions
are not independent and the Pythagorean-style variance formula does not hold.
We’ll see a way to compare a common kind of nonindependent samples in a
later chapter.
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Sample Size Condition
Each of the groups must be big enough. As with individual proportions, we need
larger groups to estimate proportions that are near 0% or 100%. We usually check
the Success/Failure Condition for each group.

Success/Failure Condition: Both groups are big enough that at least 10 suc-
cesses and at least 10 failures have been observed in each.

Checking assumptions and conditionsFOR EXAMPLE

Recap: Among randomly sampled teens aged 15–17, 57% of the 248 boys had posted online profiles, compared to 70% of the 256 girls.

Question: Can we use these results to make inferences about all 15–17-year-olds?

Ç Randomization Condition: The sample of boys and the sample of girls were both chosen randomly.
Ç 10% Condition: 248 boys and 256 girls are each less than 10% of all teenage boys and girls.
Ç Independent Groups Assumption: Because the samples were selected at random, it’s reasonable to believe the

boys’ online behaviors are independent of the girls’ online behaviors.
Ç Success/Failure Condition: Among the boys, had online profiles and the other 

did not. For the girls, successes and failures. All counts are at least 10.

Because all the assumptions and conditions are satisfied, it’s okay to proceed with inference for the difference in 
proportions.

(Note that when we find the observed counts of successes and failures, we round off to whole numbers. We’re using the reported percentages to recover
the actual counts.)

256(0.30) = 77256(0.70) = 179
248(0.43) = 107248(0.57) = 141

The Sampling Distribution
We’re almost there. We just need one more fact about proportions. We already
know that for large enough samples, each of our proportions has an approxi-
mately Normal sampling distribution. The same is true of their difference.

THE SAMPLING DISTRIBUTION MODEL FOR A DIFFERENCE BETWEEN
TWO INDEPENDENT PROPORTIONS
Provided that the sampled values are independent, the samples are inde-
pendent, and the sample sizes are large enough, the sampling distribution
of is modeled by a Normal model with mean and stan-
dard deviation

SD1pN1 - pN22 = B
p1q1

n1
+

p2q2

n2
.

m = p1 - p2pN1 - pN2

Why Normal?
In Chapter 16 we learned
that sums and differences of
independent Normal
random variables also follow
a Normal model.That’s the
reason we use a Normal
model for the difference 
of two independent
proportions.

The sampling distribution model and the standard deviation give us all we
need to find a margin of error for the difference in proportions––or at least they
would if we knew the true proportions, and . However, we don’t know the
true values, so we’ll work with the observed proportions, and , and use

to estimate the standard deviation. The rest is just like a one-proportion
z-interval.
SE1pN1 - pN22

pN2pN1

p2p1
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A TWO-PROPORTION z-INTERVAL
When the conditions are met, we are ready to find the confidence interval
for the difference of two proportions, . The confidence interval is

where we find the standard error of the difference,

from the observed proportions.
The critical value z* depends on the particular confidence level, C, that

we specify.

SE1pN1 - pN22 = B
pN1qN1

n1
+

pN2qN2

n2
,

1pN1 - pN22 ; z* * SE1pN1 - pN22

p1 - p2

Finding a two-proportion z-intervalFOR EXAMPLE

Recap: Among randomly sampled teens aged 15–17, 57% of the 248 boys had posted online profiles, compared to 70% of the 256 girls. We calcu-
lated the standard error for the difference in sample proportions to be and found that the assumptions and conditions
required for inference checked out okay.

Question: What does a confidence interval say about the difference in online behavior?

A 95% confidence interval for is 

We can be 95% confident that among teens aged 15–17, the proportion of girls who post online profiles is between 4.7
and 21.3 percentage points higher than the proportion of boys who do. It seems clear that teen girls are more likely to
post profiles than are boys the same age.

(4.7%, 21.3%)
0.13 ; 0.083

 (0.70 - 0.57) ; 1.96(0.0425)

(pNgirls - pNboys) ; z*SE(pNgirls - pNboys)pgirls - pboys

SE1pNgirls - pNboys2 = 0.0425

Now we are ready to be more precise about the passenger-based gap in male drivers’ seatbelt use.
We’ll estimate the difference with a confidence interval using a method called the two-proportion
z-interval and follow the four confidence interval steps.

Question: How much difference is there in the proportion of male drivers who wear seatbelts
when sitting next to a male passenger and the proportion who wear seatbelts when sitting next to
a female passenger?

A Two-Proportion z-IntervalSTEP-BY-STEP EXAMPLE

Activity: Compare Two
Proportions. Does a preschool
program help disadvantaged
children later in life?

AGAIN

I want to know the true difference in the popu-
lation proportion, , of male drivers who wear
seatbelts when sitting next to a man and ,
the proportion who wear seatbelts when sitting
next to a woman. The data are from a random
sample of drivers in Massachusetts in 2007,
observed according to procedures developed by
the NHTSA. The parameter of interest is the
difference .pF - pM

pF

pM

Plan State what you want to know. Dis-
cuss the variables and the W’s.

Identify the parameter you wish to esti-
mate. (It usually doesn’t matter in which
direction we subtract, so, for convenience,
we usually choose the direction with a
positive difference.)
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I will find a 95% confidence interval for this 
parameter.

Choose and state a confidence level.

Model Think about the assumptions and
check the conditions.

I know

The observed sample proportions are

I’ll estimate the SD of the difference with

 = 1.9610.0122 = 0.024

 ME = z * * SE(pNF - pNM)

 = 0.012

 = B
(0.660)(0.340)

4208
+

(0.493)(0.507)
2763

SE(pNF - pNM) = B
pNFqNF

nF
+

pNMqNM

nM

pNF =
2777
4208 = 0.660, pNM =

1363
2763 = 0.493

nF = 4208, nM = 2763.

Mechanics Construct the confidence
interval.

As often happens, the key step in finding
the confidence interval is estimating the
standard deviation of the sampling distri-
bution model of the statistic. Here the
statistic is the difference in the propor-
tions of men who wear seatbelts when
they have a female passenger and the
proportion who do so with a male pas-
senger. Substitute the data values into
the formula.

The sampling distribution is Normal, so
the critical value for a 95% confidence in-
terval, z*, is 1.96. The margin of error is
the critical value times the SE.

State the sampling distribution model for
the statistic.

Choose your method.

The Success/Failure Condition must hold
for each group.

Ç Independence Assumption: Driver behav-
ior was independent from car to car.

Ç Randomization Condition: The NHTSA
methods are more complex than an SRS, 
but they result in a suitable random 
sample.

Ç 10% Condition: The samples include
far fewer than 10% of all male drivers
accompanied by male or by female
passengers.

Ç Independent Groups Assumption: There’s
no reason to believe that seatbelt use
among drivers with male passengers and
those with female passengers are not 
independent.

Ç Success Failure Condition: Among male
drivers with female passengers, 2777 wore
seatbelts and 1431 did not; of those driving
with male passengers, 1363 wore seatbelts
and 1400 did not. Each group contained
far more than 10 successes and 10 failures.

Under these conditions, the sampling distribu-
tion of the difference between the sample
proportions is approximately Normal, so I’ll find
a two-proportion z-interval.
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The observed difference in proportions is
, so the

95% confidence interval is

or 14.3% to 19.1%
0.167 ; 0.024

pNF - pNM = 0.660 - 0.493 = 0.167
The confidence interval is the statistic

.;ME

I am 95% confident that the proportion of male
drivers who wear seatbelts when driving next to
a female passenger is between 14.3 and 19.1 per-
centage points higher than the proportion who
wear seatbelts when driving next to a male
passenger.

Conclusion Interpret your confidence
interval in the proper context. (Remem-
ber: We’re 95% confident that our interval
captured the true difference.)

This is an interesting result––but be careful not to try to say too much! In Massachusetts, overall seatbelt
use is lower than the national average, so we can’t be certain that these results generalize to other states.
And these were two different groups of men, so we can’t say that, individually, men are more likely to
buckle up when they have a woman passenger. You can probably think of several alternative explanations;
we’ll suggest just a couple. Perhaps age is a lurking variable: Maybe older men are more likely to wear seat-
belts and also more likely to be driving with their wives. Or maybe men who don’t wear seatbelts have
trouble attracting women!

TI Tips Finding a confidence interval

You can use a routine in the STAT TESTS menu to create confidence intervals
for the difference of two proportions. Remember, the calculator can do only the
mechanics—checking conditions and writing conclusions are still up to you.

A Gallup Poll asked whether the attribute “intelligent” described men in gen-
eral. The poll revealed that 28% of 506 men thought it did, but only 14% of 520
women agreed. We want to estimate the true size of the gender gap by creating
a 95% confidence interval.

• Go to the STAT TESTS menu. Scroll down the list and select 
B:2-PropZInt.

• Enter the observed number of males: .28*506. Remember that the actual
number of males must be a whole number, so be sure to round off.

• Enter the sample size: 506 males.
• Repeat those entries for women: .14*520 agreed, and the sample size was
520.

• Specify the desired confidence level.
• Calculate the result.

And now explain what you see: We are 95% confident that the proportion 
of men who think the attribute “intelligent” describe males in general is be-
tween 9 and 19 percentage points higher than the proportion of women who
think so.
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WHO Randomly selected
U.S. adults over age 18

WHAT Proportion who snore,
categorized by age
(less than 30, 30 or
older)

WHEN 2001

WHERE United States

WHY To study sleep behav-
iors of U.S. adults

Will I Snore When I’m 64?
The National Sleep Foundation asked a random sample of 1010 U.S. adults ques-
tions about their sleep habits. The sample was selected in the fall of 2001 from ran-
dom telephone numbers, stratified by region and sex, guaranteeing that an equal
number of men and women were interviewed (2002 Sleep in America Poll, Na-
tional Sleep Foundation, Washington, DC).

One of the questions asked about snoring. Of the 995 respondents, 37% of
adults reported that they snored at least a few nights a week during the past year.
Would you expect that percentage to be the same for all age groups? Split into two
age categories, 26% of the 184 people under 30 snored, compared with 39% of the
811 in the older group. Is this difference of 13% real, or due only to natural fluctu-
ations in the sample we’ve chosen?

The question calls for a hypothesis test. Now the parameter of interest is the
true difference between the (reported) snoring rates of the two age groups.

What’s the appropriate null hypothesis? That’s easy here. We hypothesize
that there is no difference in the proportions. This is such a natural null hypothe-
sis that we rarely consider any other. But instead of writing we usu-
ally express it in a slightly different way. To make it relate directly to the difference,
we hypothesize that the difference in proportions is zero:

Everyone into the Pool
Our hypothesis is about a new parameter: the difference in proportions. We’ll need
a standard error for that. Wait––don’t we know that already? Yes and no. We
know that the standard error of the difference in proportions is

and we could just plug in the numbers, but we can do even better. The secret is
that proportions and their standard deviations are linked. There are two propor-
tions in the standard error formula––but look at the null hypothesis. It says that
these proportions are equal. To do a hypothesis test, we assume that the null hy-
pothesis is true. So there should be just a single value of in the SE formula (and,
of course, is just ).1 - pNqN

pN

SE1pN1 - pN22 = B
pN1qN1

n1
+

pN2qN2

n2
,

H0: p1 - p2 = 0.

H0: p1 = p2 ,

JUST CHECKING
A public broadcasting station plans to launch a special appeal for additional contributions from current mem-

bers. Unsure of the most effective way to contact people, they run an experiment. They randomly select two groups
of current members. They send the same request for donations to everyone, but it goes to one group by e-mail and to
the other group by regular mail. The station was successful in getting contributions from 26% of the members they 
e-mailed but only from 15% of those who received the request by regular mail. A 90% confidence interval estimated
the difference in donation rates to be .

1. Interpret the confidence interval in this context.

2. Based on this confidence interval, what conclusion would we reach if we tested the hypothesis that there’s no
difference in the response rates to the two methods of fundraising? Explain.

11% ; 7%
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How would we do this for the snoring example? If the null hypothesis is true,
then, among all adults, the two groups have the same proportion. Overall, we saw

snorers out of a total of adults who responded
to this question. The overall proportion of snorers was .

Combining the counts like this to get an overall proportion is called pooling.
Whenever we have data from different sources or different groups but we believe
that they really came from the same underlying population, we pool them to get
better estimates.

When we have counts for each group, we can find the pooled proportion as

where is the number of successes in group 1 and is the number
of successes in group 2. That’s the overall proportion of success.

When we have only proportions and not the counts, as in the snoring exam-
ple, we have to reconstruct the number of successes by multiplying the sample
sizes by the proportions:

If these calculations don’t come out to whole numbers, round them first.
There must have been a whole number of successes, after all. (This is the only time
you should round values in the middle of a calculation.)

We then put this pooled value into the formula, substituting it for both sample
proportions in the standard error formula:

This comes out to 0.039.

Improving the Success/Failure Condition
The vaccine Gardasil® was introduced to prevent the strains of human papillo-
mavirus (HPV) that are responsible for almost all cases of cervical cancer. In random-
ized placebo-controlled clinical trials,4 only 1 case of HPV was diagnosed among
7897 women who received the vaccine, compared with 91 cases diagnosed among
7899 who received a placebo. The one observed HPV case (“success”) doesn’t meet
the at-least-10-successes criterion. Surely, though, we should not refuse to test the ef-
fectiveness of the vaccine just because it failed so rarely; that would be absurd.

For that reason, in a two-proportion z-test, the proper Success/Failure test uses
the expected frequencies, which we can find from the pooled proportion. In this case,

so we can proceed with the hypothesis test.

 n2pNpooled = 789710.00582 = 46,

 n1pNpooled = 789910.00582 = 46

 pNpooled =

91 + 1
7899 + 7897

= 0.0058

 = B
0.3678 * 11 - 0.36782

184
+

0.3678 * 11 - 0.36782

811
.

 SEpooled1pN1 - pN22 = B
pNpooled qNpooled

n1
+

pNpooled qNpooled

n2

Success1 = n1pN1 and Success2 = n2 pN 2.

Success2Success1

pNpooled =

Success1 + Success2

n1 + n2
,

366>995 = 0.3678
184 + 811 = 99548 + 318 = 366

4 Quadrivalent Human Papillomavirus Vaccine: Recommendations of the Advisory Committee on
Immunization Practices (ACIP), National Center for HIV/AIDS, Viral Hepatitis, STD and TB
Prevention [May 2007].

When finding the number of
successes, round the values
to integers. For example, the
48 snorers among the 184
under-30 respondents are
actually 26.1% of 184. We
round back to the nearest
whole number to find the
count that could have
yielded the rounded percent
we were given.
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Often it is easier just to check the observed numbers of successes and failures.
If they are both greater than 10, you don’t need to look further. But keep in mind
that the correct test uses the expected frequencies rather than the observed ones.

Compared to What?
Naturally, we’ll reject our null hypothesis if we see a large enough difference in the
two proportions. How can we decide whether the difference we see, is
large? The answer is the same as always: We just compare it to its standard deviation.

Unlike previous hypothesis-testing situations, the null hypothesis doesn’t
provide a standard deviation, so we’ll use a standard error (here, pooled). Since
the sampling distribution is Normal, we can divide the observed difference by its
standard error to get a z-score. The z-score will tell us how many standard errors
the observed difference is away from 0. We can then use the 68–95–99.7 Rule to
decide whether this is large, or some technology to get an exact P-value. The re-
sult is a two-proportion z-test.

pN1 - pN2,

TWO-PROPORTION z-TEST
The conditions for the two-proportion z-test are the same as for the two-
proportion z-interval. We are testing the hypothesis

Because we hypothesize that the proportions are equal, we pool the groups
to find

and use that pooled value to estimate the standard error:

Now we find the test statistic,

When the conditions are met and the null hypothesis is true, this statistic fol-
lows the standard Normal model, so we can use that model to obtain a P-value.

z =

1pN1 - pN22 - 0

SEpooled1pN1 - pN22
.

SEpooled1pN1 - pN22 = B
pNpooled qNpooled

n1
+

pNpooled qNpooled

n2
.

pNpooled =

Success1 + Success2

n1 + n2

H0: p1 - p2 = 0.

Activity: Test for a
Difference Between Two
Proportions. Is premium-brand
chicken less likely to be
contaminated than store-brand
chicken?

Question: Are the snoring rates of the two age groups really different?

A Two-Proportion z-TestSTEP-BY-STEP EXAMPLE

I want to know whether snoring rates differ for
those under and over 30 years old. The data are
from a random sample of 1010 U.S. adults sur-
veyed in the 2002 Sleep in America Poll. Of these,
995 responded to the question about snoring,
indicating whether or not they had snored at
least a few nights a week in the past year.

Plan State what you want to know.
Discuss the variables and the W’s.
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The observed difference in sample proportions is
pNold - pNyoung = 0.392 - 0.261 = 0.131

 L 0.039375

 = B
(0.3678)(0.6322)

811
+

(0.3678)(0.6322)
184

 = B
pNpooled qNpooled

nold
+

pNpooled qN pooled

nyoung

SEpooled (pNold - pNyoung)

 pNpooled =

yold + yyoung

nold + nyoung
=

318 + 48
811 + 184

= 0.3678

 nold = 811,   yold = 318,  pNold = 0.392
 nyoung = 184, yyoung = 48, pNyoung = 0.261Mechanics

The hypothesis is that the proportions are
equal, so pool the sample data.

Use the pooled SE to estimate
.SD1pold - pyoung2

5 This is one of those situations in which the traditional term “success” seems a bit weird. A
success here could be that a person snores. “Success” and “failure” are arbitrary labels left
over from studies of gambling games.

: There is no difference in snoring rates in
the two age groups:

: The rates are different: 

Ç Independence Assumption: The National
Sleep Foundation selected respondents at
random, so they should be independent.

Ç Randomization Condition: The respon-
dents were randomly selected by telephone
number and stratified by sex and region.

Ç 10% Condition: The number of adults sur-
veyed in each age group is certainly far
less than 10% of that population.

Ç Independent Groups Assumption: The
two groups are independent of each other
because the sample was selected at 
random.

Ç Success/Failure Condition: In the younger
age group, 48 snored and 136 didn’t. In the
older group, 318 snored and 493 didn’t.
The observed numbers of both successes
and failures are much more than 10 for
both groups.5

Because the conditions are satisfied, I’ll use a
Normal model and perform a two-proportion 
z-test.

pold - pyoung Z 0.HA

pold - pyoung = 0.

H0Hypotheses The study simply broke
down the responses by age, so there is
no sense that either alternative was
preferred. A two-sided alternative
hypothesis is appropriate.

Model Think about the assumptions and
check the conditions.

State the null model.

Choose your method.
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0 0. 131

� ˆ youngpˆoldp

P = 2P(z Ú 3.33) = 0.0008

z =

(pNold - pNyoung ) - 0

SEpooled(pNold - pNyoung)
=

0.131 - 0
0.039375

= 3.33

Make a picture. Sketch a Normal model
centered at the hypothesized difference 
of 0. Shade the region to the right of the
observed difference, and because this 
is a two-tailed test, also shade the
corresponding region in the other tail.

Find the z-score for the observed differ-
ence in proportions, 0.131.

Find the P-value using Table Z or technol-
ogy. Because this is a two-tailed test, we
must double the probability we find in the
upper tail.

The P-value of 0.0008 says that if there really
were no difference in (reported) snoring rates
between the two age groups, then the differ-
ence observed in this study would happen only
8 times in 10,000. This is so small that I reject
the null hypothesis of no difference and con-
clude that there is a difference in the rate of
snoring between older adults and younger
adults. It appears that older adults are more
likely to snore.

Conclusion Link the P-value to your de-
cision about the null hypothesis, and state
your conclusion in context.

TI Tips Testing the hypothesis

Yes, of course, there’s a STAT TESTS routine to test a hypothesis about the
difference of two proportions. Let’s do the mechanics for the test about snor-
ing. Of 811 people over 30 years old, 318 snored, while only 48 of the 184 peo-
ple under 30 did.

• In the STAT TESTS menu select 6:2-PropZTest.
• Enter the observed numbers of snorers and the sample sizes for both groups.
• Since this is a two-tailed test, indicate that you want to see if the proportions

are unequal. When you choose this option, the calculator will automatically
include both tails as it determines the P-value.

• Calculate the result. Don’t worry; for this procedure the calculator will
pool the proportions automatically.

Now it is up to you to interpret the result and state a conclusion. We see a 
z-score of 3.33 and the P-value is 0.0008. Such a small P-value indicates that the
observed difference is unlikely to be sampling error. What does that mean about
snoring and age? Here’s a great opportunity to follow up with a confidence in-
terval so you can Tell even more! 
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WHAT CAN GO WRONG?
u Don’t use two-sample proportion methods when the samples aren’t independent. These meth-

ods give wrong answers when this assumption of independence is violated. Good
random sampling is usually the best insurance of independent groups. Make sure
there is no relationship between the two groups. For example, you can’t compare the

JUST CHECKING
3. A June 2004 public opinion poll asked 1000 randomly selected adults whether the United States should decrease

the amount of immigration allowed; 49% of those responding said “yes.” In June of 1995, a random sample of
1000 had found that 65% of adults thought immigration should be curtailed. To see if that percentage has de-
creased, why can’t we just use a one-proportion z-test of and see what the P-value for is?

4. For opinion polls like this, which has more variability: the percentage of respondents answering “yes” in either
year or the difference in the percentages between the two years?

pN = 0.49H0: p = 0.65

Another 2-proportion z-testFOR EXAMPLE

Recap: One concern of the study on teens’ online profiles was safety and privacy. In the random sample, girls were less likely than boys to say that they
are easy to find online from their profiles. Only 19% (62 girls) of 325 teen girls with profiles say that they are easy to find, while 28% (75 boys) of the
268 boys with profiles say the same.

Question: Are these results evidence of a real difference between boys and girls? Perform a two-proportion z-test and discuss what you find.

Ç Randomization Condition: The sample of boys and the sample of girls were both chosen randomly.
Ç 10% Condition: 268 boys and 325 girls are each less than 10% of all teenage boys and girls with online profiles.
Ç Independent Groups Assumption: Because the samples were selected at random, it’s reasonable to believe the

boys’ perceptions are independent of the girls’.
Ç Success/Failure Condition: Among the girls, there were 62 “successes” and 263 failures, and among boys, 

75 successes and 193 failures. These counts are at least 10 for each group.

Because all the assumptions and conditions are satisfied, it’s okay to do a two-proportion z-test:

This is a two-tailed test, so the P-value . Because this P-value is very small, I reject the null
hypothesis. This study provides strong evidence that there really is a difference in the proportions of teen girls and
boys who say they are easy to find online.

= 2(0.0048) = 0.0096

P (z 7 2.59) = 0.0048

z =

(0.28 - 0.19) - 0
0.0348

= 2.59

SEpooled (pNboys - pNgirls) = A
0.231 * 0.769

268
+

0.231 * 0.769
325

= 0.0348

pNpooled =

75 + 62
268 + 325

= 0.231

HA: pboys - pgirls Z 0
H0: pboys - pgirls = 0

516 CHAPTER 22    Comparing Two Proportions
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proportion of respondents who own SUVs with the proportion of those same
respondents who think the tax on gas should be eliminated. The responses are not in-
dependent because you’ve asked the same people. To use these methods to estimate
or test the difference, you’d need to survey two different groups of people.

Alternatively, if you have a random sample, you can split your respondents
according to their answers to one question and treat the two resulting groups as
independent samples. So, you could test whether the proportion of SUV owners
who favored eliminating the gas tax was the same as the corresponding proportion
among non-SUV owners.

u Don’t apply inference methods where there was no randomization. If the data do not come
from representative random samples or from a properly randomized experiment,
then the inference about the differences in proportions will be wrong.

u Don’t interpret a significant difference in proportions causally. It turns out that people with
higher incomes are more likely to snore. Does that mean money affects sleep pat-
terns? Probably not. We have seen that older people are more likely to snore, and
they are also likely to earn more. In a prospective or retrospective study, there is al-
ways the danger that other lurking variables not accounted for are the real reason
for an observed difference. Be careful not to jump to conclusions about causality.

CONNECTIONS
In Chapter 3 we looked at contingency tables for two categorical variables. Differences in propor-
tions are just contingency tables. You’ll often see data presented in this way. For example, the
snoring data could be shown as

2 * 2

We tested whether the column percentages of snorers were the same for the two age groups.
This chapter gives the first examples we’ve seen of inference methods for a parameter other than

a simple proportion. Although we have a different standard error, the step-by-step procedures are
almost identical. In particular, once again we divide the statistic (the difference in proportions) by
its standard error and get a z-score. You should feel right at home.

18–29 30 and over Total

Snore 48 318 366

Don’t snore 136 493 629

Total 184 811 995

WHAT HAVE WE LEARNED?

In the last few chapters we began our exploration of statistical inference; we learned how to cre-
ate confidence intervals and test hypotheses about a proportion. Now we’ve looked at inference
for the difference in two proportions. In doing so, perhaps the most important thing we’ve learned
is that the concepts and interpretations are essentially the same—only the mechanics have
changed slightly.

We’ve learned that hypothesis tests and confidence intervals for the difference in two propor-
tions are based on Normal models. Both require us to find the standard error of the difference in
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two proportions. We do that by adding the variances of the two sample proportions, assuming our
two groups are independent. When we test a hypothesis that the two proportions are equal, we
pool the sample data; for confidence intervals, we don’t pool.

Terms
Variances of independent 506. The variance of a sum or difference of independent random variables is the sum of the variances

random variables add of those variables.

Sampling distribution of 507. The sampling distribution of is, under appropriate assumptions, modeled by a Normal
the difference between 

two proportions model with mean and standard deviation .

Two-proportion z-interval 508. A two-proportion z-interval gives a confidence interval for the true difference in proportions,
, in two independent groups.

The confidence interval is , where z* is a critical value from the stan-
dard Normal model corresponding to the specified confidence level.

Pooling 512. When we have data from different sources that we believe are homogeneous, we can get a
better estimate of the common proportion and its standard deviation. We can combine, or pool, the
data into a single group for the purpose of estimating the common proportion. The resulting pooled
standard error is based on more data and is thus more reliable (if the null hypothesis is true and the
groups are truly homogeneous).

Two-proportion z-test 513. Test the null hypothesis by referring the statistic

to a standard Normal model.

Skills
u Be able to state the null and alternative hypotheses for testing the difference between two popu-

lation proportions.

u Know how to examine your data for violations of conditions that would make inference about the
difference between two population proportions unwise or invalid.

u Understand that the formula for the standard error of the difference between two independent
sample proportions is based on the principle that when finding the sum or difference of two in-
dependent random variables, their variances add.

u Know how to find a confidence interval for the difference between two proportions.

u Be able to perform a significance test of the natural null hypothesis that two population propor-
tions are equal.

u Know how to write a sentence describing what is said about the difference between two popula-
tion proportions by a confidence interval.

u Know how to write a sentence interpreting the results of a significance test of the null hypothesis
that two population proportions are equal.

u Be able to interpret the meaning of a P-value in nontechnical language, making clear that the
probability claim is made about computed values and not about the population parameter of
interest.

u Know that we do not “accept” a null hypothesis if we fail to reject it.

z =

pN1 - pN2

SEpooled1pN1 - pN22

H0: p1 - p2 = 0

1pN1 - pN22 ; z* * SE1pN1 - pN22

p1 - p2

SD1pN1 - pN22 = B
p1q1

n1
+

p2q2

n2
m = p1 - p2

pN1 - pN2
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INFERENCES FOR THE DIFFERENCE BETWEEN 
TWO PROPORTIONS ON THE COMPUTER

It is so common to test against the null hypothesis of no difference between the two true proportions that most
statistics programs simply assume this null hypothesis. And most will automatically use the pooled standard
deviation. If you wish to test a different null (say, that the true difference is 0.3), you may have to search for a
way to do it.
Many statistics packages don’t offer special commands for inference for differences between proportions. As
with inference for single proportions, most statistics programs want the “success” and “failure” status for each
case. Usually these are given as 1 or 0, but they might be category names like “yes” and “no.” Often we just know
the proportions of successes, and , and the counts, and . Computer packages don’t usually deal with
summary data like these easily. Calculators typically do a better job.

n2n1pN2pN 1

z-test could tell whether there was a real difference
among all teens. Explain why that test would not be ap-
propriate for these data.

6. Regulating access. When a random sample of 935 par-
ents were asked about rules in their homes, 77% said they
had rules about the kinds of TV shows their children
could watch. Among the 790 of those parents whose
teenage children had Internet access, 85% had rules about
the kinds of Internet sites their teens could visit. That
looks like a difference, but can we tell? Explain why a
two-sample z-test would not be appropriate here.

7. Gender gap. A presidential candidate fears he has a
problem with women voters. His campaign staff plans
to run a poll to assess the situation. They’ll randomly
sample 300 men and 300 women, asking if they have a
favorable impression of the candidate. Obviously, the
staff can’t know this, but suppose the candidate has a
positive image with 59% of males but with only 53% of
females.
a) What sampling design is his staff planning to use?
b) What difference would you expect the poll to show?
c) Of course, sampling error means the poll won’t reflect

the difference perfectly. What’s the standard deviation
for the difference in the proportions?

d) Sketch a sampling model for the size difference in 
proportions of men and women with favorable im-
pressions of this candidate that might appear in a poll
like this.

e) Could the campaign be misled by the poll, concluding
that there really is no gender gap? Explain.

8. Buy it again? A consumer magazine plans to poll car
owners to see if they are happy enough with their vehi-
cles that they would purchase the same model again.
They’ll randomly select 450 owners of American-made
cars and 450 owners of Japanese models. Obviously, the
actual opinions of the entire population couldn’t be

1. Online social networking. The Parents & Teens 2006
Survey of 935 12- to 17-year-olds found that, among teens
aged 15–17, girls were significantly more likely to have
used social networking sites and online profiles. 70% of
the girls surveyed had used an online social network,
compared to 54% of the boys. What does it mean to say
that the difference in proportions is “significant”?

2. Science news. In 2007 a Pew survey asked 1447 Inter-
net users about their sources of news and information
about science. Among those who had broadband access
at home, 34% said they would turn to the Internet for
most of their science news. The report on this survey
claims that this is not significantly different from the per-
centage (33%) who said they ordinarily get their science
news from television. What does it mean to say that the
difference is not significant?

3. Name recognition. A political candidate runs a week-
long series of TV ads designed to attract public attention
to his campaign. Polls taken before and after the ad cam-
paign show some increase in the proportion of voters
who now recognize this candidate’s name, with a 
P-value of 0.033. Is it reasonable to believe the ads may 
be effective?

4. Origins. In a 1993 Gallup poll, 47% of the respondents
agreed with the statement “God created human beings pretty
much in their present form at one time within the last 10,000
years or so.” When Gallup asked the same question in
2001, only 45% of those respondents agreed. Is it reason-
able to conclude that there was a change in public opin-
ion given that the P-value is 0.37? Explain.

5. Revealing information. 886 randomly sampled teens
were asked which of several personal items of informa-
tion they thought it okay to share with someone they had
just met. 44% said it was okay to share their e-mail ad-
dresses, but only 29% said they would give out their cell
phone numbers. A researcher claims that a two-proportion

EXERCISES

BOCK_C22_0321570448 pp3.qxd  12/1/08  3:50 PM  Page 519

Exercises



520 CHAPTER 22    Comparing Two Proportions

known, but suppose 76% of owners of American cars and
78% of owners of Japanese cars would purchase another.
a) What sampling design is the magazine planning to use?
b) What difference would you expect their poll to show?
c) Of course, sampling error means the poll won’t reflect

the difference perfectly. What’s the standard deviation
for the difference in the proportions?

d) Sketch a sampling model for the difference in propor-
tions that might appear in a poll like this.

e) Could the magazine be misled by the poll, concluding
that owners of American cars are much happier with
their vehicles than owners of Japanese cars? Explain.

9. Arthritis. The Centers for Disease Control and Preven-
tion reported a survey of randomly selected Americans
age 65 and older, which found that 411 of 1012 men and
535 of 1062 women suffered from some form of arthritis.
a) Are the assumptions and conditions necessary for in-

ference satisfied? Explain.
b) Create a 95% confidence interval for the difference in

the proportions of senior men and women who have
this disease.

c) Interpret your interval in this context.
d) Does this confidence interval suggest that arthritis is

more likely to afflict women than men? Explain.

10. Graduation. In October 2000 the U.S. Department of
Commerce reported the results of a large-scale survey on
high school graduation. Researchers contacted more than
25,000 Americans aged 24 years to see if they had fin-
ished high school; 84.9% of the 12,460 males and 88.1% of
the 12,678 females indicated that they had high school
diplomas.
a) Are the assumptions and conditions necessary for in-

ference satisfied? Explain.
b) Create a 95% confidence interval for the difference in

graduation rates between males and females.
c) Interpret your confidence interval.
d) Does this provide strong evidence that girls are more

likely than boys to complete high school? Explain.

11. Pets. Researchers at the National Cancer Institute re-
leased the results of a study that investigated the effect of
weed-killing herbicides on house pets. They examined
827 dogs from homes where an herbicide was used on a
regular basis, diagnosing malignant lymphoma in 473 of
them. Of the 130 dogs from homes where no herbicides
were used, only 19 were found to have lymphoma.
a) What’s the standard error of the difference in the two

proportions?
b) Construct a 95% confidence interval for this difference.
c) State an appropriate conclusion.

12. Carpal tunnel. The painful wrist condition called
carpal tunnel syndrome can be treated with surgery or
less invasive wrist splints. In September 2002, Time maga-
zine reported on a study of 176 patients. Among the half
that had surgery, 80% showed improvement after three
months, but only 54% of those who used the wrist splints
improved.
a) What’s the standard error of the difference in the two

proportions?
b) Construct a 95% confidence interval for this difference.
c) State an appropriate conclusion.

13. Ear infections. A new vaccine was recently tested to
see if it could prevent the painful and recurrent ear infec-
tions that many infants suffer from. The Lancet, a medical
journal, reported a study in which babies about a year 
old were randomly divided into two groups. One group
received vaccinations; the other did not. During the fol-
lowing year, only 333 of 2455 vaccinated children had ear
infections, compared to 499 of 2452 unvaccinated children
in the control group.
a) Are the conditions for inference satisfied?
b) Find a 95% confidence interval for the difference in

rates of ear infection.
c) Use your confidence interval to explain whether you

think the vaccine is effective.

14. Anorexia. The Journal of the American Medical Associa-
tion reported on an experiment intended to see if the drug
Prozac® could be used as a treatment for the eating disor-
der anorexia nervosa. The subjects, women being treated
for anorexia, were randomly divided into two groups. Of
the 49 who received Prozac, 35 were deemed healthy a
year later, compared to 32 of the 44 who got the placebo.
a) Are the conditions for inference satisfied?
b) Find a 95% confidence interval for the difference in

outcomes.
c) Use your confidence interval to explain whether you

think Prozac is effective.

15. Another ear infection. In Exercise 13 you used a con-
fidence interval to examine the effectiveness of a vaccine
against ear infections in babies. Suppose that instead you
had conducted a hypothesis test. (Answer these questions
without actually doing the test.)
a) What hypotheses would you test?
b) State a conclusion based on your confidence interval.
c) What alpha level did your test use?
d) If that conclusion is wrong, which type of error did

you make?
e) What would be the consequences of such an error?

16. Anorexia again. In Exercise 14 you used a confidence
interval to examine the effectiveness of Prozac in treating
anorexia nervosa. Suppose that instead you had conducted
a hypothesis test. (Answer these questions without actu-
ally doing the test.)
a) What hypotheses would you test?
b) State a conclusion based on your confidence

interval.
c) What alpha level did your test use?
d) If that conclusion is wrong, which type of error did

you make?
e) What would be the consequences of such an error?

17. Teen smoking, part I. A Vermont study published in
December 2001 by the American Academy of Pediatrics
examined parental influence on teenagers’ decisions to
smoke. A group of students who had never smoked were
questioned about their parents’ attitudes toward smok-
ing. These students were questioned again two years later
to see if they had started smoking. The researchers found
that, among the 284 students who indicated that their
parents disapproved of kids smoking, 54 had become es-
tablished smokers. Among the 41 students who initially
said their parents were lenient about smoking, 11 became
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smokers. Do these data provide strong evidence that
parental attitude influences teenagers’ decisions about
smoking?
a) What kind of design did the researchers use?
b) Write appropriate hypotheses.
c) Are the assumptions and conditions necessary for 

inference satisfied?
d) Test the hypothesis and state your conclusion.
e) Explain in this context what your P-value means.
f) If that conclusion is actually wrong, which type of 

error did you commit?

18. Depression. A study published in the Archives of Gen-
eral Psychiatry in March 2001 examined the impact of de-
pression on a patient’s ability to survive cardiac disease.
Researchers identified 450 people with cardiac disease,
evaluated them for depression, and followed the group
for 4 years. Of the 361 patients with no depression, 
67 died. Of the 89 patients with minor or major depres-
sion, 26 died. Among people who suffer from cardiac 
disease, are depressed patients more likely to die than
non-depressed ones?
a) What kind of design was used to collect these data?
b) Write appropriate hypotheses.
c) Are the assumptions and conditions necessary for in-

ference satisfied?
d) Test the hypothesis and state your conclusion.
e) Explain in this context what your P-value means.
f) If your conclusion is actually incorrect, which type of

error did you commit?

19. Teen smoking, part II. Consider again the Vermont
study discussed in Exercise 17.
a) Create a 95% confidence interval for the difference in

the proportion of children who may smoke and have
approving parents and those who may smoke and
have disapproving parents.

b) Interpret your interval in this context.
c) Carefully explain what “95% confidence” means.

20. Depression revisited. Consider again the study of the
association between depression and cardiac disease sur-
vivability in Exercise 18.
a) Create a 95% confidence interval for the difference in

survival rates.
b) Interpret your interval in this context.
c) Carefully explain what “95% confidence” means.

21. Pregnancy. In 1998, a San Diego reproductive clinic re-
ported 42 live births to 157 women under the age of 38,
but only 7 live births for 89 clients aged 38 and older. Is
this strong evidence of a difference in the effectiveness of
the clinic’s methods for older women?
a) Was this an experiment? Explain.
b) Test an appropriate hypothesis and state your conclu-

sion in context.
c) If you concluded there was a difference, estimate that

difference with a confidence interval and interpret
your interval in context.

22. Birthweight. In 2003 the Journal of the American Medical
Association reported a study examining the possible im-
pact of air pollution caused by the 9/11 attack on New
York’s World Trade Center on the weight of babies. 

Researchers found that 8% of 182 babies born to mothers
who were exposed to heavy doses of soot and ash on Sep-
tember 11 were classified as having low birth weight.
Only 4% of 2300 babies born in another New York City
hospital whose mothers had not been near the site of the
disaster were similarly classified. Does this indicate a
possibility that air pollution might be linked to a signifi-
cantly higher proportion of low-weight babies?
a) Was this an experiment? Explain.
b) Test an appropriate hypothesis and state your conclu-

sion in context.
c) If you concluded there is a difference, estimate that

difference with a confidence interval and interpret
that interval in context.

23. Politics and sex. One month before the election, a poll
of 630 randomly selected voters showed 54% planning 
to vote for a certain candidate. A week later it became
known that he had had an extramarital affair, and a new
poll showed only 51% of 1010 voters supporting him. Do
these results indicate a decrease in voter support for his
candidacy?
a) Test an appropriate hypothesis and state your

conclusion.
b) If your conclusion turns out to be wrong, did you

make a Type I or Type II error?
c) If you concluded there was a difference, estimate that

difference with a confidence interval and interpret
your interval in context.

24. Shopping. A survey of 430 randomly chosen adults
found that 21% of the 222 men and 18% of the 208 women
had purchased books online.
a) Is there evidence that men are more likely than

women to make online purchases of books? Test an
appropriate hypothesis and state your conclusion in
context.

b) If your conclusion in fact proves to be wrong, did you
make a Type I or Type II error?

c) Estimate this difference with a confidence interval.
d) Interpret your interval in context.

25. Twins. In 2001, one county reported that, among 3132
white women who had babies, 94 were multiple births.
There were also 20 multiple births to 606 black women.
Does this indicate any racial difference in the likelihood
of multiple births?
a) Test an appropriate hypothesis and state your conclu-

sion in context.
b) If your conclusion is incorrect, which type of error did

you commit?

26. Mammograms. A 9-year study in Sweden compared
21,088 women who had mammograms with 21,195 who
did not. Of the women who underwent screening, 
63 died of breast cancer, compared to 66 deaths among
the control group. (The New York Times, Dec 9, 2001)
a) Do these results support the effectiveness of regular

mammograms in preventing deaths from breast cancer?
b) If your conclusion is incorrect, what kind of error have

you committed?

27. Pain. Researchers comparing the effectiveness of two
pain medications randomly selected a group of patients
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JUST CHECKING 
Answers

1. We’re 90% confident that if members are contacted 
by e-mail, the donation rate will be between 4 and 18
percentage points higher than if they received regular
mail.

2. Since a difference of 0 is not in the confidence interval,
we’d reject the null hypothesis. There is evidence that
more members will donate if contacted by e-mail.

3. The proportion from the sample in 1995 has variabil-
ity, too. If we do a one-proportion z-test, we won’t
take that variability into account and our P-value will
be incorrect.

4. The difference in the proportions between the two
years has more variability than either individual pro-
portion. The variance of the difference is the sum of
the two variances.

who had been complaining of a certain kind of joint pain.
They randomly divided these people into two groups,
then administered the pain killers. Of the 112 people in
the group who received medication A, 84 said this pain
reliever was effective. Of the 108 people in the other
group, 66 reported that pain reliever B was effective.
a) Write a 95% confidence interval for the percent of 

people who may get relief from this kind of joint pain
by using medication A. Interpret your interval.

b) Write a 95% confidence interval for the percent of
people who may get relief by using medication B.
Interpret your interval.

c) Do the intervals for A and B overlap? What do you
think this means about the comparative effectiveness
of these medications?

d) Find a 95% confidence interval for the difference in
the proportions of people who may find these medica-
tions effective. Interpret your interval.

e) Does this interval contain zero? What does that mean?
f ) Why do the results in parts c and e seem contradictory?

If we want to compare the effectiveness of these two
pain relievers, which is the correct approach? Why?

28. Gender gap. Candidates for political office realize that
different levels of support among men and women may
be a crucial factor in determining the outcome of an elec-
tion. One candidate finds that 52% of 473 men polled say
they will vote for him, but only 45% of the 522 women in
the poll express support.
a) Write a 95% confidence interval for the percent of

male voters who may vote for this candidate. Interpret
your interval.

b) Write and interpret a 95% confidence interval for the
percent of female voters who may vote for him.

c) Do the intervals for males and females overlap? What
do you think this means about the gender gap?

d) Find a 95% confidence interval for the difference in
the proportions of males and females who will vote
for this candidate. Interpret your interval.

e) Does this interval contain zero? What does that mean?
f) Why do the results in parts c and e seem contradic-

tory? If we want to see if there is a gender gap among
voters with respect to this candidate, which is the cor-
rect approach? Why?

29. Sensitive men. In August 2004, Time magazine,
reporting on a survey of men’s attitudes, noted that
“Young men are more comfortable than older men talk-
ing about their problems.” The survey reported that 80
of 129 surveyed 18- to 24-year-old men and 98 of 184 
25- to 34-year-old men said they were comfortable.
What do you think? Is Time’s interpretation justified by
these numbers?

30. Retention rates. In 2004 the testing company ACT,
Inc., reported on the percentage of first-year students at
4-year colleges who return for a second year. Their sam-
ple of 1139 students in private colleges showed a 74.9%
retention rate, while the rate was 71.9% for the sample of
505 students at public colleges. Does this provide evi-
dence that there’s a difference in retention rates of first-
year students at public and private colleges?

31. Online activity checks. Are more parents checking up
on their teen’s online activities? A Pew survey in 2004
found that 33% of 868 randomly sampled teens said that
their parents checked to see what Web sites they visited.
In 2006 the same question posed to 811 teens found 41%
reporting such checks. Do these results provide evidence
that more parents are checking?

32. Computer gaming. Who plays online or electronic
games? A survey in 2006 found that 69% of 223 boys aged
12–14 said they “played computer or console games like
Xbox or PlayStation . . . or games online.” Of 248 boys
aged 15–17, only 62% played these games. Is this evi-
dence of a real age-based difference?
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Quick Review
What do samples really tell us about the populations from
which they are drawn? Are the results of an experiment mean-
ingful, or are they just sampling error? Statistical inference
based on our understanding of sampling models can help an-
swer these questions. Here’s a brief summary of the key con-
cepts and skills:

u Sampling models describe the variability of sample statis-
tics using a remarkable result called the Central Limit
Theorem.
• When the number of trials is sufficiently large, propor-

tions found in different samples vary according to an
approximately Normal model.

• When samples are sufficiently large, the means of differ-
ent samples vary, with an approximately Normal
model.

• The variability of sample statistics decreases as sample
size increases.

• Statistical inference procedures are based on the Central
Limit Theorem.

• No inference procedure is valid unless the underlying
assumptions are true. Always check the conditions be-
fore proceeding.

u A confidence interval uses a sample statistic (such as a
proportion) to estimate a range of plausible values for
the parameter of a population model.
• All confidence intervals involve an estimate of the pa-

rameter, a margin of error, and a level of confidence.
• For confidence intervals based on a given sample, the

greater the margin of error, the higher the confidence.
• At a given level of confidence, the larger the sample, the

smaller the margin of error.

u A hypothesis test proposes a model for the population,
then examines the observed statistics to see if that model is
plausible.

• A null hypothesis suggests a parameter value for the
population model. Usually, we assume there is nothing
interesting, unusual, or different about the sample
results.

• The alternative hypothesis states what we will believe if
the sample results turn out to be inconsistent with our
null model.

• We compare the difference between the statistic and the
hypothesized value with the standard deviation of the
statistic. It’s the sampling distribution of this ratio that
gives us a P-value.

• The P-value of the test is the conditional probability that
the null model could produce results at least as extreme
as those observed in the sample or the experiment just
as a result of sampling error.

• A low P-value indicates evidence against the null
model. If it is sufficiently low, we reject the null model.

• A high P-value indicates that the sample results are
not inconsistent with the null model, so we cannot
reject it. However, this does not prove the null model
is true.

• Sometimes we will mistakenly reject the null hypothesis
even though it’s actually true—that’s called a Type I 
error. If we fail to reject a false null hypothesis, we com-
mit a Type II error.

• The power of a test measures its ability to detect a false
null hypothesis.

• You can lower the risk of a Type I error by requiring a
higher standard of proof (lower P-value) before reject-
ing the null hypothesis. But this will raise the risk of a
Type II error and decrease the power of the test.

• The only way to increase the power of a test while de-
creasing the chance of committing either error is to
design a study based on a larger sample.

And now for some opportunities to review these concepts and
skills . . .

From the Data at Hand to the World at Large

1. Herbal cancer. A report in the New England Journal of
Medicine (June 6, 2000) notes growing evidence that the
herb Aristolochia fangchi can cause urinary tract cancer in
those who take it. Suppose you are asked to design an ex-
periment to study this claim. Imagine that you have data
on urinary tract cancers in subjects who have used this
herb and similar subjects who have not used it and that

you can measure incidences of cancer and precancerous
lesions in these subjects. State the null and alternative hy-
potheses you would use in your study.

2. Colorblind. Medical literature says that about 8% of
males are colorblind. A university’s introductory psychol-
ogy course is taught in a large lecture hall. Among the
students, there are 325 males. Each semester when the

V
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professor discusses visual perception, he shows the class
a test for colorblindness. The percentage of males who are
colorblind varies from semester to semester.
a) Is the sampling distribution model for the sample pro-

portion likely to be Normal? Explain.
b) What are the mean and standard deviation of this

sampling distribution model?
c) Sketch the sampling model, using the 68–95–99.7 Rule.
d) Write a few sentences explaining what the model says

about this professor’s class.

3. Birth days. During a 2-month period in 2002, 72 babies
were born at the Tompkins Community Hospital in up-
state New York. The table shows how many babies were
born on each day of the week.
a) If births are uniformly distrib-

uted across all days of the
week, how many would you
expect on each day?

b) Only 7 births occurred on a
Monday. Does this indicate that
women might be less likely to
give birth on a Monday?
Explain.

c) Are the 17 births on Tuesdays
unusually high? Explain.

d) Can you think of any reasons why births may not oc-
cur completely at random?

4. Polling 2004. In the 2004 U.S. presidential election, the
official results showed that George W. Bush received
50.7% of the vote and John Kerry received 48.3%. Ralph
Nader, running as a third-party candidate, picked up
only 0.4%. After the election, there was much discussion
about exit polls, which had initially indicated a different
result. Suppose you had taken a random sample of 1000
voters in an exit poll and asked them for whom they had
voted.
a) Would you always get 507 votes for Bush and 483 for

Kerry?
b) In 95% of such polls, your sample proportion of voters

for Bush should be between what two values?
c) In 95% of such polls, your sample proportion of voters

for Nader should be between what two numbers?
d) Would you expect the sample proportion of Nader

votes to vary more, less, or about the same as the sam-
ple proportion of Bush votes? Why?

5. Leaky gas tanks. Nationwide, it is estimated that 40%
of service stations have gas tanks that leak to some ex-
tent. A new program in California is designed to lessen
the prevalence of these leaks. We want to assess the effec-
tiveness of the program by seeing if the percentage of
service stations whose tanks leak has decreased. To do
this, we randomly sample 27 service stations in California
and determine whether there is any evidence of leakage.
In our sample, only 7 of the stations exhibit any leakage.
Is there evidence that the new program is effective?
a) What are the null and alternative hypotheses?
b) Check the assumptions necessary for inference.
c) Test the null hypothesis.
d) What do you conclude (in plain English)?
e) If the program actually works, have you made an 

error? What kind?

f) What two things could you do to decrease the proba-
bility of making this kind of error?

g) What are the advantages and disadvantages of taking
those two courses of action?

6. Surgery and germs. Joseph Lister (for whom Listerine
is named!) was a British physician who was interested in
the role of bacteria in human infections. He suspected
that germs were involved in transmitting infection, so he
tried using carbolic acid as an operating room disinfec-
tant. In 75 amputations, he used carbolic acid 40 times. Of
the 40 amputations using carbolic acid, 34 of the patients
lived. Of the 35 amputations without carbolic acid, 19 pa-
tients lived. The question of interest is whether carbolic
acid is effective in increasing the chances of surviving an
amputation.
a) What kind of a study is this?
b) What do you conclude? Support your conclusion by

testing an appropriate hypothesis.
c) What reservations do you have about the design of

the study?

7. Scrabble. Using a computer to play many simulated
games of Scrabble, researcher Charles Robinove found
that the letter “A” occurred in 54% of the hands. This
study had a margin of error of . (Chance, 15, no. 1
[2002])
a) Explain what the margin of error means in this 

context.
b) Why might the margin of error be so large?
c) Probability theory predicts that the letter “A” should

appear in 63% of the hands. Does this make you con-
cerned that the simulation might be faulty? Explain.

8. Dice. When one die is rolled, the number of spots
showing has a mean of 3.5 and a standard deviation 
of 1.7. Suppose you roll 10 dice. What’s the approximate
probability that your total is between 30 and 40 (that is,
the average for the 10 dice is between 3 and 4)? Specify
the model you use and the assumptions and conditions
that justify your approach.

9. News sources. In May of 2000, the Pew Research
Foundation sampled 1593 respondents and asked how
they obtain news. In Pew’s report, 33% of respondents
say that they now obtain news from the Internet at least
once a week.
a) Pew reports a margin of error of for this result.

Explain what the margin of error means.
b) Pew also asked about investment information, and

21% of respondents reported that the Internet is their
main source of this information. When limited to the
780 respondents who identified themselves as in-
vestors, the percent who rely on the Internet rose to
28%. How would you expect the margin of error for
this statistic to change in comparison with the margin
of error for the percentage of all respondents?

c) When restricted to the 239 active traders in the sam-
ple, Pew reports that 45% rely on the Internet for in-
vestment information. Find a confidence interval for
this statistic.

d) How does the margin of error for your confidence in-
terval compare with the values in parts a and b? Ex-
plain why.

;3%

;10%

Day Births

Mon. 7
Tues. 17
Wed. 8
Thurs. 12
Fri. 9
Sat. 10
Sun. 9
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10. Death penalty 2006. In May of 2006, the Gallup Orga-
nization asked a random sample of 537 American adults
this question:

If you could choose between the following two ap-
proaches, which do you think is the better penalty for
murder, the death penalty or life imprisonment, with
absolutely no possibility of parole?

Of those polled, 47% chose the death penalty, the lowest
percentage in the 21 years that Gallup has asked this
question.
a) Create a 95% confidence interval for the percentage 

of all American adults who favor the death penalty.
b) Based on your confidence interval, is it clear that 

the death penalty no longer has majority support? 
Explain.

c) If pollsters wanted to follow up on this poll with an-
other survey that could determine the level of support
for the death penalty to within 2% with 98% confi-
dence, how many people should they poll?

11. Bimodal. We are sampling randomly from a distribu-
tion known to be bimodal.
a) As our sample size increases, what’s the expected

shape of the sample’s distribution?
b) What’s the expected value of our sample’s mean?

Does the size of the sample matter?
c) How is the variability of sample means related to the

standard deviation of the population? Does the size of
the sample matter?

d) How is the shape of the sampling distribution model
affected by the sample size?

12. Vitamin D. In July 2002 the American Journal of Clinical
Nutrition reported that 42% of 1546 African-American
women studied had vitamin D deficiency. The data came
from a national nutrition study conducted by the Centers
for Disease Control and Prevention in Atlanta.
a) Do these data meet the assumptions necessary for in-

ference? What would you like to know that you don’t?
b) Create a 95% confidence interval.
c) Interpret the interval in this context.
d) Explain in this context what “95% confidence” means.

13. Archery. A champion archer can generally hit the
bull’s-eye 80% of the time. Suppose she shoots 200 arrows
during competition. Let represent the percentage of
bull’s-eyes she gets (the sample proportion).
a) What are the mean and standard deviation of the sam-

pling distribution model for ?
b) Is a Normal model appropriate here? Explain.
c) Sketch the sampling model, using the 68–95–99.7 Rule.
d) What’s the probability that she gets at least 85% 

bull’s-eyes?

14. Free throws 2007. During the 2006–2007 NBA season,
Kyle Korver led the league by making 191 of 209 free
throws, for a success rate of 91.39%. But Matt Carroll was
close behind, with 188 of 208 (90.39%).
a) Find a 95% confidence interval for the difference in

their free throw percentages.
b) Based on your confidence interval, is it certain that

Korver is better than Carroll at making free throws?

pN

pN

15. Twins. There is some indication in medical literature
that doctors may have become more aggressive in in-
ducing labor or doing preterm cesarean sections when a
woman is carrying twins. Records at a large hospital
show that, of the 43 sets of twins born in 1990, 20 were
delivered before the 37th week of pregnancy. In 2000, 26
of 48 sets of twins were born preterm. Does this indi-
cate an increase in the incidence of early births of
twins? Test an appropriate hypothesis and state your
conclusion.

16. Eclampsia. It’s estimated that 50,000 pregnant women
worldwide die each year of eclampsia, a condition in-
volving elevated blood pressure and seizures. A research
team from 175 hospitals in 33 countries investigated the
effectiveness of magnesium sulfate in preventing the oc-
currence of eclampsia in at-risk patients. Results are sum-
marized below. (Lancet, June 1, 2002)

a) Write a 95% confidence interval for the increase in the
proportion of women who may develop side effects
from this treatment. Interpret your interval.

b) Is there evidence that the treatment may be effective in
preventing the development of eclampsia? Test an ap-
propriate hypothesis and state your conclusion.

17. Eclampsia. Refer again to the research summarized in
Exercise 16. Is there any evidence that when eclampsia
does occur, the magnesium sulfide treatment may help
prevent the woman’s death?
a) Write an appropriate hypothesis.
b) Check the assumptions and conditions.
c) Find the P-value of the test.
d) What do you conclude about the magnesium sulfide

treatment?
e) If your conclusion is wrong, which type of error have

you made?
f) Name two things you could do to increase the power

of this test.
g) What are the advantages and disadvantages of those

two options?

18. Eggs. The ISA Babcock Company supplies poultry
farmers with hens, advertising that a mature B300 Layer
produces eggs with a mean weight of 60.7 grams. Sup-
pose that egg weights follow a Normal model with stan-
dard deviation 3.1 grams.
a) What fraction of the eggs produced by these hens

weigh more than 62 grams?
b) What’s the probability that a dozen randomly selected

eggs average more than 62 grams?
c) Using the 68–95–99.7 Rule, sketch a model of the total

weights of a dozen eggs.

Tr
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t

Total 
Subjects

Reported
side effects

Developed
eclampsia Deaths

Magnesium
sulfate 4999 1201 40 11
Placebo 4993 228 96 20
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19. Polling disclaimer. A newspaper article that reported
the results of an election poll included the following
explanation:

The Associated Press poll on the 2000 presidential
campaign is based on telephone interviews with 798
randomly selected registered voters from all states ex-
cept Alaska and Hawaii. The interviews were con-
ducted June 21–25 by ICR of Media, Pa.

The results were weighted to represent the population
by demographic factors such as age, sex, region, and
education.

No more than 1 time in 20 should chance variations in
the sample cause the results to vary by more than 4
percentage points from the answers that would be ob-
tained if all Americans were polled.

The margin of sampling error is larger for responses of
subgroups, such as income categories or those in politi-
cal parties. There are other sources of potential error in
polls, including the wording and order of questions.

a) Did they describe the 5 W’s well?
b) What kind of sampling design could take into account

the several demographic factors listed?
c) What was the margin of error of this poll?
d) What was the confidence level?
e) Why is the margin of error larger for subgroups?
f) Which kinds of potential bias did they caution readers

about?

20. Enough eggs? One of the important issues for poultry
farmers is the production rate—the percentage of days 
on which a given hen actually lays an egg. Ideally, that
would be 100% (an egg every day), but realistically, hens
tend to lay eggs on about 3 of every 4 days. ISA Babcock
wants to advertise the production rate for the B300 Layer
(see Exercise 18) as a 95% confidence interval with a mar-
gin of error of . How many hens must they collect
data on?

21. Teen deaths. Traffic accidents are the leading cause of
death among people aged 15 to 20. In May 2002, the Na-
tional Highway Traffic Safety Administration reported
that even though only 6.8% of licensed drivers are be-
tween 15 and 20 years old, they were involved in 14.3% of
all fatal crashes. Insurance companies have long known
that teenage boys were high risks, but what about
teenage girls? One insurance company found that the
driver was a teenage girl in 44 of the 388 fatal accidents
they investigated. Is this strong evidence that the accident
rate is lower for girls than for teens in general?
a) Test an appropriate hypothesis and state your

conclusion.
b) Explain what your P-value means in this context.

22. Perfect pitch. A recent study of perfect pitch tested
students in American music conservatories. It found that
7% of 1700 non-Asian and 32% of 1000 Asian students
have perfect pitch. A test of the difference in proportions
resulted in a P-value of 
a) What are the researchers’ null and alternative 

hypotheses?
b) State your conclusion.

6  0.0001.

;2%

c) Explain in this context what the P-value means.
d) The researchers claimed that the data prove that ge-

netic differences between the two populations cause a
difference in the frequency of occurrence of perfect
pitch. Do you agree? Why or why not?

23. Largemouth bass. Organizers of a fishing tournament
believe that the lake holds a sizable population of large-
mouth bass. They assume that the weights of these fish
have a model that is skewed to the right with a mean of
3.5 pounds and a standard deviation of 2.2 pounds.
a) Explain why a skewed model makes sense here.
b) Explain why you cannot determine the probability

that a largemouth bass randomly selected (“caught”)
from the lake weighs over 3 pounds.

c) Each fisherman in the contest catches 5 fish each day.
Can you determine the probability that someone’s
catch averages over 3 pounds? Explain.

d) The 12 fishermen competing each caught the limit of 
5 fish. What’s the probability that the total catch of 
60 fish averaged more than 3 pounds?

24. Cheating. A Rutgers University study released in 2002
found that many high school students cheat on tests. The
researchers surveyed a random sample of 4500 high
school students nationwide; 74% of them said they had
cheated at least once.
a) Create a 90% confidence interval for the level of cheat-

ing among high school students. Don’t forget to check
the appropriate conditions.

b) Interpret your interval.
c) Explain what “90% confidence” means.
d) Would a 95% confidence interval be wider or narrower?

Explain without actually calculating the interval.

25. Language. Neurological research has shown that in
about 80% of people language abilities reside in the
brain’s left side. Another 10% display right-brain lan-
guage centers, and the remaining 10% have two-sided
language control. (The latter two groups are mainly left-
handers.) (Science News, 161, no. 24 [2002])
a) We select 60 people at random. Is it reasonable to use

a Normal model to describe the possible distribution
of the proportion of the group that has left-brain lan-
guage control? Explain.

b) What’s the probability that our group has at least 75%
left-brainers?

c) If the group had consisted of 100 people, would that
probability be higher, lower, or about the same? Ex-
plain why, without actually calculating the probability.

d) How large a group would almost certainly guarantee
at least 75% left-brainers? Explain.

26. Cigarettes 2006. In 1999 the Centers for Disease Con-
trol and Prevention estimated that about 34.8% of high
school students smoked cigarettes. They established a na-
tional health goal of reducing that figure to 16% by the
year 2010. To that end, they hoped to achieve a reduction
to 20% by 2006. In 2006 they released a research study in
which 23% of a random sample of 1815 high school stu-
dents said they were current smokers. Is this evidence
that progress toward the goal is off track?
a) Write appropriate hypotheses.
b) Verify that the appropriate assumptions are satisfied.
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c) Find the P-value of this test.
d) Explain what the P-value means in this context.
e) State an appropriate conclusion.
f ) Of course, your conclusion may be incorrect. If so,

which kind of error did you commit?

27. Crohn’s disease. In 2002 the medical journal The Lancet
reported that 335 of 573 patients suffering from Crohn’s
disease responded positively to injections of the arthritis-
fighting drug infliximab.
a) Create a 95% confidence interval for the effectiveness

of this drug.
b) Interpret your interval in context.
c) Explain carefully what “95% confidence” means in

this context.

28. Teen smoking 2006. The Centers for Disease Control
and Prevention say that about 23% of teenagers smoke to-
bacco (down from a high of 38% in 1997). A college has
522 students in its freshman class. Is it likely that more
than 30% of them are smokers? Explain.

29. Alcohol abuse. Growing concern about binge drinking
among college students has prompted one large state uni-
versity to conduct a survey to assess the size of the prob-
lem on its campus. The university plans to randomly 
select students and ask how many have been drunk dur-
ing the past week. If the school hopes to estimate the true
proportion among all its students with 90% confidence
and a margin of error of , how many students must
be surveyed?

30. Errors. An auto parts company advertises that its spe-
cial oil additive will make the engine “run smoother,
cleaner, longer, with fewer repairs.” An independent lab-
oratory decides to test part of this claim. It arranges to
use a taxicab company’s fleet of cars. The cars are ran-
domly divided into two groups. The company’s mechan-
ics will use the additive in one group of cars but not in
the other. At the end of a year the laboratory will com-
pare the percentage of cars in each group that required
engine repairs.
a) What kind of a study is this?
b) Will they do a one-tailed or a two-tailed test?
c) Explain in this context what a Type I error would be.
d) Explain in this context what a Type II error would be.
e) Which type of error would the additive manufacturer

consider more serious?
f) If the cabs with the additive do indeed run signifi-

cantly better, can the company conclude it is an effect
of the additive? Can they generalize this result and
recommend the additive for all cars? Explain.

31. Preemies. Among 242 Cleveland-area children born
prematurely at low birth weights between 1977 and 1979,
only 74% graduated from high school. Among a compari-
son group of 233 children of normal birth weight, 83%
were high school graduates. (“Outcomes in Young Adult-
hood for Very-Low-Birth-Weight Infants,” New England
Journal of Medicine, 346, no. 3 [2002])
a) Create a 95% confidence interval for the difference in

graduation rates between children of normal and chil-
dren of very low birth weights. Be sure to check the
appropriate assumptions and conditions.

;4%

b) Does this provide evidence that premature birth may
be a risk factor for not finishing high school? Use your
confidence interval to test an appropriate hypothesis.

c) Suppose your conclusion is incorrect. Which type of
error did you make?

32. Safety. Observers in Texas watched children at play in
eight communities. Of the 814 children seen biking, roller
skating, or skateboarding, only 14% wore a helmet.
a) Create and interpret a 95% confidence interval.
b) What concerns do you have about this study that

might make your confidence interval unreliable?
c) Suppose we want to do this study again, picking vari-

ous communities and locations at random, and hope
to end up with a 98% confidence interval having a
margin of error of How many children must we
observe?

33. Fried PCs. A computer company recently experienced
a disastrous fire that ruined some of its inventory. Unfor-
tunately, during the panic of the fire, some of the dam-
aged computers were sent to another warehouse, where
they were mixed with undamaged computers. The engi-
neer responsible for quality control would like to check
out each computer in order to decide whether it’s undam-
aged or damaged. Each computer undergoes a series of
100 tests. The number of tests it fails will be used to make
the decision. If it fails more than a certain number, it will
be classified as damaged and then scrapped. From past
history, the distribution of the number of tests failed is
known for both undamaged and damaged computers.
The probabilities associated with each outcome are listed
in the table below:

;4%.

Number of tests failed 0 1 2 3 4 5 >5

Undamaged (%) 80 13 2 4 1 0 0
Damaged (%) 0 10 70 5 4 1 10

The table indicates, for example, that 80% of the un-
damaged computers have no failures, while 70% of the
damaged computers have 2 failures.
a) To the engineers, this is a hypothesis-testing situation.

State the null and alternative hypotheses.
b) Someone suggests classifying a computer as damaged

if it fails any of the tests. Discuss the advantages and
disadvantages of this test plan.

c) What number of tests would a computer have to fail in
order to be classified as damaged if the engineers want
to have the probability of a Type I error equal to 5%?

d) What’s the power of the test plan in part c?
e) A colleague points out that by increasing just 2%,

the power can be increased substantially. Explain.

34. Power. We are replicating an experiment. How will
each of the following changes affect the power of our
test? Indicate whether it will increase, decrease, or remain
the same, assuming that all other aspects of the situation
remain unchanged.
a) We increase the number of subjects from 40 to 100.
b) We require a higher standard of proof, changing from

to .a = 0.01a = 0.05

a
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35. Approval 2007. Of all the post–World War II presi-
dents, Richard Nixon had the highest disapproval rating
near the end of his presidency. His disapproval rating
peaked at 66% in July 1974, just before he resigned. In
May 2007, George W. Bush’s disapproval rating was 63%,
according to a Gallup poll of 1000 voters. Pundits started
discussing whether his rating was still discernibly better
than Nixon’s. What do you think?

36. Grade inflation. In 1996, 20% of the students at a ma-
jor university had an overall grade point average of 3.5 or
higher (on a scale of 4.0). In 2000, a random sample of
1100 student records found that 25% had a GPA of 3.5 or
higher. Is this evidence of grade inflation?

37. Name recognition. An advertising agency won’t sign
an athlete to do product endorsements unless it is sure
the person is known to more than 25% of its target audi-
ence. The agency always conducts a poll of 500 people to
investigate the athlete’s name recognition before offering
a contract. Then it tests against 
at a 5% level of significance.
a) Why does the company use upper tail tests in this

situation?
b) Explain what Type I and Type II errors would repre-

sent in this context, and describe the risk that each er-
ror poses to the company.

c) The company is thinking of changing its test to use a
10% level of significance. How would this change the
company’s exposure to each type of risk?

38. Name recognition, part II. The advertising company
described in Exercise 37 is thinking about signing a
WNBA star to an endorsement deal. In its poll, 27% of 
the respondents could identify her.
a) Fans who never took Statistics can’t understand why

the company did not offer this WNBA player an en-
dorsement contract even though the 27% recognition
rate in the poll is above the 25% threshold. Explain it
to them.

HA: p 7 0.25H0: p = 0.25

b) Suppose that further polling reveals that this WNBA
star really is known to about 30% of the target audi-
ence. Did the company initially commit a Type I or
Type II error in not signing her?

c) Would the power of the company’s test have been
higher or lower if the player were more famous? 
Explain.

39. NIMBY. In March 2007, the Gallup Poll split a sample
of 1003 randomly selected U.S. adults into two groups
at random. Half of the respondents were
asked,

“Overall, do you strongly favor, somewhat favor, some-
what oppose, or strongly oppose the use of nuclear
energy as one of the ways to provide electricity for the
U.S.?”

They found that 53% were either “somewhat” or
“strongly” in favor. The other half were asked,

“Overall, would you strongly favor, somewhat favor,
somewhat oppose, or strongly oppose the construction
of a nuclear energy plant in your area as one of the
ways to provide electricity for the U.S.?”

Only 40% were somewhat or strongly in favor. This dif-
ference is an example of the NIMBY (Not In My Back-
Yard) phenomenon and is a serious concern to policy
makers and planners. How large is the difference be-
tween the proportion of American adults who think
nuclear energy is a good idea and the proportion who
would be willing to have a nuclear plant in their area?
Construct and interpret an appropriate confidence
interval.

40. Dropouts. One study comparing various treatments
for the eating disorder anorexia nervosa initially enlisted
198 subjects, but found overall that 105 failed to complete
their assigned treatment programs. Construct and inter-
pret an appropriate confidence interval. Discuss any
reservations you have about this inference.

1n = 5012

1n = 5022
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CHAPTER

23
Inferences 
About Means

Motor vehicle crashes are the leading cause of death for people be-
tween 4 and 33 years old. In the year 2006, motor vehicle accidents
claimed the lives of 43,300 people in the United States. This means
that, on average, motor vehicle crashes resulted in 119 deaths each

day, or 1 death every 12 minutes. Speeding is a contributing factor in 31% of all
fatal accidents, according to the National Highway Traffic Safety Administration.

Triphammer Road is a busy street that passes through a residential neighbor-
hood. Residents there are concerned that vehicles traveling on Triphammer often
exceed the posted speed limit of 30 miles per hour. The local police sometimes
place a radar speed detector by the side of the road; as a vehicle approaches, this
detector displays the vehicle’s speed to its driver.

The local residents are not convinced that such a passive method is helping
the problem. They wish to persuade the village to add extra police patrols to en-
courage drivers to observe the speed limit. To help their case, a resident stood
where he could see the detector and recorded the speed of vehicles passing it dur-
ing a 15-minute period one day. When clusters of vehicles went by, he noted only
the speed of the front vehicle. Here are his data and the histogram.

WHO Vehicles on 
Triphammer Road

WHAT Speed

UNITS Miles per hour

WHEN April 11, 2000, 1 p.m.

WHERE A small town in the
northeastern United
States

WHY Concern over impact
on residential 
neighborhood

5

4

3

2

1

# 
of

 C
ar

s

20.0 40.030.0
Speed (mph)

FIGURE 23.1
The speeds of cars on Triphammer
Road seem to be unimodal and 
symmetric, at least at this scale.

Speed

29 29 24
34 34 34
34 32 36
28 31 31
30 27 34
29 37 36
38 29 21
31 26

We’re interested both in estimating the true mean speed and in testing
whether it exceeds the posted speed limit. Although the sample of vehicles is a
convenience sample, not a truly random sample, there’s no compelling reason to
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believe that vehicles at one time of day are driving faster or slower than vehicles
at another time of day,1 so we can take the sample to be representative.

These data differ from data on proportions in one important way. Propor-
tions are usually reported as summaries. After all, individual responses are just
“success” and “failure” or “1” and “0.” Quantitative data, though, usually report
a value for each individual. When you have a value for each individual, you
should remember the three rules of data analysis and plot the data, as we have
done here.

We have quantitative data, so we summarize with means and standard devia-
tions. Because we want to make inferences, we’ll think about sampling distributions,
too, and we already know most of the facts we need.

Getting Started
You’ve learned how to create confidence intervals and test hypotheses about pro-
portions. We always center confidence intervals at our best guess of the unknown
parameter. Then we add and subtract a margin of error. For proportions, that
means 

We found the margin of error as the product of the standard error, and
a critical value, from the Normal table. So we had 

We knew we could use z because the Central Limit Theorem told us (back in
Chapter 18) that the sampling distribution model for proportions is Normal.

Now we want to do exactly the same thing for means, and fortunately, the
Central Limit Theorem (still in Chapter 18) told us that the same Normal model
works as the sampling distribution for means.

pN ; z*SE1pN2.z*,
SE1pN2,

pN ; ME.

THE CENTRAL LIMIT THEOREM
When a random sample is drawn from any population with mean and
standard deviation , its sample mean, , has a sampling distribution with

the same mean but whose standard deviation is (and we write

No matter what population the random sample comes from, the shape
of the sampling distribution is approximately Normal as long as the sample
size is large enough. The larger the sample used, the more closely the Nor-
mal approximates the sampling distribution for the mean.

s1y2 = SD1y2 =

s

1n
).

s

1n
m

ys

m

1 Except, perhaps, at rush hour. But at that time, traffic is slowed. Our concern is with 
ordinary traffic during the day.

Using the CLT (as if we knew )SFOR EXAMPLE

Based on weighing thousands of animals, the American Angus Association reports that mature Angus cows have a mean weight of 1309 pounds with a
standard deviation of 157 pounds. This result was based on a very large sample of animals from many herds over a period of 15 years, so let’s assume
that these summaries are the population parameters and that the distribution of the weights was unimodal and reasonably symmetric.

Question: What does the CLT predict about the mean weight seen in random samples of 100 mature Angus cows? (continued )
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The CLT says that all we need to model the sampling distribution of is a 
random sample of quantitative data.

And the true population standard deviation, .
Uh oh. That could be a problem. How are we supposed to know ? With pro-

portions, we had a link between the proportion value and the standard deviation 

of the sample proportion: And there was an obvious way to estimate

the standard deviation from the data: But for means, ,

so knowing doesn’t tell us anything about We know n, the sample size,
but the population standard deviation, , could be anything. So what should we
do? We do what any sensible person would do: We estimate the population pa-
rameter with s, the sample standard deviation based on the data. The resulting 
standard error is 

A century ago, people used this standard error with the Normal model, as-
suming it would work. And for large sample sizes it did work pretty well. But
they began to notice problems with smaller samples. The sample standard
deviation, s, like any other statistic, varies from sample to sample. And this ex-
tra variation in the standard error was messing up the P-values and margins of 
error.

William S. Gosset is the man who first investigated this fact. He realized that
not only do we need to allow for the extra variation with larger margins of error
and P-values, but we even need a new sampling distribution model. In fact, we
need a whole family of models, depending on the sample size, n. These models are
unimodal, symmetric, bell-shaped models, but the smaller our sample, the more
we must stretch out the tails. Gosset’s work transformed Statistics, but most peo-
ple who use his work don’t even know his name.

Gosset’s t
Gosset had a job that made him the envy of many. He was the quality control en-
gineer for the Guinness Brewery in Dublin, Ireland. His job was to make sure that
the stout (a thick, dark beer) leaving the brewery was of high enough quality to
meet the demands of the brewery’s many discerning customers. It’s easy to imag-
ine why a large sample with many observations might be undesirable when test-
ing stout, not to mention dangerous to one’s health. So Gosset often used small

SE1y2 =

s

1n
.

s

s

SD1y2.y

SD1y2 =

s

2n
SE1pN2 =

A

pNqN

n
.

SD1pN2 =

A

pq

n
.

s

s

y

It’s given that weights of all mature Angus cows have and pounds. Because animals is a
fairly large sample, I can apply the Central Limit Theorem. I expect the resulting sample means will average 1309 pounds 

and have a standard deviation of pounds.

The CLT also says that the distribution of sample means 
follows a Normal model, so the 68–95–99.7 Rule applies. I’d 
expect that

u in 68% of random samples of 100 mature Angus cows, the
mean weight will be between and

pounds;

u in 95% of such samples, pounds;

u in 99.7% of such samples, pounds.1261.9 … y … 1356.1
1277.6 … y … 1340.4

1309 + 15.7 = 1324.7
1309 - 15.7 = 1293.3

SD(y) =

s

1n
=

157
1100

= 15.7

y
n = 100s = 157m = 1309

For Example (continued )

1262 1278 1293 1325 1340 13561309

69%
95%

99.7%
y

Because we estimate the
standard deviation of the
sampling distribution model
from the data, it’s a standard
error. So we use the 
notation. Remember, though,
that it’s just the estimated
standard deviation of the
sampling distribution model
for means.

SE1y2

Activity: Estimating the
Standard Error. What’s the
average age at which people
have heart attacks? A confidence
interval gives a good answer, but
we must estimate the standard
deviation from the data to
construct the interval.
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NOTATION ALERT:
Ever since Gosset, t has been
reserved in Statistics for his
distribution.
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Gosset checked the stout’s quality by performing hypothesis tests. He
knew that the test would make some Type I errors and reject about 5% of the
good batches of stout. However, the lab told him that he was in fact rejecting
about 15% of the good batches. Gosset knew something was wrong, and it
bugged him.

Gosset took time off to study the problem (and earn a graduate degree in the
emerging field of Statistics). He figured out that when he used the standard error, 

, as an estimate of the standard deviation, the shape of the sampling model 

changed. He even figured out what the new model should be and called it a 
t-distribution.

The Guinness Company didn’t give Gosset a lot of support for his work. In
fact, it had a policy against publishing results. Gosset had to convince the
company that he was not publishing an industrial secret, and (as part of get-
ting permission to publish) he had to use a pseudonym. The pseudonym he
chose was “Student,” and ever since, the model he found has been known as
Student’s t.

Gosset’s model is always bell-shaped, but the details change with different
sample sizes. So the Student’s t-models form a whole family of related distribu-
tions that depend on a parameter known as degrees of freedom. We often denote
degrees of freedom as and the model as with the degrees of freedom as a
subscript.

A Confidence Interval for Means
To make confidence intervals or test hypotheses for means, we need to use Gos-
set’s model. Which one? Well, for means, it turns out the right value for degrees
of freedom is df = n - 1.

tdf,df

s

1n
To find the sampling distribution of

, Gosset simulated it by hand. 

He drew paper slips of small samples
from a hat hundreds of times and com-
puted the means and standard devia-
tions with a mechanically cranked calcu-
lator. Today you could repeat in seconds
on a computer the experiment that took
him over a year. Gosset’s work was so
meticulous that not only did he get the
shape of the new histogram approxi-
mately right, but he even figured out the
exact formula for it from his sample. The
formula was not confirmed mathemati-
cally until years later by Sir R. A. Fisher.

y

s>1n

A PRACTICAL SAMPLING DISTRIBUTION MODEL FOR MEANS
When certain assumptions and conditions2 are met, the standardized sam-
ple mean,

follows a Student’s t-model with degrees of freedom. We estimate the
standard deviation with

SE1y2 =

s

1n
.

n - 1

t =

y - m

SE1y2
,

2 You can probably guess what they are. We’ll see them in the next section.

When Gosset corrected the model for the extra uncertainty, the margin of er-
ror got bigger, as you might have guessed. When you use Gosset’s model instead
of the Normal model, your confidence intervals will be just a bit wider and your
P-values just a bit larger. That’s the correction you need. By using the t-model,
you’ve compensated for the extra variability in precisely the right way.

samples of 3 or 4. But he noticed that with samples of this size, his tests for qual-
ity weren’t quite right. He knew this because when the batches that he rejected
were sent back to the laboratory for more extensive testing, too often they turned
out to be OK.
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A one-sample t-interval for the meanFOR EXAMPLE

In 2004, a team of researchers published a study of contaminants in farmed salmon.4 Fish from many sources were analyzed for 14 organic contami-
nants. The study expressed concerns about the level of contaminants found. One of those was the insecticide mirex, which has been shown to be car-
cinogenic and is suspected to be toxic to the liver, kidneys, and endocrine system. One farm in particular produced salmon with very high levels of mirex.
After those outliers are removed, summaries for the mirex concentrations (in parts per million) in the rest of the farmed salmon are:

Question: What does a 95% confidence interval say about mirex?

n = 150  y = 0.0913 ppm  s = 0.0495 ppm.

Activity: Student’s in
Practice. Use a statistics
package to find a -based
confidence interval; that’s how
it’s almost always done.

t

t

NOTATION ALERT:
When we found critical values
from a Normal model, we called
them z*. When we use a
Student’s t-model, we’ll denote
the critical values t *.

534 CHAPTER 23    Inferences About Means

ONE-SAMPLE t-INTERVAL FOR THE MEAN
When the assumptions and conditions3 are met, we are ready to find the
confidence interval for the population mean, . The confidence interval is

where the standard error of the mean is 

The critical value depends on the particular confidence level, C, that
you specify and on the number of degrees of freedom, which we get
from the sample size.

n - 1,
t*
n-1

SE1y2 =

s

1n
.

y ; t*
n-1 * SE1y2,

m

–4 –2 0 2 4

FIGURE 23.2
The -model (solid curve) on 2 degrees
of freedom has fatter tails than the
Normal model (dashed curve). So the
68–95–99.7 Rule doesn’t work for 
-models with only a few degrees of

freedom.
t

t

3 Yes, the same ones, and they’re still coming in the next section.
4 Ronald A. Hites, Jeffery A. Foran, David O. Carpenter, M. Coreen Hamilton, Barbara 
A. Knuth, and Steven J. Schwager, “Global Assessment of Organic Contaminants in
Farmed Salmon,” Science 9 January 2004: Vol. 303., no. 5655, pp. 226–229.

(from table T, using 140 df)
(actually, from technology)t*

149 L 1.976
t*

149 L 1.977

SE(y) =

s
1n

=

0.0495

2150
= 0.0040

df = 150 - 1 = 149

So the confidence interval for is 

I’m 95% confident that the mean level of mirex concentration in farm-raised salmon is between 0.0834 and 0.0992 parts
per million.

 = (0.0834, 0.0992)
 = 0.0913 ; 0.0079

y ; t*149 * SE(y) = 0.0913 ; 1.977(0.0040)m

Activity: Student’s
Distributions. Interact with
Gosset’s family of t-models.
Watch the shape of the model
change as you slide the degrees
of freedom up and down.
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5 Formally, in the limit as n goes to infinity.

Student’s t-models are unimodal, symmetric, and bell-shaped, just like the
Normal. But t-models with only a few degrees of freedom have much fatter tails
than the Normal. (That’s what makes the margin of error bigger.) As the degrees
of freedom increase, the t-models look more and more like the Normal. In fact, the
t-model with infinite degrees of freedom is exactly Normal.5 This is great news if
you happen to have an infinite number of data values. Unfortunately, that’s not
practical. Fortunately, above a few hundred degrees of freedom it’s very hard to
tell the difference. Of course, in the rare situation that we know , it would be fool-
ish not to use that information. And if we don’t have to estimate we can use the
Normal model.

s,
s

When is known Administrators of a hospital were concerned about the pre-
natal care given to mothers in their part of the city. To study this, they examined the
gestation times of babies born there. They drew a sample of 25 babies born in their
hospital in the previous 6 months. Human gestation times for healthy pregnancies
are thought to be well-modeled by a Normal with a mean of 280 days and a stan-
dard deviation of 14 days. The hospital administrators wanted to test the mean ges-
tation time of their sample of babies against the known standard. For this test, they
should use the established value for the standard deviation, 14 days, rather than
estimating the standard deviation from their sample. Because they use the model
parameter value for they should base their test on the Normal model rather than
Student’s t.

s,

S

z or t ?
If you know , use z.
(That’s rare!) 

Whenever you use s
to estimate , use t.s

s

TI Tips Finding t-model probabilities and critical values

Finding Probabilities
You already know how to use your TI to find probabilities for Normal models
using z-scores and . What about t-models? Yes, the calculator can
work with them, too.

You know from your experience with confidence intervals that cuts
off the upper 5% in a Normal model. Use the TI to check that. From the 
menu, enter . Only 0.04998? Close enough for
statisticians!

We might wonder about the probability of observing a t-value greater than
1.645, but we can’t find that. There’s only one Normal model, but there are
many t-models, depending on the number of degrees of freedom. We need to
be more specific.

Let’s find the probability of observing a t-value greater than 1.645 when there
are 12 degrees of freedom. That we can do. Look in the menu again.
See it? Yes, . That function works essentially like , but after
you enter the left and right cutoffs you must also specify the number of degrees
of freedom. Try .

The upper tail probability for is 0.063, higher than the Normal model’s 0.05.
That should make sense to you—remember, t-models are a bit fatter in the tails,
so more of the distribution lies beyond the 1.645 cutoff. (That means we’ll have
to go a little wider to make a 90% confidence interval.)

t12

z = 1.645

The t-models. See how t-models
change as you change the degrees
of freedom.
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Assumptions and Conditions
Gosset found the t-model by simulation. Years later, when Sir Ronald A. Fisher6

showed mathematically that Gosset was right, he needed to make some assump-
tions to make it work. These are the assumptions we need to use the Student’s 
t-models.

Independence Assumption
Independence Assumption: The data values should be independent. There’s re-
ally no way to check independence of the data by looking at the sample, but we
should think about whether the assumption is reasonable.

Randomization Condition: The data arise from a random sample or suitably
randomized experiment. Randomly sampled data—and especially data from a
Simple Random Sample—are ideal.

When a sample is drawn without replacement, technically we ought to con-
firm that we haven’t sampled a large fraction of the population, which would
threaten the independence of our selections. We check the

10% Condition: The sample is no more than 10% of the population.
In practice, though, we often don’t mention the 10% Condition for means.

Why not? When we made inferences about proportions, this condition was crucial

Check out what happens when there are more degrees of freedom, say, 25. The
command yields a probability of 0.056. That’s closer
to 0.05, for a good reason: t-models look more and more like the Normal model
as the number of degrees of freedom increases.

Finding Critical Values
Your calculator can also determine the critical value of t that cuts off a specified
percentage of the distribution, using . It works just like , but
for t we also have to specify the number of degrees of freedom (of course).

Suppose we have 6 degrees of freedom and want to create a 98% confidence in-
terval. A confidence level of 98% leaves 1% in each tail of our model, so we
need to find the value of t corresponding to the 99th percentile. If a Normal
model were appropriate, we’d use . (Try it: ). Now
think. How should the critical value for t compare?

If you thought, “It’ll be larger, because t-models are more spread out,” you’re
right. Check with your TI, remembering to specify our 6 degrees of freedom:

. Were you surprised, though, that the critical value of t is so
much larger?

So think once more. How would the critical value of t differ if there were 
60 degrees of freedom instead of only 6? When you think you know, check it
out on your TI.

Understanding 
Use your calculator to play around with and a bit. Try to develop
a clear understanding of how t-models compare to the more familiar Normal
model. That will help you as you learn to use t-models to make inferences
about means.

t

z = 2.33

6 We met Fisher back in Chapter 21. You can see his picture on page 486.
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7 There are formal tests of Normality, but they don’t really help. When we have a small
sample—just when we really care about checking Normality—these tests have very little
power. So it doesn’t make much sense to use them in deciding whether to perform a t-test.
We don’t recommend that you use them.

because we usually had large samples. But for means our sam-
ples are generally smaller, so the independence problem arises
only if we’re sampling from a small population (and then there’s a
correction formula we could use—but let’s not get into that here).
And sometimes we’re dealing with a randomized experiment;
then there’s no sampling at all.

Normal Population Assumption
Student’s t-models won’t work for data that are badly skewed.
How skewed is too skewed? Well, formally, we assume that the
data are from a population that follows a Normal model. Practi-
cally speaking, there’s no way to be certain this is true.

And it’s almost certainly not true. Models are idealized; real
data are, well, real—never Normal. The good news, however, is
that even for small samples, it’s sufficient to check the . . .

Nearly Normal Condition: The data come from a distribution that is uni-
modal and symmetric.

Check this condition by making a histogram or Normal probability plot. The
importance of Normality for Student’s t depends on the sample size. Just our
luck: It matters most when it’s hardest to check.7

For very small samples ( or so), the data should follow a Normal
model pretty closely. Of course, with so little data, it’s rather hard to tell. But if
you do find outliers or strong skewness, don’t use these methods.

For moderate sample sizes (n between 15 and 40 or so), the t methods will
work well as long as the data are unimodal and reasonably symmetric. Make a
histogram.

When the sample size is larger than 40 or 50, the t methods are safe to use un-
less the data are extremely skewed. Be sure to make a histogram. If you find out-
liers in the data, it’s always a good idea to perform the analysis twice, once with
and once without the outliers, even for large samples. They may well hold addi-
tional information about the data that deserves special attention. If you find
multiple modes, you may well have different groups that should be analyzed
and understood separately.

n 6 15

We Don’t Want to Stop
We check conditions hoping that we can make a
meaningful analysis of our data. The conditions
serve as disqualifiers—we keep going unless there’s
a serious problem. If we find minor issues, we note
them and express caution about our results. If 
the sample is not an SRS, but we believe it’s
representative of some populations, we limit our
conclusions accordingly. If there are outliers, rather
than stop, we perform the analysis both with and
without them. If the sample looks bimodal, we 
try to analyze subgroups separately. Only when
there’s major trouble—like a strongly skewed 
small sample or an obviously nonrepresentative
sample—are we unable to proceed at all.

Checking assumptions and conditions for Student’s tFOR EXAMPLE

Recap: Researchers purchased whole farmed salmon from 51 farms in eight regions in six countries. The
histogram shows the concentrations of the insecticide mirex in 150 farmed salmon.

Question: Are the assumptions and conditions for inference satisfied?

Ç Independence Assumption: The fish were raised in many different places, and
samples were purchased independently from several sources.

Ç Randomization Condition: The fish were selected randomly from those 
available for sale.

(continued )

0.00 0.08 0.16
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40
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Mirex (ppm)
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538 CHAPTER 23    Inferences About Means

Ç 10% Conditions: There’s lots of fish in the sea (and at the fish farms); 150 is certainly far fewer than 10% of the
population.

Ç Nearly Normal Condition: The histogram of the data is unimodal. Although it may be somewhat skewed to the
right, this is not a concern with a sample size of 150.

It’s okay to use these data for inference about farm-raised salmon.

For Example (continued)

JUST CHECKING
Every 10 years, the United States takes a census. The census tries to count every resident. There 

are two forms, known as the “short form,” answered by most people, and the “long form,” slogged
through by about one in six or seven households chosen at random. According to the Census Bureau
(www.census.gov), “. . . each estimate based on the long form responses has an associated confidence
interval.”

1. Why does the Census Bureau need a confidence interval for long-form information but not for the
questions that appear on both the long and short forms?

2. Why must the Census Bureau base these confidence intervals on t-models?

The Census Bureau goes on to say, “These confidence intervals are wider . . . for geographic areas with
smaller populations and for characteristics that occur less frequently in the area being examined (such
as the proportion of people in poverty in a middle-income neighborhood).”

3. Why is this so? For example, why should a confidence interval for the mean amount families spend
monthly on housing be wider for a sparsely populated area of farms in the Midwest than for a
densely populated area of an urban center? How does the formula show this will happen?

To deal with this problem, the Census Bureau reports long-form data only for “. . . geographic areas
from which about two hundred or more long forms were completed—which are large enough to pro-
duce good quality estimates. If smaller weighting areas had been used, the confidence intervals around
the estimates would have been significantly wider, rendering many estimates less useful . . .”

4. Suppose the Census Bureau decided to report on areas from which only 50 long forms were com-
pleted. What effect would that have on a 95% confidence interval for, say, the mean cost of housing?
Specifically, which values used in the formula for the margin of error would change? Which would
change a lot and which would change only slightly?

5. Approximately how much wider would that confidence interval based on 50 forms be than the one
based on 200 forms?

Let’s build a 90% confidence interval for the mean speed of all vehicles traveling on Triphammer
Road.The interval that we’ll make is called the one-sample t-interval.

Question: What can we say about the mean speed of all cars on Triphammer Road?

A One-Sample t-Interval for the MeanSTEP-BY-STEP EXAMPLE

I want to find a 90% confidence interval for 
the mean speed, , of vehicles driving on
Triphammer Road. I have data on the speeds 
of 23 cars there, sampled on April 11, 2000.

m

Plan State what we want to know. Iden-
tify the parameter of interest.

Identify the variables and review the W’s.
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Here’s a histogram of the 23 observed speeds.Make a picture. Check the distribution
shape and look for skewness, multiple
modes, and outliers.

Ç Independence Assumption: This is a 
convenience sample, but care was taken to
select cars that were not driving near 
each other, so their speeds are plausibly
independent.

Ç Randomization Condition: Not really met.
This is a convenience sample, but I have
reason to believe that it is representative.

Ç 10% Condition: The cars I observed were
fewer than 10% of all cars that travel
Triphammer Road.

Ç Nearly Normal Condition: The histogram
of the speeds is unimodal and symmetric.

The conditions are satisfied, so I will use a 
Student’s t-model with

and find a one-sample t-interval for the mean.

(n - 1) = 22 degrees of freedom

The histogram centers around 30 mph,
and the data lie between 20 and 40 mph.
We’d expect a confidence interval to
place the population mean within a few
mph of 30.

Model Think about the assumptions and
check the conditions.

Note that with this small sample we
probably didn’t need to check the 
10% Condition.

On the other hand, doing so gives us a
chance to think about what the popula-
tion is.

State the sampling distribution model for
the statistic.

Choose your method.

Calculating from the data (see page 530):

The standard error of is

The 90% critical value is , so the
margin of error is

The 90% confidence interval for the mean
speed is mph.31.0 ; 1.5

 = 1.521 mph.
 = 1.717(0.886)

 ME = t*22 * SE(y)

t*22 = 1.717

SE(y) =

s
1n

=

4.25
123

= 0.886 mph.

y

 s = 4.25 mph.
 y = 31.0 mph
 n = 23 cars

Mechanics Construct the confidence 
interval.

Be sure to include the units along with
the statistics.

The critical value we need to make a 90%
interval comes from a Student’s t table, a
computer program, or a calculator. We
have degrees of freedom.
The selected confidence level says that 
we want 90% of the probability to be
caught in the middle, so we exclude 5% 
in each tail, for a total of 10%. The degrees

23 - 1 = 22

5

4

3

2

1

20.0 40.030.0
Speed (mph)

# 
of

 C
ar

s

REALITY CHECK
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I am 90% confident that the interval from 
29.5 mph to 32.5 mph contains the true mean
speed of all vehicles on Triphammer Road.

Caveat: This was not a random sample of vehi-
cles. It was a convenience sample taken at one
time on one day. And the participants were not
blinded. Drivers could see the police device, and
some may have slowed down. I’m reluctant to
extend this inference to other situations.

Conclusion Interpret the confidence 
interval in the proper context.

When we construct confidence intervals
in this way, we expect 90% of them to
cover the true mean and 10% to miss the
true value. That’s what “90% confident”
means.

of freedom and 5% tail probability are 
all we need to know to find the critical
value.

The result looks plausible and in line with
what we thought.

Here’s the part of the Student’s t table that gives the critical value we needed for
the Step-by-Step confidence interval. (See Table T in the back of the book.) To find
a critical value, locate the row of the table corresponding to the degrees of free-
dom and the column corresponding to the probability you want. Our 90% confi-
dence interval leaves 5% of the values on either side, so look for 0.05 at the top of
the column or 90% at the bottom. The value in the table at that intersection is the
critical value we need: 1.717.

Activity: Building 
t-Intervals with the -Table.
Interact with an animated version
of Table T.

t

As degrees of freedom
increase, the shape of
Student’s t-models changes
more gradually.Table T at the
back of the book includes
degrees of freedom between
100 and 1000 selected so that
you can pin down the P-value
for just about any df. If your
df’s aren’t listed, take the
cautious approach by using
the next lower value or use
technology.

C

–3s –2s –1s 1s 2s 3s0
Probability

1.717

0.05

19

20

21

22

23

24

25

26

27

.6876 .8610 1.066 1.328 1.729 2.093 2.205

.6870 .8600 1.064 1.325 1.725 2.086 2.197

.6864 .8591 1.063 1.323 1.721 2.080 2.189

.6858 .8583 1.061 1.321 1.717 2.074 2.183

.6853 .8575 1.060 1.319 1.714 2.069 2.177

.6848 .8569 1.059 1.318 1.711 2.064 2.172

.6844 .8562 1.058 1.316 1.708 2.060 2.167

.6840 .8557 1.058 1.315 1.706 2.056 2.162

.6837 .8551 1.057 1.314 1.703 2.052 2.158
80% 90% 95%

0.25 0.2 0.15 0.1 0.05 0.025 0.02

Of course, you can also create the confidence interval with computer software
or a calculator.

Intervals for Means. Generate
confidence intervals from many
samples to see how often they
successfully capture the true 
mean.
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More Cautions About Interpreting 
Confidence Intervals

Confidence intervals for means offer new tempting wrong interpretations. Here
are some things you shouldn’t say:

u Don’t say, “90% of all the vehicles on Triphammer Road drive at a speed be-
tween 29.5 and 32.5 mph.” The confidence interval is about the mean speed,
not about the speeds of individual vehicles.

TI Tips Finding a confidence interval for a mean

Yes, your calculator can create a confidence interval for a mean. And it’s so
easy we’ll do two!

Find a confidence interval given a set of data
• Type the speeds of the 23 Triphammer cars into . Go ahead; we’ll wait.

• Set up a to create a histogram of the data so you can check the
nearly Normal condition. Looks okay—unimodal and roughly symmetric.

• Under choose .
• Choose , then specify that your data is .
• For these data the frequency is 1. (If your data have a frequency distribution

stored in another list, you would specify that.)
• Choose the confidence level you want.
• the interval.

There’s the 90% confidence interval. That was easy—but remember, the calcu-
lator only does the Show. Now you have to Tell what it means.

No data? Find a confidence interval given the sample’s mean 
and standard deviation
Sometimes instead of the original data you just have the summary statistics.
For instance, suppose a random sample of 53 lengths of fishing line had a mean
strength of 83 pounds and standard deviation of 4 pounds. Let’s make a 95%
confidence interval for the mean strength of this kind of fishing line.

• Without the data you can’t check the Nearly Normal Condition. But 53 is a
moderately large sample, so assuming there were no outliers, it’s okay to
proceed. You need to say that.

• Go back to and choose again. This time in-
dicate that you wish to enter the summary statistics. To do that, select

, then hit .
• Specify the sample mean, standard deviation, and sample size.
• Choose a confidence level and the interval.
• If (repeat, IF . . .) strengths of fishing lines follow a Normal model, we are

95% confident that this kind of line has a mean strength between 81.9 and
84.1 pounds.

29 34 34 28 30 29 38 31 29 34 32 31
27 37 29 26 24 34 36 31 34 36 21

Activity: Intuition for 
-based Intervals. A narrated

review of Student’s .t
t
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542 CHAPTER 23    Inferences About Means

u Don’t say, “We are 90% confident that a randomly selected vehicle will have a
speed between 29.5 and 32.5 mph.” This false interpretation is also about
individual vehicles rather than about the mean of the speeds. We are 90% 
confident that the mean speed of all vehicles on Triphammer Road is between
29.5 and 32.5 mph.

u Don’t say, “The mean speed of the vehicles is 31.0 mph 90% of the time.”
That’s about means, but still wrong. It implies that the true mean varies, when
in fact it is the confidence interval that would have been different had we got-
ten a different sample.

u Finally, don’t say, “90% of all samples will have mean speeds between 29.5 and
32.5 mph.” That statement suggests that this interval somehow sets a stan-
dard for every other interval. In fact, this interval is no more (or less) likely to
be correct than any other. You could say that 90% of all possible samples will
produce intervals that actually do contain the true mean speed. (The problem
is that, because we’ll never know where the true mean speed really is, we
can’t know if our sample was one of those 90%.)

u Do say, “90% of intervals that could be found in this way would cover the
true value.” Or make it more personal and say, “I am 90% confident that the
true mean speed is between 29.5 and 32.5 mph.”

Make a Picture, Make a Picture, 
Make a Picture

The only reasonable way to check the Nearly Normal Condition is with graphs
of the data. Make a histogram of the data and verify that its distribution is uni-
modal and symmetric and that it has no outliers. You may also want to make a
Normal probability plot to see that it’s reasonably straight. You’ll be able to
spot deviations from the Normal model more easily with a Normal probability
plot, but it’s easier to understand the particular nature of the deviations from a
histogram.

If you have a computer or graphing calculator doing the work, there’s no
excuse not to look at both displays as part of checking the Nearly Normal 
Condition.

A Test for the Mean
The residents along Triphammer Road have a more specific concern. It appears
that the mean speed along the road is higher than it ought to be. To get the police
to patrol more frequently, though, they’ll need to show that the true mean speed
is in fact greater than the 30 mph speed limit. This calls for a hypothesis test called
the one-sample t-test for the mean.

You already know enough to construct this test. The test statistic looks just like
the others we’ve seen. It compares the difference between the observed statistic
and a hypothesized value to the standard error of the observed statistic. We already
know that, for means, the appropriate probability model to use for P-values is
Student’s t with degrees of freedom.n - 1

So What Should We Say?
Since 90% of random samples
yield an interval that captures
the true mean, we should say,
“I am 90% confident that the
interval from 29.5 to 32.5 mph
contains the mean speed 
of all the vehicles on
Triphammer Road.”It’s also
okay to say something less
formal: “I am 90% confident
that the average speed of all
vehicles on Triphammer Road
is between 29.5 and 32.5 mph.”
Remember: Our uncertainty is
about the interval, not the true
mean. The interval varies
randomly.The true mean
speed is neither variable nor
random—just unknown.

–1 10
Normal Scores
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FIGURE 23.3
A Normal probability plot of speeds
looks reasonably straight.
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ONE-SAMPLE t-TEST FOR THE MEAN
The assumptions and conditions for the one-sample t-test for the mean are
the same as for the one-sample t-interval. We test the hypothesis 
using the statistic

The standard error of is 

When the conditions are met and the null hypothesis is true, this statistic
follows a Student’s t-model with degrees of freedom. We use that
model to obtain a P-value.

n - 1

SE1y2 =

s

1n
.y

tn-1 =

y - m0

SE1y2
.

H0: m = m0

Activity: A -Test for Wind
Speed. Watch the video in the
preceding activity, and then use
the interactive tool to test
whether there’s enough wind for
electricity generation at a site
under investigation.

t

A one-sample t-test for the meanFOR EXAMPLE

Recap: Researchers tested 150 farm-raised salmon for organic contaminants. They found the mean concentration of the carcinogenic insecticide
mirex to be 0.0913 parts per million, with standard deviation 0.0495 ppm. As a safety recommendation to recreational fishers, the Environmental 
Protection Agency’s (EPA) recommended “screening value” for mirex is 0.08 ppm.

Question: Are farmed salmon contaminated beyond the level permitted by the EPA? (We’ve already checked the conditions; see pages 537–8.)

These data satisfy the conditions for inference; I’ll do a one-sample t-test for the mean:

t 149 =

0.0913 - 0.08
0.0040

= 2.825

SE(y) =

0.0495
1150

= 0.0040

 y = 0.0913, s = 0.0495
 n = 150, df = 149

 HA: m 7 0.08
 H0: m = 0.08

0.08 0.0913

With a P-value that low, I reject the null hypothesis and conclude that, in farm-raised salmon, the mirex contamina-
tion level does exceed the EPA screening value.

P(t 149 7 2.825) = 0.0027 (from technology).

Let’s apply the one-sample t-test to the Triphammer Road car speeds. The speed limit is 30 mph,
so we’ll use that as the null hypothesis value.

Question: Does the mean speed of all cars exceed the posted speed limit?

A One-Sample t-Test for the MeanSTEP-BY-STEP EXAMPLE

We’re ready to go:

BOCK_C23_0321570448 pp3.qxd  12/2/08  3:02 PM  Page 543



544 CHAPTER 23    Inferences About Means

I want to know whether the mean speed of vehi-
cles on Triphammer Road exceeds the posted
speed limit of 30 mph. I have a sample of 
23 car speeds on April 11, 2000.

 HA: Mean speed, m 7 30 mph
 H0: Mean speed, m = 30 mph

Plan State what we want to know. 
Make clear what the population and 
parameter are.

Identify the variables and review the W’s.

Hypotheses The null hypothesis is that
the true mean speed is equal to the limit.
Because we’re interested in whether the
vehicles are speeding, the alternative is
one-sided.

Make a picture. Check the distribution for
skewness, multiple modes, and outliers.

The histogram of the observed speeds is
clustered around 30, so we’d be surprised
to find that the mean was much higher
than that. (The fact that 30 is within the
confidence interval that we’ve just found
confirms this suspicion.)

Model Think about the assumptions and
check the conditions.

(We won’t worry about the 10% 
Condition—it’s a small sample.)

State the sampling distribution model. (Be
sure to include the degrees of freedom.)

Choose your method.

Ç Independence Assumption: These cars 
are a convenience sample, but they were
selected so no two cars were driving near
each other, so I am justified in believing
that their speeds are independent.

Ç Randomization Condition: Although I 
have a convenience sample, I have reason
to believe that it is a representative 
sample.

Ç Nearly Normal Condition: The histogram 
of the speeds is unimodal and reasonably
symmetric.

The conditions are satisfied, so I’ll use a Stu-
dent’s t-model with degrees of
freedom to do a one-sample t-test for the
mean.

(n - 1) = 22

From the data,

SE(y) =

s

2n
=

4.25

223
= 0.886 mph.

s = 4.25 mph
y = 31.0 mph
n = 23 cars

Mechanics Be sure to include the units
when you write down what you know
from the data.

We use the null model to find the P-value.
Make a picture of the t-model centered at

. Since this is an upper-tail test,
shade the region to the right of the ob-
served mean speed.

m = 30

5

4

3

2

1

20.0 40.030.0
Speed (mph)

# 
of

 C
ar

s

REALITY CHECK
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The P-value of 0.136 says that if the true
mean speed of vehicles on Triphammer Road
were 30 mph, samples of 23 vehicles can be 
expected to have an observed mean of at least
31.0 mph 13.6% of the time. That P-value is not
small enough for me to reject the hypothesis
that the true mean is 30 mph at any reason-
able alpha level. I conclude that there is not
enough evidence to say the average speed is
too high.

Conclusion Link the P-value to your 
decision about and state your conclu-
sion in context.

Unfortunately for the residents, there is
no course of action associated with failing
to reject this particular null hypothesis.

H0,

(The observed mean is 1.13 standard errors
above the hypothesized value.)

P-value = P(t22 7 1.13) = 0.136

t =

y - m0

SE(y)
=

31.0 - 30.0
0.886

= 1.13

The t-statistic calculation is just a stan-
dardized value, like z. We subtract the
hypothesized mean and divide by the
standard error.

The P-value is the probability of observ-
ing a sample mean as large as 31.0 (or
larger) if the true mean were 30.0, as the
null hypothesis states. We can find this 
P-value from a table, calculator, or com-
puter program.

We’re not surprised that the difference 
isn’t statistically significant.

REALITY CHECK

31.030
y

TI Tips Testing a hypothesis about a mean

Testing a Hypothesis Given a Set of Data
Still have the Triphammer Road auto speeds in ? Good. Let’s use the TI to
see if the mean is significantly higher than 30 mph (you’ve already checked the
histogram to verify the nearly Normal condition, of course).

• Go to the menu, and choose .
• Tell it you want to use the stored .
• Enter the mean of the null model, and indicate where the data are.
• Since this is an upper tail test, choose the , option.
• .

There’s everything you need to know: the summary statistics, the calculated
value of t, and the P-value of 0.126. (t and P differ slightly from the values in
our worked example because when we did it by hand we rounded off the mean
and standard deviation. No harm done.)

As always, the Tell is up to you.
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Significance and Importance
Recall that “statistically significant” does not mean “actually important” or
“meaningful,” even though it sort of sounds that way. In this example, it does
seem that speeds may be a bit above 30 miles per hour. If so, it’s possible that a
larger sample would show statistical significance.

But would that be the right decision? The difference between 31 miles per
hour and 30 miles per hour doesn’t seem meaningful, and rejecting the null hy-
pothesis wouldn’t change that. Even with a statistically significant result, it would
be hard to convince the police that vehicles on Triphammer Road were driving at
dangerously fast speeds. It would probably also be difficult to persuade the town
that spending more money to lower the average speed on Triphammer Road
would be a good use of the town’s resources. Looking at the confidence interval,
we can say with 90% confidence that the mean speed is somewhere between 29.5
and 32.5 mph. Even in the worst case, if the mean speed is 32.5 mph, would this
be a bad enough situation to convince the town to spend more money? Probably
not. It’s always a good idea when we test a hypothesis to also check the confi-
dence interval and think about the likely values for the mean.

Testing a Hypothesis Given the Sample’s Mean 
and Standard Deviation
Don’t have the actual data? Just summary statistics? No problem, assuming
you can verify the necessary conditions. In the last TI Tips we created a confi-
dence interval for the strength of fishing line. We had test results for a random
sample of 53 lengths of line showing a mean strength of 83 pounds and a stan-
dard deviation of 4 pounds. Is there evidence that this kind of fishing line ex-
ceeds the “80-lb test” as labeled on the package?

We bet you know what to do even without our help. Try it before you read on.

• Go back to .
• You’re entering this time.
• Specify the hypothesized mean and the sample statistics.
• Choose the alternative being tested (upper tail here).
• .

The results of the calculator’s mechanics show a large t and a really small 
P-value (0.0000007). We have very strong evidence that the mean breaking strength
of this kind of fishing line is over the 80 pounds claimed by the manufacturer.

JUST CHECKING
In discussing estimates based on the long-form samples, the Census Bureau notes, “The disadvan-

tage . . . is that . . . estimates of characteristics that are also reported on the short form will not match
the [long-form estimates].”

The short-form estimates are values from a complete census, so they are the “true” values—
something we don’t usually have when we do inference.

6. Suppose we use long-form data to make 95% confidence intervals for the mean age of residents for
each of 100 of the Census-defined areas. How many of these 100 intervals should we expect will fail
to include the true mean age (as determined from the complete short-form Census data)?

7. Based only on the long-form sample, we might test the null hypothesis about the mean household
income in a region. Would the power of the test increase or decrease if we used an area with more
long forms?
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Intervals and Tests
The 90% confidence interval for the mean speed was , or 
(29.5 mph, 32.5 mph). If someone hypothesized that the mean speed was really 
30 mph, how would you feel about it? How about 35 mph?

Because the confidence interval included the speed limit of 30 mph, it cer-
tainly looked like 30 mph might be a plausible value for the true mean speed of
the vehicles on Triphammer Road. In fact, 30 mph gave a P-value of 0.136—too
large to reject the null hypothesis. We should have seen this coming. The hypoth-
esized mean of 30 mph lies within the confidence interval. It’s one of the reasonable
values for the mean.

Confidence intervals and significance tests are built from the same calcula-
tions. In fact, they are really complementary ways of looking at the same question.
Here’s the connection: The confidence interval contains all the null hypothesis
values we can’t reject with these data.

More precisely, a level C confidence interval contains all of the plausible null
hypothesis values that would not be rejected by a two-sided hypothesis test at al-
pha level . So a 95% confidence interval matches a level
two-sided test for these data.

Confidence intervals are naturally two-sided, so they match exactly with two-
sided hypothesis tests. When, as in our example, the hypothesis is one-sided, the
corresponding alpha level is .11 - C2>2

1 - 0.95 = 0.051 - C

31.0 mph ; 1.5

Fail to reject Our 90% confidence interval was 29.5 to 32.5 mph. If any of these
values had been the null hypothesis for the mean, then the corresponding hypothesis 

test at (because ) would not have been able to reject the 

null. That is, the corresponding one-sided P-value for our observed mean of 31 mph
would be greater than 0.05. So, we would not reject any hypothesized value be-
tween 29.5 and 32.5 mph.

1 - 0.90
2

= 0.05a = 0.05

Sample Size
How large a sample do we need? The simple answer is “more.” But more data
cost money, effort, and time, so how much is enough? Suppose your computer
just took an hour to download a movie you wanted to watch. You’re not happy.
You hear about a program that claims to download movies in under a half hour.
You’re interested enough to spend $29.95 for it, but only if it really delivers. So
you get the free evaluation copy and test it by downloading that movie 5 differ-
ent times. Of course, the mean download time is not exactly 30 minutes as
claimed. Observations vary. If the margin of error were 8 minutes, though, you’d
probably be able to decide whether the software is worth the money. Doubling
the sample size would require another 5 hours of testing and would reduce your
margin of error to a bit under 6 minutes. You’ll need to decide whether that’s
worth the effort.

As we make plans to collect data, we should have some idea of how small a
margin of error we need to be able to draw a conclusion or detect a difference we
want to see. If the size of the effect we’re studying is large, then we may be able to
tolerate a larger ME. If we need great precision, however, we’ll want a smaller
ME, and, of course, that means a larger sample size.

Armed with the ME and confidence level, we can find the sample size we’ll
need. Almost.

Activity: The Real Effect
of Small Sample Size. We know
that smaller sample sizes lead to
wider confidence intervals, but is
that just because they have fewer
degrees of freedom?
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We know that for a mean, and that , so we
can determine the sample size by solving this equation for n:

The good news is that we have an equation; the bad news is that we won’t
know most of the values we need to solve it. When we thought about sample size
for proportions back in Chapter 19, we ran into a similar problem. There we had
to guess a working value for p to compute a sample size. Here, we need to know s.
We don’t know s until we get some data, but we want to calculate the sample size
before collecting the data. We might be able to make a good guess, and that is of-
ten good enough for this purpose. If we have no idea what the standard deviation
might be, or if the sample size really matters (for example, because each addi-
tional individual is very expensive to sample or experiment on), it might be a
good idea to run a small pilot study to get some feeling for the standard deviation.

ME = t *n-1
s

2n
.

SE1y2 =

s

2n
ME = t*n-1 * SE1y2

8 Ordinarily we’d round the sample size up. But at this stage of the calculation, rounding
down is the safer choice. Can you see why?

Finding sample sizeFOR EXAMPLE

A company claims its program will allow your computer to download movies quickly. We’ll test the free evaluation copy by downloading a movie several
times, hoping to estimate the mean download time with a margin of error of only 8 minutes. We think the standard deviation of download times is about
10 minutes.

Question: How many trial downloads must we run if we want 95% confidence in our estimate with a margin of error of only 8 minutes?
Using solve

That’s a small sample size, so I’ll use degrees of freedom8 to substitute an appropriate value. At
95%, . Solving the equation one more time:

8 = 2.571
10
1n

t*5 = 2.571
t*(6 - 1) = 5

n = (2.45)2
= 6.0025

1n =

1.96 * 10
8

= 2.45

8 = 1.96
10
1n

z* = 1.96,

That’s not all. Without knowing n, we don’t know the degrees of freedom and
we can’t find the critical value, . One common approach is to use the corre-
sponding value from the Normal model. If you’ve chosen a 95% confidence
level, then just use 2, following the 68–95–99.7 Rule. If your estimated sample size
is, say, 60 or more, it’s probably okay— was a good guess. If it’s smaller than
that, you may want to add a step, using at first, finding n, and then replacing 
with the corresponding and calculating the sample size once more.

Sample size calculations are never exact. The margin of error you find after col-
lecting the data won’t match exactly the one you used to find n. The sample size
formula depends on quantities that you won’t have until you collect the data, but
using it is an important first step. Before you collect data, it’s always a good idea
to know whether the sample size is large enough to give you a good chance of be-
ing able to tell you what you want to know.

t*n-1

z*z*
z*

z*
t*n-1

BOCK_C23_0321570448 pp3.qxd  12/2/08  3:02 PM  Page 548



What Can Go Wrong? 549

Degrees of Freedom
The number of degrees of freedom, , might have reminded you of the
value we divide by to find the standard deviation of the data (since, in fact, it’s
the same number). When we introduced that formula, we promised to say a bit
more about why we divide by rather than by n. The reason is closely tied to
the reasoning behind the t-distribution.

If only we knew the true population mean, , we would find the sample stan-
dard deviation as

(Equation 23.1)9

We use instead of , though, and that causes a problem. For any sample, the
data values will generally be closer to their own sample mean than to the true popu-
lation mean, . Why is that? Imagine that we take a random sample of 10 high
school seniors. The mean SAT verbal score is 500 in the United States. But the sam-
ple mean, , for these 10 seniors won’t be exactly 500. Are the 10 seniors’ scores closery

m

my

s =

B
a 1y - m22

n
 

m

n - 1

1n - 12

9 Statistics textbooks usually have equation numbers so they can talk about equations by
name. We haven’t needed equation numbers yet, but we admit it’s useful here, so this is
our first.

Some calculators offer an
alternative button for
standard deviation that
divides by n instead of 
Why don’t you stick a wad of
gum over the “n”button so
you won’t be tempted to use
it? Use n - 1.

n - 1.

WHAT CAN GO WRONG?
The most fundamental issue you face is knowing when to use Student’s t methods.

u Don’t confuse proportions and means. When you treat your data as categorical, counting
successes and summarizing with a sample proportion, make inferences using the
Normal model methods you learned about in Chapters 19 through 22. When you
treat your data as quantitative, summarizing with a sample mean, make your infer-
ences using Student’s t methods.

Student’s t methods work only when the Normality Assumption is true. Naturally,
many of the ways things can go wrong turn out to be different ways that the Normality

(continued)

To make sure the ME is no larger, I’ll round up, which gives runs. So, to get an ME of 8 minutes, I’ll find the
downloading times for 11 movies.

n = 11

n = (3.214)2
L 10.33

2n =

2.571 * 10
8

L 3.214

instead of in Equation 23.1 to calculate s, our standard deviation estimatea 1y - m22

would be too small. How can we fix it? The amazing mathematical fact is that we
an compensate for the smaller sum exactly by dividing by instead of by n.
So that’s all the is doing in the denominator of s. And we call the de-
grees of freedom.

n - 1n - 1
n - 1

to 500 or ? They’ll always be closer to their own average . If we used a 1y - y22yy
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Assumption can fail. It’s always a good idea to look for the most common kinds of fail-
ure. It turns out that you can even fix some of them.

u Beware of multimodality. The Nearly Normal Condition clearly fails if a histogram of
the data has two or more modes. When you see this, look for the possibility that
your data come from two groups. If so, your best bet is to try to separate the data
into different groups. (Use the variables to help distinguish the modes, if possible.
For example, if the modes seem to be composed mostly of men in one and women
in the other, split the data according to sex.) Then you could analyze each group
separately.

u Beware of skewed data. Make a Normal probability plot and a histogram of the data.
If the data are very skewed, you might try re-expressing the variable. Re-expressing
may yield a distribution that is unimodal and symmetric, more appropriate for
Student’s t inference methods for means. Re-expression cannot help if the sample
distribution is not unimodal. Some people may object to re-expressing the data,
but unless your sample is very large, you just can’t use the methods of this chapter
on skewed data.

u Set outliers aside. Student’s t methods are built on the mean and standard deviation,
so we should beware of outliers when using them. When you make a histogram to
check the Nearly Normal Condition, be sure to check for outliers as well. If you find
some, consider doing the analysis twice, both with the outliers excluded and with
them included in the data, to get a sense of how much they affect the results.

The suggestion that you can perform an analysis with outliers removed may be
controversial in some disciplines. Setting aside outliers is seen by some as “cheat-
ing.” But an analysis of data with outliers left in place is always wrong. The outliers
violate the Nearly Normal Condition and also the implicit assumption of a homoge-
neous population, so they invalidate inference procedures. An analysis of the non-
outlying points, along with a separate discussion of the outliers, is often much more
informative and can reveal important aspects of the data.

How can you tell whether there are outliers in your data? The “outlier nomina-
tion rule” of boxplots can offer some guidance, but it’s just a rule of thumb and not
an absolute definition. The best practical definition is that a value is an outlier if re-
moving it substantially changes your conclusions about the data. You won’t want a
single value to determine your understanding of the world unless you are very, very
sure that it is absolutely correct. Of course, when the outliers affect your conclusion,
this can lead to the uncomfortable state of not really knowing what to conclude.
Such situations call for you to use your knowledge of the real world and your un-
derstanding of the data you are working with.10

Of course, Normality issues aren’t the only risks you face when doing inferences
about means. Remember to Think about the usual suspects.

u Watch out for bias. Measurements of all kinds can be biased. If your observations dif-
fer from the true mean in a systematic way, your confidence interval may not capture
the true mean. And there is no sample size that will save you. A bathroom scale that’s
5 pounds off will be 5 pounds off even if you weigh yourself 100 times and take the
average. We’ve seen several sources of bias in surveys, and measurements can be bi-
ased, too. Be sure to think about possible sources of bias in your measurements.

u Make sure cases are independent. Student’s t methods also require the sampled values
to be mutually independent. We check for random sampling and the 10% Condition.
You should also think hard about whether there are likely violations of indepen-
dence in the data collection method. If there are, be very cautious about using these
methods.

u Make sure that data are from an appropriately randomized sample. Ideally, all data that we
analyze are drawn from a simple random sample or generated by a randomized ex-
periment. When they’re not, be careful about making inferences from them. You

10 An important reason for you to know Statistics rather than let someone else analyze your
data.

As tempting as it is to get rid
of annoying values, you can’t
just throw away outliers and
not discuss them. It isn’t
appropriate to lop off the
highest or lowest values just
to improve your results.
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may still compute a confidence interval correctly, or get the mechanics of the P-value
right, but this might not save you from making a serious mistake in inference.

u Interpret your confidence interval correctly. Many statements that sound tempting are,
in fact, misinterpretations of a confidence interval for a mean. You might want to
have another look at some of the common mistakes, explained on pages 541–2. Keep
in mind that a confidence interval is about the mean of the population, not about the
means of samples, individuals in samples, or individuals in the population.

CONNECTIONS
The steps for finding a confidence interval or hypothesis test for means are just like the correspon-
ding steps for proportions. Even the form of the calculations is similar. As the z-statistic did for 
proportions, the t-statistic tells us how many standard errors our sample mean is from the hypothe-
sized mean. For means, though, we have to estimate the standard error separately. This added 
uncertainty changes the model for the sampling distribution from z to t.

As with all of our inference methods, the randomization applied in drawing a random sample
or in randomizing a comparative experiment is what generates the sampling distribution. Random-
ization is what makes inference in this way possible at all.

The new concept of degrees of freedom connects back to the denominator of the sample stan-
dard deviation calculation, as shown earlier.

There’s just no escaping histograms and Normal probability plots. The Nearly Normal Condi-
tion required to use Student’s t can be checked best by making appropriate displays of the data.
Back when we first used histograms, we looked at their shape and, in particular, checked whether
they were unimodal and symmetric, and whether they showed any outliers. Those are just the 
features we check for here. The Normal probability plot zeros in on the Normal model a little 
more precisely.

WHAT HAVE WE LEARNED?

We first learned to create confidence intervals and test hypotheses about proportions. Now we’ve
turned our attention to means, and learned that statistical inference for means relies on the same
concepts; only the mechanics and our model have changed.

u We’ve learned that what we can say about a population mean is inferred from data, using the
mean of a representative random sample.

u We’ve learned to describe the sampling distribution of sample means using a new model we select
from the Student’s family based on our degrees of freedom.

u We’ve learned that our ruler for measuring the variability in sample means is the standard error

u We’ve learned to find the margin of error for a confidence interval using that ruler and critical
values based on a Student’s -model.

u And we’ve also learned to use that ruler to test hypotheses about the population mean.

Above all, we’ve learned that the reasoning of inference, the need to verify that the appropriate
assumptions are met, and the proper interpretation of confidence intervals and P-values all remain
the same regardless of whether we are investigating means or proportions.
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Terms
Student’s 533. A family of distributions indexed by its degrees of freedom. The t-models are unimodal symmetric, 

Degrees of freedom (df) and bell shaped, but generally have fatter tails and a narrower center than the Normal model. As
the degrees of freedom increase, t-distributions approach the Normal.

One-sample -interval 534. A one-sample t-interval for the population mean is
for the mean

The critical value depends on the particular confidence level, C, that you specify and on the
number of degrees of freedom, 

One-sample -test for 543. The one-sample -test for the mean tests the hypothesis using the statistic
the mean

The standard error of is

Skills
u Know the assumptions required for -tests and -based confidence intervals.

u Know how to examine your data for violations of conditions that would make inference about the
population mean unwise or invalid.

u Understand that a confidence interval and a hypothesis test are essentially equivalent. You can
do a two-tailed hypothesis test at level of significance with a confidence interval, or a
one-tailed test with a confidence interval.1 - 2a

1 - aa

tt

SE1y2 =

s

2n
.

y

tn-1 =

y - m0

SE1y2
.

H0: m = m0tt

n - 1.
t*
n-1

y ; t*
n-1 * SE1y2, where SE1y2 =

s

2n
.

t

t

INFERENCE FOR MEANS ON THE COMPUTER

Statistics packages offer convenient ways to make histograms of the data. Even better for assessing near-Normality
is a Normal probability plot. When you work on a computer, there is simply no excuse for skipping the step of plotting the
data to check that it is nearly Normal. Beware: Statistics packages don’t agree on whether to place the Normal scores
on the x-axis (as we have done) or the y-axis. Read the axis labels.

u Be able to compute and interpret a -test for the population mean using a statistics package or
working from summary statistics for a sample.

u Be able to compute and interpret a -based confidence interval for the population mean using a
statistics package or working from summary statistics for a sample.

u Be able to explain the meaning of a confidence interval for a population mean. Make clear that
the randomness associated with the confidence level is a statement about the interval bounds
and not about the population parameter value.

u Understand that a 95% confidence interval does not trap 95% of the sample values.

u Be able to interpret the result of a test of a hypothesis about a population mean.

u Know that we do not “accept” a null hypothesis if we cannot reject it. We say that we fail to reject it.

u Understand that the P-value of a test does not give the probability that the null hypothesis is correct.

t

t
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Any standard statistics package can compute a hypothesis test. Here’s what the package output might look like
in general (although no package we know gives the results in exactly this form):11

The package computes the sample mean and sample standard deviation of the variable and finds the P-value from
the t-distribution based on the appropriate number of degrees of freedom. All modern statistics packages report
P-values. The package may also provide additional information such as the sample mean, sample standard devia-
tion, t-statistic value, and degrees of freedom. These are useful for interpreting the resulting P-value and telling the
difference between a meaningful result and one that is merely statistically significant. Statistics packages that 
report the estimated standard deviation of the sampling distribution usually label it “standard error” or “SE.”
Inference results are also sometimes reported in a table. You may have to read carefully to find the values you
need. Often, test results and the corresponding confidence interval bounds are given together. And often you
must read carefully to find the alternative hypotheses. Here’s an example of that kind of output:

11 Many statistics packages keep as many as 16 digits for all intermediate calculations. 
If we had kept as many, our results in the Step-By-Step section would have been closer 
to these.

Null hypothesis Alternative hypothesis

The P-value is usually 
given last

Test Ho:  (speed) = 30 vs Ha:  (speed) > 30
Sample Mean = 31.043478
t = 1.178 w/22 df
P-value = 0.1257

t-statistic

0

Corresponding
confidence
interval

P-values for each
alternative

Hypothesized value
Estimated mean
DF
Std Error
Alpha      0.05

Statistic
Prob > ⎢t ⎢
Prob > t
Prob < t

30
31.043478
22
 0.886

1.178
0.2513
0.1257
0.8743

Upper 95%
Lower 95%

32.880348
29.206608

tTest tinterval

2-sided alternative
(note the      )

1-sided HA:    <30

1-sided
HA:    >30

The alpha level often
defaults to 0.05.
Some packages let you
choose a different 
alpha level 

Calculated mean, 

The commands to do inference for means on common statistics programs and calculators are not always obvi-
ous. (By contrast, the resulting output is usually clearly labeled and easy to read.) The guides for each program
can help you start navigating.

Activity: Student’s in
Practice. We almost always use
technology to do inference with
Student’s . Here’s a chance to
do that as you investigate several
questions.

t

t
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EXERCISES

1. t-models, part I. Using the t tables, software, or a 
calculator, estimate
a) the critical value of t for a 90% confidence interval

with 
b) the critical value of t for a 98% confidence interval

with 
c) the P-value for with 4 degrees of freedom.
d) the P-value for with 22 degrees of freedom.

2. t-models, part II. Using the t tables, software, or a 
calculator, estimate
a) the critical value of t for a 95% confidence interval

with 
b) the critical value of t for a 99% confidence interval

with 
c) the P-value for with 41 degrees of freedom.
d) the P-value for with 12 degrees of freedom.

3. t-models, part III. Describe how the shape, center, and
spread of t-models change as the number of degrees of
freedom increases.

4. t-models, part IV (last one!). Describe how the criti-
cal value of t for a 95% confidence interval changes as the
number of degrees of freedom increases.

5. Cattle. Livestock are given a special feed supplement to
see if it will promote weight gain. Researchers report that
the 77 cows studied gained an average of 56 pounds, and
that a 95% confidence interval for the mean weight gain
this supplement produces has a margin of error of 
pounds. Some students wrote the following conclusions.
Did anyone interpret the interval correctly? Explain any
misinterpretations.
a) 95% of the cows studied gained between 45 and 67

pounds.
b) We’re 95% sure that a cow fed this supplement will

gain between 45 and 67 pounds.
c) We’re 95% sure that the average weight gain among

the cows in this study was between 45 and 67 pounds.
d) The average weight gain of cows fed this supplement

will be between 45 and 67 pounds 95% of the time.
e) If this supplement is tested on another sample of

cows, there is a 95% chance that their average weight
gain will be between 45 and 67 pounds.

6. Teachers. Software analysis of the salaries of a random
sample of 288 Nevada teachers produced the confidence
interval shown below. Which conclusion is correct?
What’s wrong with the others?

t-Inter val for µ :
with 90.00% Confidence,

38944 < µ (TchPay) < 42893

a) If we took many random samples of 288 Nevada
teachers, about 9 out of 10 of them would produce
this confidence interval.

b) If we took many random samples of Nevada teachers,
about 9 out of 10 of them would produce a confidence

;11

|t| 7 2.33
t … 2.19

df = 102.

df = 7.

|t| 7 1.78
t Ú 2.09

df = 88.

df = 17.

interval that contained the mean salary of all Nevada
teachers.

c) About 9 out of 10 Nevada teachers earn between
$38,944 and $42,893.

d) About 9 out of 10 of the teachers surveyed earn be-
tween $38,944 and $42,893.

e) We are 90% confident that the average teacher salary
in the United States is between $38,944 and $42,893.

7. Meal plan. After surveying students at Dartmouth
College, a campus organization calculated that a 95%
confidence interval for the mean cost of food for one term
(of three in the Dartmouth trimester calendar) is ($1102,
$1290). Now the organization is trying to write its report
and is considering the following interpretations. Com-
ment on each.
a) 95% of all students pay between $1102 and $1290 for

food.
b) 95% of the sampled students paid between $1102 and

$1290.
c) We’re 95% sure that students in this sample averaged

between $1102 and $1290 for food.
d) 95% of all samples of students will have average food

costs between $1102 and $1290.
e) We’re 95% sure that the average amount all students

pay is between $1102 and $1290.

8. Snow. Based on meteorological data for the past cen-
tury, a local TV weather forecaster estimates that the re-
gion’s average winter snowfall is with a margin of er-
ror of inches. Assuming he used a 95% confidence
interval, how should viewers interpret this news? Com-
ment on each of these statements:
a) During 95 of the last 100 winters, the region got be-

tween and of snow.
b) There’s a 95% chance the region will get between 

and of snow this winter.
c) There will be between and of snow on the

ground for 95% of the winter days.
d) Residents can be 95% sure that the area’s average

snowfall is between and .
e) Residents can be 95% confident that the average

snowfall during the last century was between 
and per winter.

9. Pulse rates. A medical researcher measured the pulse
rates (beats per minute) of a sample of randomly selected
adults and found the following Student’s t-based confi-
dence interval:

W ith 95.00% Confidence,

70.887604 < µ (Pulse) < 74.497011

a) Explain carefully what the software output means.
b) What’s the margin of error for this interval?
c) If the researcher had calculated a 99% confidence in-

terval, would the margin of error be larger or smaller?
Explain.

25"
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Summary Temperature

Count 52
Mean 98.285
Median 98.200
MidRange 98.600
StdDev 0.6824
Range 2.800
IntQRange 1.050

Exercises 555

10. Crawling. Data collected by child development scien-
tists produced this confidence interval for the average age
(in weeks) at which babies begin to crawl:

t-Inter val for µ
29.202 < µ(age) < 31.844

(95.00% Confidence):

a) Explain carefully what the software output means.
b) What is the margin of error for this interval?
c) If the researcher had calculated a 90% confidence in-

terval, would the margin of error be larger or smaller?
Explain.

11. CEO compensation. A sample of 20 CEOs from the
Forbes 500 shows total annual compensations ranging
from a minimum of $0.1 to $62.24 million. The average
for these 20 CEOs is $7.946 million. Here’s a histogram:
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Based on these data, a computer program found that a
95% confidence interval for the mean annual compensa-
tion of all Forbes 500 CEOs is (1.69, 14.20) $ million. Why
should you be hesitant to trust this confidence interval?

12. Credit card charges. A credit card company takes a
random sample of 100 cardholders to see how much they
charged on their card last month. Here’s a histogram.
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A computer program found that the resulting 95% confi-
dence interval for the mean amount spent in March 2005
is ( Explain why the analysts 
didn’t find the confidence interval useful, and explain
what went wrong.

13. Normal temperature. The researcher described in 
Exercise 9 also measured the body temperatures of that
randomly selected group of adults. Here are summaries
of the data he collected. We wish to estimate the average
(or “normal”) temperature among the adult population.

$90691.49).-$28366.84,

a) Check the conditions for creating a t-interval.
b) Find a 98% confidence interval for mean body 

temperature.
c) Explain the meaning of that interval.
d) Explain what “98% confidence” means in this context.
e) is commonly assumed to be “normal.” Do these

data suggest otherwise? Explain.

14. Parking. Hoping to lure more shoppers downtown, a
city builds a new public parking garage in the central
business district. The city plans to pay for the structure
through parking fees. During a two-month period (44
weekdays), daily fees collected averaged $126, with a
standard deviation of $15.
a) What assumptions must you make in order to use

these statistics for inference?
b) Write a 90% confidence interval for the mean daily in-

come this parking garage will generate.
c) Interpret this confidence interval in context.
d) Explain what “90% confidence” means in this context.
e) The consultant who advised the city on this project

predicted that parking revenues would average $130
per day. Based on your confidence interval, do you
think the consultant was correct? Why?

15. Normal temperatures, part II. Consider again the
statistics about human body temperature in Exercise 13.
a) Would a 90% confidence interval be wider or

narrower than the 98% confidence interval you
calculated before? Explain. (Don’t compute the
new interval.)

b) What are the advantages and disadvantages of the
98% confidence interval?

c) If we conduct further research, this time using a sam-
ple of 500 adults, how would you expect the 98%
confidence interval to change? Explain.

d) How large a sample might allow you to estimate the
mean body temperature to within 0.1 degrees with
98% confidence?

98.6°F
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16. Parking II. Suppose that, for budget planning pur-
poses, the city in Exercise 14 needs a better estimate of the
mean daily income from parking fees.
a) Someone suggests that the city use its data to create a

95% confidence interval instead of the 90% interval
first created. How would this interval be better for the
city? (You need not actually create the new interval.)

b) How would the 95% interval be worse for the planners?
c) How could they achieve an interval estimate that

would better serve their planning needs?
d) How many days’ worth of data should they collect to

have 95% confidence of estimating the true mean to
within $3?

17. Speed of light. In 1882 Michelson measured the speed
of light (usually denoted c as in Einstein’s famous equa-
tion ). His values are in km/sec and have 299,000
subtracted from them. He reported the results of 23 trials
with a mean of 756.22 and a standard deviation of 107.12.
a) Find a 95% confidence interval for the true speed of

light from these statistics.
b) State in words what this interval means. Keep in mind

that the speed of light is a physical constant that, as
far as we know, has a value that is true throughout the
universe.

c) What assumptions must you make in order to use
your method?

18. Better light. After his first attempt to determine the
speed of light (described in Exercise 17), Michelson con-
ducted an “improved” experiment. In 1897 he reported
results of 100 trials with a mean of 852.4 and a standard
deviation of 79.0.
a) What is the standard error of the mean for these data?
b) Without computing it, how would you expect a 95%

confidence interval for the second experiment to differ
from the confidence interval for the first? Note at least
three specific reasons why they might differ, and indi-
cate the ways in which these differences would
change the interval.

c) According to Stigler (who reports these values), the
true speed of light is 299,710.5 km/sec, corresponding
to a value of 710.5 for Michelson’s 1897 measure-
ments. What does this indicate about Michelson’s two
experiments? Explain, using your confidence interval.

19. Departures. What are the chances your flight will
leave on time? The U.S. Bureau of Transportation Statis-
tics of the Department of Transportation publishes infor-
mation about airline performance. Here are a histogram
and summary statistics for the percentage of flights de-
parting on time each month from 1995 thru 2006.

E = mc2

There is no evidence of a trend over time. (The correlation
of On Time Departure% with time is )
a) Check the assumptions and conditions for inference.
b) Find a 90% confidence interval for the true percentage

of flights that depart on time.
c) Interpret this interval for a traveler planning to fly.

20. Late arrivals. Will your flight get you to your destina-
tion on time? The U.S. Bureau of Transportation Statistics
reported the percentage of flights that were late each
month from 1995 through 2006. Here’s a histogram, along
with some summary statistics:

r = -0.016.
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We can consider these data to be a representative sample
of all months. There is no evidence of a time trend

a) Check the assumptions and conditions for inference
about the mean.

b) Find a 99% confidence interval for the true percentage
of flights that arrive late.

c) Interpret this interval for a traveler planning to fly.

21. For Example, 2nd look. This chapter’s For Examples
looked at mirex contamination in farmed salmon. We first
found a 95% confidence interval for the mean concentra-
tion to be 0.0834 to 0.0992 parts per million. Later we re-
jected the null hypothesis that the mean did not exceed
the EPA’s recommended safe level of 0.08 ppm based on a
P-value of 0.0027. Explain how these two results are con-
sistent. Your explanation should discuss the confidence
level, the P-value, and the decision.

22. Hot Dogs. A nutrition lab tested 40 hot dogs to see if
their mean sodium content was less than the 325 mg up-
per limit set by regulations for “reduced sodium” franks.
The lab failed to reject the hypothesis that the hot dogs
did not meet this requirement, with a P-value of 0.142. A
90% confidence interval estimated the mean sodium con-
tent for this kind of hot dog at 317.2 to 326.8 mg. Explain
how these two results are consistent. Your explanation
should discuss the confidence level, the P-value, and the
decision.

23. Pizza. A researcher tests whether the mean cholesterol
level among those who eat frozen pizza exceeds the value
considered to indicate a health risk. She gets a P-value of
0.07. Explain in this context what the “7%” represents.

24. Golf balls. The United States Golf Association (USGA)
sets performance standards for golf balls. For example,
the initial velocity of the ball may not exceed 250 feet per
second when measured by an apparatus approved by the
USGA. Suppose a manufacturer introduces a new kind of
ball and provides a sample for testing. Based on the mean

1r = -0.072.

T

T

n 144

y 81.1838
s 4.47094
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speed in the test, the USGA comes up with a P-value of
0.34. Explain in this context what the “34%” represents.

25. TV safety. The manufacturer of a metal stand for home
TV sets must be sure that its product will not fail under
the weight of the TV. Since some larger sets weigh nearly
300 pounds, the company’s safety inspectors have set a
standard of ensuring that the stands can support an aver-
age of over 500 pounds. Their inspectors regularly subject
a random sample of the stands to increasing weight until
they fail. They test the hypothesis against

, using the level of significance . If
the sample of stands fail to pass this safety test, the in-
spectors will not certify the product for sale to the general
public.
a) Is this an upper-tail or lower-tail test? In the context of

the problem, why do you think this is important?
b) Explain what will happen if the inspectors commit a

Type I error.
c) Explain what will happen if the inspectors commit a

Type II error.

26. Catheters. During an angiogram, heart problems can
be examined via a small tube (a catheter) threaded into
the heart from a vein in the patient’s leg. It’s important
that the company that manufactures the catheter main-
tain a diameter of 2.00 mm. (The standard deviation is
quite small.) Each day, quality control personnel make
several measurements to test against

at a significance level of . If they
discover a problem, they will stop the manufacturing
process until it is corrected.
a) Is this a one-sided or two-sided test? In the context of

the problem, why do you think this is important?
b) Explain in this context what happens if the quality

control people commit a Type I error.
c) Explain in this context what happens if the quality

control people commit a Type II error.

27. TV safety revisited. The manufacturer of the metal TV
stands in Exercise 25 is thinking of revising its safety test.
a) If the company’s lawyers are worried about being

sued for selling an unsafe product, should they in-
crease or decrease the value of ? Explain.

b) In this context, what is meant by the power of the test?
c) If the company wants to increase the power of the test,

what options does it have? Explain the advantages
and disadvantages of each option.

28. Catheters again. The catheter company in Exercise 26
is reviewing its testing procedure.
a) Suppose the significance level is changed to .

Will the probability of a Type II error increase, de-
crease, or remain the same?

b) What is meant by the power of the test the company
conducts?

c) Suppose the manufacturing process is slipping out of
proper adjustment. As the actual mean diameter of the
catheters produced gets farther and farther above the
desired 2.00 mm, will the power of the quality control
test increase, decrease, or remain the same?

d) What could they do to improve the power of the test?

29. Marriage. In 1960, census results indicated that the age at
which American men first married had a mean of 23.3 years.

a = 0.01

a

a = 0.05HA: m Z 2.00
H0: m = 2.00

a = 0.01HA: m 7 500
H0: m = 500

It is widely suspected that young people today are waiting
longer to get married. We want to find out if the mean age
of first marriage has increased during the past 40 years.
a) Write appropriate hypotheses.
b) We plan to test our hypothesis by selecting a random

sample of 40 men who married for the first time last
year. Do you think the necessary assumptions for in-
ference are satisfied? Explain.

c) Describe the approximate sampling distribution
model for the mean age in such samples.

d) The men in our sample married at an average age of
24.2 years, with a standard deviation of 5.3 years.
What’s the P-value for this result?

e) Explain (in context) what this P-value means.
f) What’s your conclusion?

30. Fuel economy. A company with a large fleet of cars
hopes to keep gasoline costs down and sets a goal of at-
taining a fleet average of at least 26 miles per gallon. To
see if the goal is being met, they check the gasoline usage
for 50 company trips chosen at random, finding a mean
of 25.02 mpg and a standard deviation of 4.83 mpg. Is this
strong evidence that they have failed to attain their fuel
economy goal?
a) Write appropriate hypotheses.
b) Are the necessary assumptions to make inferences

satisfied?
c) Describe the sampling distribution model of mean

fuel economy for samples like this.
d) Find the P-value.
e) Explain what the P-value means in this context.
f ) State an appropriate conclusion.

31. Ruffles. Students investigating the packaging of potato
chips purchased 6 bags of Lay’s Ruffles marked with a
net weight of 28.3 grams. They carefully weighed the con-
tents of each bag, recording the following weights (in
grams): 29.3, 28.2, 29.1, 28.7, 28.9, 28.5.
a) Do these data satisfy the assumptions for inference?

Explain.
b) Find the mean and standard deviation of the weights.
c) Create a 95% confidence interval for the mean weight

of such bags of chips.
d) Explain in context what your interval means.
e) Comment on the company’s stated net weight of

28.3 grams.

32. Doritos. Some students checked 6 bags of Doritos
marked with a net weight of 28.3 grams. They carefully
weighed the contents of each bag, recording the follow-
ing weights (in grams): 29.2, 28.5, 28.7, 28.9, 29.1, 29.5.
a) Do these data satisfy the assumptions for inference?

Explain.
b) Find the mean and standard deviation of the weights.
c) Create a 95% confidence interval for the mean weight

of such bags of chips.
d) Explain in context what your interval means.
e) Comment on the company’s stated net weight of 

28.3 grams.

33. Popcorn. Yvon Hopps ran an experiment to test opti-
mum power and time settings for microwave popcorn.
His goal was to find a combination of power and time that
would deliver high-quality popcorn with less than 10% 

T

T

T
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of the kernels left unpopped, on average. After experi-
menting with several bags, he determined that power 9 at
4 minutes was the best combination.
a) He concluded that this popping method achieved the

10% goal. If it really does not work that well, what
kind of error did Hopps make?

b) To be sure that the method was successful, he popped
8 more bags of popcorn (selected at random) at this
setting. All were of high quality, with the following
percentages of uncooked popcorn: 7, 13.2, 10, 6, 7.8,
2.8, 2.2, 5.2. Does this provide evidence that he met his
goal of an average of no more than 10% uncooked ker-
nels? Explain.

34. Ski wax. Bjork Larsen was trying to decide whether to
use a new racing wax for cross-country skis. He decided
that the wax would be worth the price if he could average
less than 55 seconds on a course he knew well, so he
planned to test the wax by racing on the course 8 times.
a) Suppose that he eventually decides not to buy the

wax, but it really would lower his average time to be-
low 55 seconds. What kind of error would he have
made?

b) His 8 race times were 56.3, 65.9, 50.5, 52.4, 46.5, 57.8,
52.2, and 43.2 seconds. Should he buy the wax? 
Explain.

35. Chips Ahoy. In 1998, as an advertising campaign, the
Nabisco Company announced a “1000 Chips Challenge,”
claiming that every 18-ounce bag of their Chips Ahoy
cookies contained at least 1000 chocolate chips. Dedicated
Statistics students at the Air Force Academy (no kidding)
purchased some randomly selected bags of cookies, and
counted the chocolate chips. Some of their data are given
below. (Chance, 12, no. 1[1999])

1219 1214 1087 1200 1419 1121 1325 1345

1244 1258 1356 1132 1191 1270 1295 1135

160 200 220 230 120 180 140
130 170 190 80 120 100 170

T

T

a) Check the assumptions and conditions for inference.
Comment on any concerns you have.

b) Create a 95% confidence interval for the average num-
ber of chips in bags of Chips Ahoy cookies.

c) What does this evidence say about Nabisco’s claim?
Use your confidence interval to test an appropriate
hypothesis and state your conclusion.

36. Yogurt. Consumer Reports tested 14 brands of vanilla
yogurt and found these numbers of calories per serving:

T

T

a) Check the assumptions and conditions for inference.
b) Create a 95% confidence interval for the average calo-

rie content of vanilla yogurt.
c) A diet guide claims that you will get 120 calories from

a serving of vanilla yogurt. What does this evidence
indicate? Use your confidence interval to test an ap-
propriate hypothesis and state your conclusion.

37. Maze. Psychology experiments sometimes involve test-
ing the ability of rats to navigate mazes. The mazes are
classified according to difficulty, as measured by the
mean length of time it takes rats to find the food at the

end. One researcher needs a maze that
will take rats an average of about one
minute to solve. He tests one maze on
several rats, collecting the data shown.
a) Plot the data. Do you think the condi-

tions for inference are satisfied?
Explain.

b) Test the hypothesis that the mean
completion time for this maze is 
60 seconds. What is your conclusion?

c) Eliminate the outlier, and test the 
hypothesis again. What is your 
conclusion?

d) Do you think this maze meets the
“one-minute average” requirement?
Explain.

38. Braking. A tire manufacturer is considering a newly de-
signed tread pattern for its all-weather tires. Tests have in-
dicated that these tires will provide better gas mileage and
longer tread life. The last remaining test is for braking ef-
fectiveness. The company hopes the tire will allow a car
traveling at 60 mph to come to a complete stop within an
average of 125 feet after the brakes are applied. They will
adopt the new tread pattern unless there is strong evidence
that the tires do not meet this objective. The distances (in
feet) for 10 stops on a test track were 129, 128, 130, 132, 135,
123, 102, 125, 128, and 130. Should the company adopt the
new tread pattern? Test an appropriate hypothesis and
state your conclusion. Explain how you dealt with the out-
lier and why you made the recommendation you did.

39. Driving distance. How far do professional golfers
drive a ball? (For non-golfers, the drive is the shot hit
from a tee at the start of a hole and is typically the longest
shot.) Here’s a histogram of the average driving distances
of the 202 leading professional golfers in 2006 along with
summary statistics.

T
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Count 202
Mean 288.6 yd
StdDev 9.31 yd

Time
(sec)

38.4 57.6
46.2 55.5
62.5 49.5
38.0 40.9
62.8 44.3
33.9 93.8
50.4 47.9
35.0 69.2
52.8 46.2
60.1 56.3
55.1

a) Find a 95% confidence interval for the mean drive 
distance.

b) Interpreting this interval raises some problems. Discuss.
c) The data are the mean driving distance for each golfer.

Is that a concern in interpreting the interval? (Hint: Re-
view the What Can Go Wrong warnings of Chapter 9.
Chapter 9?! Yes, Chapter 9.)

40. Wind power. Should you generate electricity with your
own personal wind turbine? That depends on whether
you have enough wind on your site. To produce enough
energy, your site should have an annual average wind

T
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Exercises 559

speed above 8 miles per hour, according to the Wind
Energy Association. One candidate site was monitored
for a year, with wind speeds recorded every 6 hours. A
total of 1114 readings of wind speed averaged 8.019 mph
with a standard deviation of 3.813 mph. You’ve been
asked to make a statistical report to help the landowner
decide whether to place a wind turbine at this site.
a) Discuss the assumptions and conditions for using Stu-

dent’s t inference methods with these data. Here are
some plots that may help you decide whether the
methods can be used:

b) What would you tell the landowner about whether
this site is suitable for a small wind turbine? Explain.
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JUST CHECKING
Answers

1. Questions on the short form are answered by every-
one in the population. This is a census, so means or
proportions are the true population values. The long
forms are given just to a sample of the population.
When we estimate parameters from a sample, we use
a confidence interval to take sample-to-sample vari-
ability into account.

2. They don’t know the population standard deviation, so
they must use the sample SD as an estimate. The addi-
tional uncertainty is taken into account by t-models.

3. The margin of error for a confidence interval for a
mean depends, in part, on the standard error,

Since n is in the denominator, smaller sample sizes
lead to larger SEs and correspondingly wider inter-
vals. Long forms returned by one in every six or
seven households in a less populous area will be a
smaller sample.

4. The critical values for t with fewer degrees of free-
dom would be slightly larger. The part of the
standard error changes a lot, making the SE much
larger. Both would increase the margin of error.

5. The smaller sample is one fourth as large, so the con-
fidence interval would be roughly twice as wide.

6. We expect 95% of such intervals to cover the true
value, so 5 of the 100 intervals might be expected to
miss.

7. The power would increase if we have a larger sample
size.

1n

SE1y2 =

s

2n
.
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WHO AA alkaline batteries

WHAT Length of battery life
while playing a CD
continuously

UNITS Minutes

WHY Class project

WHEN 1998

560

24
Comparing 
Means

Should you buy generic rather than brand-name batteries? A Statistics stu-
dent designed a study to test battery life. He wanted to know whether
there was any real difference between brand-name batteries and a generic
brand. To estimate the difference in mean lifetimes, he kept a battery-

powered CD player1 continuously playing the same CD, with the volume con-
trol fixed at 5, and measured the time until no more music was heard through the
headphones. (He ran an initial trial to find out approximately how long that
would take so that he didn’t have to spend the first 3 hours of each run listening
to the same CD.) For his trials he used six sets of AA
alkaline batteries from two major battery manufactur-
ers: a well-known brand name and a generic brand.
He measured the time in minutes until the sound
stopped. To account for changes in the CD player’s
performance over time, he randomized the run order
by choosing sets of batteries at random. The table
shows his data (times in minutes):

Studies that compare two groups are common
throughout both science and industry. We might want
to compare the effects of a new drug with the traditional
therapy, the fuel efficiency of two car engine designs, or the sales of new products
in two different test cities. In fact, battery manufacturers do research like this on
their products and competitors’ products themselves.

Plot the Data
The natural display for comparing two groups is boxplots of the data for the
two groups, placed side by side. Although we can’t make a confidence interval

1 Once upon a time, not so very long ago, there were no iPods. At the turn of the century,
people actually carried CDs around—and devices to play them. We bet you can find one in
your parents’ closet.

CHAPTER

Brand Name Generic

194.0 190.7
205.5 203.5
199.2 203.5
172.4 206.5
184.0 222.5
169.5 209.4

Video: Can Diet Prolong
Life? Watch a video that tells the
story of an experiment. We’ll
analyze the data later in this
chapter.
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SD (X )

The Pythagorean
Theorem of Statistics

SD (Y )
SD 2 (X ) +

 SD 2 (Y ) 
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Brand Name Generic

FIGURE 24.1
Boxplots comparing the brand-name
and generic batteries suggest a differ-
ence in duration.

or test a hypothesis from the boxplots themselves, you should always start
with boxplots when comparing groups. Let’s look at the boxplots of the battery
test data.

It sure looks like the generic batteries lasted longer. And we can see that they
were also more consistent. But is the difference large enough to change our
battery-buying behavior? Can we be confident that the difference is more than
just random fluctuation? That’s why we need statistical inference.

The boxplot for the generic data identifies two possible outliers. That’s inter-
esting, but with only six measurements in each group, the outlier nomination
rule is not very reliable. Both of the extreme values are plausible results, and the
range of the generic values is smaller than the range of the brand-name values,
even with the outliers. So we’re probably better off just leaving these values in
the data.

Comparing Two Means
Comparing two means is not very different from comparing two proportions. In
fact, it’s not different in concept from any of the methods we’ve seen. Now, the
population model parameter of interest is the difference between the mean battery
lifetimes of the two brands, 

The rest is the same as before. The statistic of interest is the difference in the
two observed means, . We’ll start with this statistic to build our confi-
dence interval, but we’ll need to know its standard deviation and its sampling
model. Then we can build confidence intervals and find P-values for hypothe-
sis tests.

We know that, for independent random variables, the variance of their difference
is the sum of their individual variances, To find
the standard deviation of the difference between the two independent sample
means, we add their variances and then take a square root:

Of course, we still don’t know the true standard deviations of the two groups,
and , so as usual, we’ll use the estimates, and . Using the estimates gives

us the standard error:

We’ll use the standard error to see how big the difference really is. Because
we are working with means and estimating the standard error of their differ-
ence using the data, we shouldn’t be surprised that the sampling model is a
Student’s t.

SE( y1 - y2) = B
s2

1

n1
+

s2
2

n2
.

s2s1s2s1

 = B
s2

1

n1
+

s2
2

n2
.

 = Ba
s1

1n1
b2

+ a s2

1n2
b2

 SD( y1 - y2) = 2Var(y1) + Var(y2)

Var(Y - X) = Var(Y) + Var(X).

y1 - y2

m1 - m2.
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2 Brian Wansink, James E. Painter, and Jill North, “Bottomless Bowls: Why Visual Cues of
Portion Size May Influence Intake,” Obesity Research, Vol. 13, No. 1, January 2005.
3 Are you sorry you looked? This formula usually

doesn’t even give a whole number. If you are
using a table, you’ll need a whole number, so
round down to be safe. If you are using tech-
nology, it’s even easier. The approximation for-
mulas that computers and calculators use for the
Student’s t-distribution deal with degrees of free-
dom automatically.

The confidence interval we build is called a two-sample t-interval (for the
difference in means). The corresponding hypothesis test is called a two-sample 
t-test. The interval looks just like all the others we’ve seen—the statistic plus or
minus an estimated margin of error:

Compare this formula with the one for the confidence interval for the differ-
ence of two proportions we saw in Chapter 22 (page 505). The formulas are al-
most the same. It’s just that here we use a Student’s t-model instead of a Normal
model to find the appropriate critical t*-value corresponding to our chosen confi-
dence level.

What are we missing? Only the degrees of freedom for the Student’s t-model.
Unfortunately, that formula is strange.

The deep, dark secret is that the sampling model isn’t really Student’s t, but only
something close. The trick is that by using a special, adjusted degrees-of-freedom
value, we can make it so close to a Student’s t-model that nobody can tell the differ-
ence. The adjustment formula is straightforward but doesn’t help our understand-
ing much, so we leave it to the computer or calculator. (If you are curious and really
want to see the formula, look in the footnote.3)

 where ME = t* * SE( y1 - y2).

 ( y1 - y2) ; ME

562 CHAPTER 24    Comparing Means

Finding the standard error of the difference in independent sample meansFOR EXAMPLE

Can you tell how much you are eating from how full you are? Or do you need visual cues?
Researchers2 constructed a table with two ordinary 18 oz soup bowls and two identical-
looking bowls that had been modified to slowly, imperceptibly, refill as they were emptied.
They assigned experiment participants to the bowls randomly and served them tomato soup.
Those eating from the ordinary bowls had their bowls refilled by ladle whenever they were
one-quarter full. If people judge their portions by internal cues, they should eat about the
same amount. How big a difference was there in the amount of soup consumed? The table
summarizes their results.

Question: How much variability do we expect in the difference between the two means? Find the standard error.

Participants were randomly assigned to bowls, so the two groups should be independent. It’s okay to add variances.

SE(yrefill - yordinary) = B
s2

r

nr
+

s2
o

no
= B

8.42

27
+

6.12

27
= 2.0 oz.

Ordinary bowl Refilling bowl

n 27 27
y 8.5 oz 14.7 oz
s 6.1 oz 8.4 oz

df =

a s2
1

n1
+

s2
2

n2
b2

1
n1 - 1

 a s2
1

n1
b2

+

1
n2 - 1

 a s2
2

n2
b2

z or t?
If you know , use z.

(That’s rare!) 
Whenever you use s
to estimate , use t.s

s
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A SAMPLING DISTRIBUTION FOR THE DIFFERENCE BETWEEN
TWO MEANS
When the conditions are met, the sampling distribution of the standardized
sample difference between the means of two independent groups,

can be modeled by a Student’s t-model with a number of degrees of freedom
found with a special formula. We estimate the standard error with

SE( y1 - y2) = B
s2

1

n1
+

s2
2

n2
.

t =

( y1 - y2) - (m1 - m2)

SE( y1 - y2)
,

Assumptions and Conditions
Now we’ve got everything we need. Before we can make a two-sample t-interval
or perform a two-sample t-test, though, we have to check the assumptions and
conditions.

Independence Assumption
Independence Assumption: The data in each group must be drawn indepen-
dently and at random from a homogeneous population, or generated by a ran-
domized comparative experiment. We can’t expect that the data, taken as one big
group, come from a homogeneous population, because that’s what we’re trying
to test. But without randomization of some sort, there are no sampling distribu-
tion models and no inference. We can check two conditions:

Randomization Condition: Were the data collected with suitable randomiza-
tion? For surveys, are they a representative random sample? For experiments,
was the experiment randomized?

10% Condition: We usually don’t check this condition for differences of
means. We’ll check it only if we have a very small population or an extremely
large sample. We needn’t worry about it at all for randomized experiments.

Normal Population Assumption
As we did before with Student’s t-models, we should check the assumption that
the underlying populations are each Normally distributed. We check the . . .

Nearly Normal Condition: We must check this for both groups; a violation by
either one violates the condition. As we saw for single sample means, the Normal-
ity Assumption matters most when sample sizes are small. For samples of 
in either group, you should not use these methods if the histogram or Normal
probability plot shows severe skewness. For n’s closer to 40, a mildly skewed his-
togram is OK, but you should remark on any outliers you find and not work with
severely skewed data. When both groups are bigger than 40, the Central Limit
Theorem starts to kick in no matter how the data are distributed, so the Nearly
Normal Condition for the data matters less. Even in large samples, however, you
should still be on the lookout for outliers, extreme skewness, and multiple modes.

Independent Groups Assumption
Independent Groups Assumption: To use the two-sample t methods, the two
groups we are comparing must be independent of each other. In fact, this test is

n 6 15
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Checking assumptions and conditionsFOR EXAMPLE

Recap: Researchers randomly assigned people to eat soup from one of two bowls: 27 got ordinary bowls that were refilled by ladle, and 27 others
bowls that secretly refilled slowly as the people ate.

Question: Can the researchers use their data to make inferences about the role of visual cues in determining how much people eat?

Ç Independence Assumption: The amount consumed by one person should be
independent of the amount consumed by others.

Ç Randomization Condition: Subjects were randomly assigned to the
treatments.

Ç Nearly Normal Condition: The histograms for both groups look unimodal but
somewhat skewed to the right. I believe both groups are large enough (27) to
allow use of t-methods.

Ç Independent Groups Assumption: Randomization to treatment groups
guarantees this.

It’s okay to construct a two-sample t-interval for the difference in means.

sometimes called the two independent samples t-test. No statistical test can verify
this assumption. You have to think about how the data were collected. The as-
sumption would be violated, for example, if one group consisted of husbands and
the other group their wives. Whatever we measure on couples might naturally be
related. Similarly, if we compared subjects’ performances before some treatment
with their performances afterward, we’d expect a relationship of each “before”
measurement with its corresponding “after” measurement. In cases such as these,
where the observational units in the two groups are related or matched, the two-
sample methods of this chapter can’t be applied. When this happens, we need a differ-
ent procedure that we’ll see in the next chapter.

564 CHAPTER 24    Comparing Means

TWO-SAMPLE t-INTERVAL FOR THE DIFFERENCE BETWEEN MEANS
When the conditions are met, we are ready to find the confidence interval
for the difference between means of two independent groups, The
confidence interval is

where the standard error of the difference of the means

The critical value depends on the particular confidence level, C, that you
specify and on the number of degrees of freedom, which we get from the
sample sizes and a special formula.

t*
df

SE( y1 - y2) = B
s2

1

n1
+

s2
2

n2
.

( y1 - y2) ; t*
df * SE( y1 - y2),

m1 - m2.

Activity: Does Restricting
Diet Prolong Life? This activity
lets you construct a confidence
interval to compare life spans of
rats fed two different diets.
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An Easier Rule?
The formula for the degrees
of freedom of the sampling
distribution of the difference
between two means is long,
but the number of degrees
of freedom is always at least
the smaller of the two n’s,
minus 1. Wouldn’t it be easier
to just use that value? You
could, but that approximation
can be a poor choice because
it can give fewer than half the
degrees of freedom you’re
entitled to from the correct
formula.

Note: When you check the Nearly Normal Condition it’s important that you include the graphs you looked
at (histograms or Normal probability plots).
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Finding a confidence interval for the difference in sample meansFOR EXAMPLE

Recap: Researchers studying the role of internal and visual cues in determining how much
people eat conducted an experiment in which some people ate soup from bowls that secretly re-
filled. The results are summarized in the table.

We’ve already checked the assumptions and conditions, and have found the standard error
for the difference in means to be 

Question: What does a 95% confidence interval say about the difference in mean amounts
eaten?

The observed difference in means is

The 95% confidence interval for is 
I am 95% confident that people eating from a subtly refilling bowl will eat an average of between 2.18 and 10.22 more
ounces of soup than those eating from an ordinary bowl.

6.2 ; 4.02, or (2.18, 10.22) oz.mrefill - mordinary

 ME = t*
* SE(yrefill - yordinary) = 2.011(2.0) = 4.02 oz

 df = 47.46 t*
47.46 = 2.011 (Table gives t*

45 = 2.014.)

yrefill - yordinary = (14.7 - 8.5) = 6.2 oz

SE(yrefill - yordinary) = 2.0 oz.

Ordinary bowl Refilling bowl

n 27 27
y 8.5 oz 14.7 oz
s 6.1 oz 8.4 oz

Judging from the boxplot, the generic batteries seem to have lasted about 20 minutes longer than
the brand-name batteries. Before we change our buying habits, what should we expect to happen
with the next batteries we buy?

Question: How much longer might the generic batteries last?

A Two-Sample t-IntervalSTEP-BY-STEP EXAMPLE

I have measurements of the lifetimes (in min-
utes) of 6 sets of generic and 6 sets of
brand-name AA batteries from a randomized
experiment. I want to find an interval that is
likely, with 95% confidence, to contain the true
difference between the mean lifetime
of the generic AA batteries and the mean life-
time of the brand-name batteries.

mG - mB

Plan State what we want to know.

Identify the parameter you wish to
estimate. Here our parameter is the
difference in the means, not the individ-
ual group means.

Identify the population(s) about which you
wish to make statements. We hope to
make decisions about purchasing batter-
ies, so we’re interested in all the AA
batteries of these two brands.

Identify the variables and review the W’s.

REALITY CHECK From the boxplots, it appears our confi-
dence interval should be centered near
a difference of 20 minutes. We don’t
have a lot of intuition about how far 
the interval should extend on either
side of 20.
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4 

3

2

1

3

2

1

180 220 160 200
Generic Brand Name

Ç Randomization Condition: The batteries
were selected at random from those avail-
able for sale. Not exactly an SRS, but a
reasonably representative random sample.

Ç Independence Assumption: The batteries
were packaged together, so they may not
be independent. For example, a storage
problem might affect all the batteries in
the same pack. Repeating the study for
several different packs of batteries would
make the conclusions stronger.

Ç Independent Groups Assumption: Bat-
teries manufactured by two different
companies and purchased in separate
packages should be independent.

Ç Nearly Normal Condition: The samples are
small, but the histograms look unimodal
and symmetric:

Model Think about the appropriate as-
sumptions and check the conditions to be
sure that a Student’s t-model for the sam-
pling distribution is appropriate.

For very small samples like these, we of-
ten don’t worry about the 10% Condition.

Make a picture. Boxplots are the display
of choice for comparing groups, but now
we want to check the shape of distribution
of each group. Histograms or Normal
probability plots do a better job there.

Under these conditions, it’s okay to use a Stu-
dent’s t-model.

I’ll use a two-sample t-interval.

State the sampling distribution model for
the statistic. Here the degrees of freedom
will come from that messy approximation
formula.

Specify your method.

I know

The groups are independent, so

 = B
10.32

6
+

14.62

6

 = B
s2

G

nG
+

s2
B

nB

 SE(yG - yB) = 2SE2(yG) + SE2(yB)

 sG = 10.3 min   sB = 14.6 min
 yG = 206.0 min   yB = 187.4 min

 nG = 6   nB = 6Mechanics Construct the confidence
interval.

Be sure to include the units along with
the statistics. Use meaningful subscripts
to identify the groups.

Use the sample standard deviations to
find the standard error of the sampling
distribution.

We have three choices for degrees of free-
dom. The best alternative is to let the
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Another One Just Like the Other Ones? 567

Another One Just Like the Other Ones?
Yes. That’s been our point all along. Once again we see a statistic plus or minus
the margin of error. And the ME is just a critical value times the standard error.
Just look out for that crazy degrees of freedom formula.

df (from technology4)

The corresponding critical value for a 95% con-
fidence level is .

So the margin of error is

The 95% confidence interval is

= (2.1, 35.1) min.
or 18.6 ; 16.5 min.
(206.0 - 187.4) ; 16.5 min.

 = 16.50 min.
 = 2.263(7.29)

 ME = t* * SE(yG - yB)

t* = 2.263

= 8.98

 = 7.29 min.
 = 253.208

 = A
106.09

6
+

213.16
6

computer or calculator use the approxima-
tion formula for df. This gives a fractional
degree of freedom (here ), and
technology can find a corresponding criti-
cal value. In this case, it is .

Or we could round the approximation
formula’s df value down to an integer so
we can use a t table. That gives 8 df and a
critical value .

The easy rule says to use only
. That gives a critical value

. The corresponding confidence
interval is about 14% wider—a high price
to pay for a small savings in effort.

t* = 2.571
6 - 1 = 5 df

t* = 2.306

t* = 2.263

df = 8.98

I am 95% confident that the interval from 2.1
minutes to 35.1 minutes captures the mean
amount of time by which generic batteries
outlast brand-name batteries for this task. If
generic batteries are cheaper, there seems little
reason not to use them. If it is more trouble or
costs more to buy them, then I’d consider
whether the additional performance is worth it.

Conclusion Interpret the confidence in-
terval in the proper context.

Less formally, you could say, “I’m 95%
confident that generic batteries last an av-
erage of 2.1 to 35.1 minutes longer than
brand-name batteries.”

4 If you try to find the degrees of freedom with that messy approximation formula (We
dare you! It’s in the footnote on page 562) using the values above, you’ll get 8.99. The mi-
nor discrepancy is because we rounded the standard deviations to the nearest 10th.

TI Tips Creating the confidence interval

If you have been successful using your TI to make confidence intervals for pro-
portions and 1-sample means, then you can probably already use the 2-sample
function just fine. But humor us while we do one. Please?

Activity: Find Two-Sample
t-Intervals. Who wants to deal
with that ugly df formula? We usu-
ally find these intervals with a sta-
tistics package. Learn how here.
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568 CHAPTER 24    Comparing Means

Find a confidence interval for the difference in means, given data
from two independent samples.
• Let’s do the batteries. Always think about whether the samples are inde-

pendent. If not, stop right here. These procedures are appropriate only for
independent groups.

• Enter the data into two lists.

NameBrand in : 194.0 205.5 199.2 172.4 184.0 169.5
Generic in : 190.7 203.5 203.5 206.5 222.5 209.4

• Make histograms of the data to check the Nearly Normal Condition. We see
that ’s histogram doesn’t look so good. But remember—this is a very small
data set. The bars represent only one or two values each. It’s not unusual for
the histogram to look a little ragged. Try resetting the to a range of
160 to 220 with , and . Redraw the . Looks better.

• It’s your turn to try this. Check . Go on, do it.
• Under choose .
• Specify that you are using the in and , specify for both fre-

quencies, and choose the confidence level you want.
• ? We’ll discuss this issue later in the chapter, but the easy advice is:

Just Say .
• To the interval, you need to scroll down one more line.

Now you have the 95% confidence interval. See ? The calculator did that
messy degrees of freedom calculation for you. You have to love that!

Notice that the interval bounds are negative. That’s because the TI is doing
, and the generic batteries ( ) lasted longer. No harm done—you just

need to be careful to interpret that result correctly when you Tell what the con-
fidence interval means.

No data? Find a confidence interval using the sample statistics.
In many situations we don’t have the original data, but must work with the sum-
mary statistics from the two groups. As we saw in the last chapter, you can still
have your TI create the confidence interval with by choosing
the option. Enter both means, standard deviations, and sample
sizes, then . We show you the details in the next TI Tips.

m1 - m2

JUST CHECKING
Carpal tunnel syndrome (CTS) causes pain and tingling in the hand, sometimes bad enough to keep sufferers awake

at night and restrict their daily activities. Researchers studied the effectiveness of two alternative surgical treatments
for CTS (Mackenzie, Hainer, and Wheatley, Annals of Plastic Surgery, 2000). Patients were randomly assigned to have
endoscopic or open-incision surgery. Four weeks later the endoscopic surgery patients demonstrated a mean pinch
strength of 9.1 kg compared to 7.6 kg for the open-incision patients.

1. Why is the randomization of the patients into the two treatments important?

2. A 95% confidence interval for the difference in mean strength is about (0.04 kg, 2.96 kg). Explain what this interval
means.

3. Why might we want to examine such a confidence interval in deciding between these two surgical procedures?

4. Why might you want to see the data before trusting the confidence interval?
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WHO University students

WHAT Prices offered for a
used camera

UNITS $

WHY Study of the effects
of friendship on
transactions

WHEN 1990s

WHERE U.C. Berkeley

A Test for the Difference Between Two Means 569

Testing the Difference Between Two Means
If you bought a used camera in good condition from a friend, would you pay the
same as you would if you bought the same item from a stranger? A researcher at
Cornell University (J. J. Halpern, “The Transaction Index: A Method for Standard-
izing Comparisons of Transaction Characteristics Across Different Contexts,”
Group Decision and Negotiation, 6: 557–572) wanted to know how friendship might
affect simple sales such as this. She randomly divided subjects into two groups
and gave each group descriptions of items they might want to buy. One group
was told to imagine buying from a friend whom they expected to see again. The
other group was told to imagine buying from a stranger.

Here are the prices they offered for a used camera in good condition:

PRICE OFFERED FOR A USED CAMERA ($)

Buying from a Friend Buying from a Stranger

275 260
300 250
260 175
300 130
255 200
275 225
290 240
300

The researcher who designed this study had a specific concern. Previous theories
had doubted that friendship had a measurable effect on pricing. She hoped to find
an effect on friendship. This calls for a hypothesis test—in this case a two-sample
t-test for the difference between means.5

A Test for the Difference Between Two Means
You already know enough to construct this test. The test statistic looks just like the
others we’ve seen. It finds the difference between the observed group means and
compares this with a hypothesized value for that difference. We’ll call that hy-
pothesized difference (“delta naught”). It’s so common for that hypothesized
difference to be zero that we often just assume . We then compare the dif-
ference in the means with the standard error of that difference. We already know
that for a difference between independent means, we can find P-values from a
Student’s t-model on that same special number of degrees of freedom.

¢0 = 0
¢0

5 Because it is performed so often, this test is usually just called a “two-sample t-test.”

TWO-SAMPLE t-TEST FOR THE DIFFERENCE BETWEEN MEANS
The conditions for the two-sample t-test for the difference between the
means of two independent groups are the same as for the two-sample 
t-interval. We test the hypothesis

H0: m1 - m2 = ¢0

Activity: The Two-Sample
t-Test. How different are beef hot
dogs and chicken hot dogs? Test
whether measured differences
are statistically significant.

300

250

200

100 

150 

Am
ou

nt
 O

ffe
re

d 
($

)

Buy from
Friend

Buy from
Stranger
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NOTATION ALERT:

—delta naught—isn’t so
standard that you can assume
everyone will understand it. We
use it because it’s the Greek
letter (good for a parameter)
“D” for “difference.” You should
say “delta naught” rather than
“delta zero”—that’s standard
for parameters associated with
null hypotheses.

¢0

570 CHAPTER 24    Comparing Means

6 This claim is a good example of what is called a “research hypothesis” in many social
sciences. The only way to check it is to deny that it’s true and see where the resulting null
hypothesis leads us.

where the hypothesized difference is almost always 0, using the statistic

The standard error of is

When the conditions are met and the null hypothesis is true, this statistic can
be closely modeled by a Student’s t-model with a number of degrees of free-
dom given by a special formula. We use that model to obtain a P-value.

SE( y1 - y2) = B
s2

1

n1
+

s2
2

n2
.

y1 - y2

t =

( y1 - y2) - ¢0

SE( y1 - y2)
.

The usual null hypothesis is that there’s no difference in means.That’s just the right null hypothe-
sis for the camera purchase prices.

Question: Is there a difference in the price people would offer a friend rather than a stranger?

A Two-Sample t-Test for the Difference Between Two MeansSTEP-BY-STEP EXAMPLE

I want to know whether people are likely to offer
a different amount for a used camera when
buying from a friend than when buying from a
stranger. I wonder whether the difference be-
tween mean amounts is zero. I have bid prices
from 8 subjects buying from a friend and 7 buy-
ing from a stranger, found in a randomized
experiment.

Plan State what we want to know.

Identify the parameter you wish to
estimate. Here our parameter is the
difference in the means, not the indi-
vidual group means.

Identify the variables and check the W’s.

: The difference in mean price offered to
friends and the mean price offered to
strangers is zero:

: The difference in mean prices is not zero:

mF - mS Z 0.

HA

mF - mS = 0.

H0Hypotheses State the null and alterna-
tive hypotheses. The research claim is that
friendship changes what people are will-
ing to pay.6 The natural null hypothesis is
that friendship makes no difference.

We didn’t start with any knowledge of
whether friendship might increase or de-
crease the price, so we choose a two-sided
alternative.

Ç Randomization Condition: The experiment
was randomized. Subjects were assigned
to treatment groups at random.

Ç Independence Assumption: This is an ex-
periment, so there is no need for the
subjects to be randomly selected from any

Model Think about the assumptions and
check the conditions. (Note that, because
this is a randomized experiment, we
haven’t sampled at all, so the 10% Condi-
tion does not apply.)
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From the data:

 sF = $18.31  sS = $46.43
 yF = $281.88   yS = $211.43
 nF = 8  nS = 7

Mechanics List the summary statistics.
Be sure to use proper notation.

particular population. All we need to check
is whether they were assigned randomly to
treatment groups.

Ç Independent Groups Assumption: Ran-
domizing the experiment gives independent
groups.

Ç Nearly Normal Condition: Histograms of
the two sets of prices are roughly uni-
modal and symmetric:

Make a picture. Boxplots are the display
of choice for comparing groups, as seen
on page 561. We also want to check the
shapes of the distribution. Histograms or
Normal probability plots do a better job
for that.

The assumptions are reasonable and the condi-
tions are okay, so I’ll use a Student’s t-model
to perform a two-sample t-test.

State the sampling distribution model.

Specify your method.

3

2

1

3

2

1

250 300 100 200 300
Buy from Friend Buy from Stranger

For independent groups,

The observed difference is

(yF - yS) = 281.88 - 211.43 = $70.45

 = 18.70

 = B
18.312

8
+

46.432

7

 = B
s2

F

nF
+

s2
S

nS

 SE(yF - yS) = 3SE2(yF) + SE2(yS)

Use the null model to find the P-value.
First determine the standard error of the
difference between sample means.

Make a picture. Sketch the t-model cen-
tered at the hypothesized difference of
zero. Because this is a two-tailed test,
shade the region to the right of the ob-
served difference and the corresponding
region in the other tail.

70.450
yF � yS
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t =

(yF - yS) - (0)
SE(yF - yS)

=

70.45
18.70

= 3.77Find the t-value.

A statistics program or graphing calcula-
tor finds the P-value using the fractional
degrees of freedom from the approxima-
tion formula.

If there were no difference in the mean prices, a
difference this large would occur only 6 times in
1000. That’s too rare to believe, so I reject the
null hypothesis and conclude that people are
likely to offer a friend more than they’d offer a
stranger for a used camera (and possibly for
other, similar items).

Conclusion Link the P-value to your de-
cision about the null hypothesis, and state
the conclusion in context.

Be cautious about generalizing to items
whose prices are outside the range of
those in this study.

P-value = 2P(t 7.62 7 3.77) = 0.006

df = 7.62 (from technology)

TI Tips Testing a hypothesis about a difference in means

Now let’s use the TI to do a hypothesis test for the difference of two means—
independent, of course! (Have we said that enough times yet?)

Test a hypothesis when you know the sample statistics.
We’ll demonstrate by using the statistics from the camera-pricing example. A
sample of 8 people suggested they’d sell the camera to a friend for an average
price of $281.88 with standard deviation $18.31. An independent sample of 7
other people would charge a stranger an average of $211.43 with standard de-
viation $46.43. Does this represent a significant difference in prices?

• From the menu select .
• Specify , and enter the appropriate sample statistics.
• You have to scroll down to complete the specifications. This is a two-tailed

test, so choose alternative .
• ? Just say . (We did promise to explain that and we will, coming

up next.)
• Ready . . . set . . . !

The TI reports a calculated value of and a P-value of 0.006. It’s hard to
tell who your real friends are.

By now we probably don’t have to tell you how to do a
starting with data in lists.

So we won’t.

t = 3.77
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JUST CHECKING
Recall the experiment comparing patients 4 weeks after surgery for carpal tunnel syndrome. The patients who had

endoscopic surgery demonstrated a mean pinch strength of 9.1 kg compared to 7.6 kg for the open-incision patients.

5. What hypotheses would you test?

6. The P-value of the test was less than 0.05. State a brief conclusion.

7. The study reports work on 36 “hands,” but there were only 26 patients. In fact, 7 of the endoscopic surgery patients
had both hands operated on, as did 3 of the open-incision group. Does this alter your thinking about any of the
assumptions? Explain.

A two-sample t-testFOR EXAMPLE

Many office “coffee stations” collect voluntary payments for the food consumed. Researchers at the University of Newcastle upon
Tyne performed an experiment to see whether the image of eyes watching would change employee behavior.7 They alternated pic-
tures (seen here) of eyes looking at the viewer with pictures of flowers each week on the cupboard behind the “honesty box.” They
measured the consumption of milk to approximate the amount of food consumed and recorded the contributions (in £) each week
per liter of milk. The table summarizes their results.

Question: Do these results provide evidence that there really is a difference in
honesty even when it’s only photographs of eyes that are “watching”?

Ç Independence Assumption: The amount paid by one per-
son should be independent of the amount paid by others.

Ç Randomization Condition: This study was observational. Treatments alternated a week at a
time and were applied to the same group of office workers.

Ç Nearly Normal Condition: I don’t have the data to check, but it seems unlikely there would be outliers in either
group. I could be more certain if I could see histograms for both groups.

Ç Independent Groups Assumption: The same workers were recorded each week, but week-to-week independence is
plausible.

It’s okay to do a two-sample t-test for the difference in means:

Assuming the data were free of outliers, the very low P-value leads me to reject the null hypothesis. This study pro-
vides evidence that people will leave higher average voluntary payments for food if pictures of eyes are “watching.”

(Note: In Table T we can see that at 5 df, lies between the critical values for and so we could report .)P 6 0.05P = 0.05,P = 0.02t = 3.08

P( ƒ t5 ƒ 7 3.08) = 0.027

 t5 =

(yeyes - yflowers) - 0

SE(yeyes - yflowers)
=

0.417 - 0.151
0.0864

= 3.08

 df = 5.07

 SE(yeyes - yflowers) = C
s2

eyes

neyes
+

s2
flowers

nflowers
= B

0.18112

5
+

0.0672

5
= 0.0864

HA: meyes - mflowers Z 0
H0: meyes - mflowers = 0

A Test for the Difference Between Two Means 573

7 Melissa Bateson, Daniel Nettle, and Gilbert Roberts, “Cues of Being Watched Enhance
Cooperation in a Real-World Setting,” Biol. Lett. doi:10.1098/rsbl.2006.0509.

Eyes Flowers

n (# weeks) 5 5

y 0.417 £/l 0.151 £/l

s 0.1811 £/l 0.067 £/l

0 3.08
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Back into the Pool
Remember that when we know a proportion, we know its standard deviation.
When we tested the null hypothesis that two proportions were equal, that link
meant we could assume their variances were equal as well. This led us to pool our
data to estimate a standard error for the hypothesis test.

For means, there is also a pooled t-test. Like the two-proportions z-test, this
test assumes that the variances in the two groups are equal. But be careful: Know-
ing the mean of some data doesn’t tell you anything about their variance. And
knowing that two means are equal doesn’t say anything about whether their vari-
ances are equal. If we were willing to assume that their variances are equal, we
could pool the data from two groups to estimate the common variance. We’d esti-
mate this pooled variance from the data, so we’d still use a Student’s t-model.
This test is called a pooled t-test (for the difference between means).

Pooled t-tests have a couple of advantages. They often have a few more de-
grees of freedom than the corresponding two-sample test and a much simpler
degrees of freedom formula. But these advantages come at a price: You have to
pool the variances and think about another assumption. The assumption of equal
variances is a strong one, is often not true, and is difficult to check. For these rea-
sons, we recommend that you use a two-sample t-test instead.

The pooled t-test is the theoretically correct method only when we have a
good reason to believe that the variances are equal. And (as we will see shortly)
there are times when this makes sense. Keep in mind, however, that it’s never
wrong not to pool.

*The Pooled t-Test
Termites cause billions of dollars of damage each year, to homes and other build-
ings, but some tropical trees seem to be able to resist termite attack. A researcher
extracted a compound from the sap of one such tree and tested it by feeding it at
two different concentrations to randomly assigned groups of 25 termites.8 After 
5 days, 8 groups fed the lower dose had an average of 20.875 termites alive, with
a standard deviation of 2.23. But 6 groups fed the higher dose had an average of
only 6.667 termites alive, with a standard deviation of 3.14. Is this a large enough
difference to declare the sap compound effective in killing termites? In order to
use the pooled t-test, we must make the Equal Variance Assumption that the
variances of the two populations from which the samples have been drawn are
equal. That is, . (Of course, we could think about the standard deviations
being equal instead.) The corresponding Similar Spreads Condition really just con-
sists of looking at the boxplots to check that the spreads are not wildly different. We
were going to make boxplots anyway, so there’s really nothing new here.

Once we decide to pool, we estimate the common variance by combining
numbers we already have:

(If the two sample sizes are equal, this is just the average of the two variances.)
Now we just substitute this pooled variance in place of each of the variances

in the standard error formula.

SEpooled(y1 - y2) = C
s2

pooled

n1
+

s2
pooled

n2
= spooled B

1
n1

+

1
n2

.

s2
pooled =

(n1 - 1)s2
1 + (n2 - 1)s2

2

(n1 - 1) + (n2 - 1)
.

s2
1 = s2

2

20
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10

5 

Te
rm

ite
s 
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5 10
Dose

s2
pooled =

(8 - 1)2.232
+ (6 - 1)3.142

(8 - 1) + (6 - 1)
= 7.01

SEpooled( y1 - y2) = B
7.01

8
+

7.01
6

= 1.43

8 Adam Messer, Kevin McCormick, Sunjaya, H. H. Hagedorm, Ferny Tumbel, and J. Mein-
wald, “Defensive role of tropical tree resins: antitermitic sesquiterpenes from Southeast
Asian Dipterocarpaceae,” J Chem Ecology, 16:122, pp. 3333–3352.
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The formula for degrees of freedom for the Student’s t-model is simpler, too.
It was so complicated for the two-sample t that we stuck it in a footnote.9 Now it’s
just .

Substitute the pooled-t estimate of the standard error and its degrees of free-
dom into the steps of the confidence interval or hypothesis test, and you’ll be using
the pooled-t method. For the termites, , giving a 
with 12 df and a .

Of course, if you decide to use a pooled-t method, you must defend your as-
sumption that the variances of the two groups are equal.

P-value … 0.0001
t-value = 9.935y1 - y2 = 14.208

df = n1 + n2 - 2

t =

20.875 - 6.667
1.43

= 9.935

POOLED t-TEST AND CONFIDENCE INTERVAL FOR MEANS
The conditions for the pooled t-test for the difference between the means of
two independent groups (commonly called a “pooled t-test”) are the same
as for the two-sample t-test with the additional assumption that the vari-
ances of the two groups are the same. We test the hypothesis

where the hypothesized difference, , is almost always 0, using the statistic

The standard error of is

where the pooled variance is

When the conditions are met and the null hypothesis is true, we can
model this statistic’s sampling distribution with a Student’s t-model with

degrees of freedom. We use that model to obtain a 
P-value for a test or a margin of error for a confidence interval.

The corresponding confidence interval is

where the critical value depends on the confidence level and is found
with degrees of freedom.(n1 - 1) + (n2 - 1)

t*

(y1 - y2) ; t*df * SEpooled(y1 - y2),

(n1 - 1) + (n2 - 1)

s2
pooled =

(n1 - 1) s2
1 + (n2 - 1) s2

2

(n1 - 1) + (n2 - 1)
.

SEpooled(y1 - y2) = C
s2

pooled

n1
+

s2
pooled

n2
= spooled B

1
n1

+

1
n2

,

y1 - y2

t =

(y1 - y2) - ¢0

SEpooled(y1 - y2)
.

¢0

H0: m1 - m2 = ¢0

9 But not this one. See page 562.

Is the Pool All Wet?
We’re testing whether the means are equal, so we admit that we don’t know
whether they are equal. Doesn’t it seem a bit much to just assume that the vari-
ances are equal? Well, yes—but there are some special cases to consider. So when
should you use pooled-t methods rather than two-sample t methods?

Never.
What, never?
Well, hardly ever.

Activity: The Pooled 
t-Test. It’s those hot dogs again.
The same interactive tool can
handle a pooled t-test, too. Take
it for a spin here.
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You see, when the variances of the two groups are in fact equal, the two meth-
ods give pretty much the same result. (For the termites, the two-sample t statistic
is barely different—9.436 with 8 df—and .) Pooled
methods have a small advantage (slightly narrower confidence intervals, slightly
more powerful tests) mostly because they usually have a few more degrees of
freedom, but the advantage is slight.

When the variances are not equal, the pooled methods are just not valid and
can give poor results. You have to use the two-sample methods instead.

As the sample sizes get bigger, the advantages that come from a few more de-
grees of freedom make less and less difference. So the advantage (such as it is) of
the pooled method is greatest when the samples are small—just when it’s hardest
to check the conditions. And the difference in the degrees of freedom is greatest
when the variances are not equal—just when you can’t use the pooled method
anyway. Our advice is to use the two-sample t methods to compare means.

Pooling may make sense in a randomized comparative experiment. We start
by assigning our experimental units to treatments at random, as the experimenter
did with the termites. We know that at the start of the experiment each treatment
group is a random sample from the same population,10 so each treatment group
begins with the same population variance. In this case, assuming that the vari-
ances are equal after we apply the treatment is the same as assuming that the
treatment doesn’t change the variance. When we test whether the true means are
equal, we may be willing to go a bit farther and say that the treatments made no
difference at all. For example, we might suspect that the treatment is no different
from the placebo offered as a control. Then it’s not much of a stretch to assume
that the variances have remained equal. It’s still an assumption, and there are con-
ditions that need to be checked (make the boxplots, make the boxplots, make the
boxplots), but at least it’s a plausible assumption.

This line of reasoning is important. The methods used to analyze comparative
experiments do pool variances in exactly this way and defend the pooling with a
version of this argument. The chapter on Analysis of Variance on the DVD intro-
duces these methods.

the P-value is still 6 0.001

10 That is, the population of experimental subjects. Remember that to be valid, experiments
do not need a representative sample drawn from a population because we are not trying to
estimate a population model parameter.

Because the advantages of
pooling are small, and you
are allowed to pool only
rarely (when the Equal
Variances Assumption is
met), don’t.

It’s never wrong not to
pool.

576 CHAPTER 24    Comparing Means

WHAT CAN GO WRONG?
u Watch out for paired data. The Independent Groups Assumption deserves special

attention. If the samples are not independent, you can’t use these two-sample
methods. This is probably the main thing that can go wrong when using these
two-sample methods. The methods of this chapter can be used only if the obser-
vations in the two groups are independent. Matched-pairs designs in which the ob-
servations are deliberately related arise often and are important. The next chapter
deals with them.

u Look at the plots. The usual (by now) cautions about checking for outliers and non-
Normal distributions apply, of course. The simple defense is to make and examine
boxplots. You may be surprised how often this simple step saves you from the
wrong or even absurd conclusions that can be generated by a single undetected out-
lier. You don’t want to conclude that two methods have very different means just be-
cause one observation is atypical.
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What Have We Learned? 577

Do what we say, not what we do . . . Precision machines used in industry
often have a bewildering number of parameters that have to be set, so experiments
are performed in an attempt to try to find the best settings. Such was the case for a
hole-punching machine used by a well-known computer manufacturer to make
printed circuit boards. The data were analyzed by one of the authors, but because
he was in a hurry, he didn’t look at the boxplots first and just performed 
t-tests on the experimental factors. When he found extremely small P-values even
for factors that made no sense, he plotted the data. Sure enough, there was one ob-
servation 1,000,000 times bigger than the others. It turns out that it had been
recorded in microns (millionths of an inch), while all the rest were in inches.

CONNECTIONS
The structure and reasoning of inference methods for comparing two means are very similar to
what we used for comparing two proportions. Here we must estimate the standard errors inde-
pendent of the means, so we use Student’s t-models rather than the Normal.

We first learned about side-by-side boxplots in Chapter 5. There we made general statements
about the shape, center, and spread of each group. When we compared groups, we asked whether
their centers looked different compared to how spread out the distributions were. Here we’ve made
that kind of thinking precise, with confidence intervals for the difference and tests of whether the
means are the same.

We use Student’s t as we did for single sample means, and for the same reasons: We are using
standard errors from the data to estimate the standard deviation of the sample statistic. As before,
to work with Student’s t-models, we need to check the Nearly Normal Condition. Histograms and
Normal probability plots are the best methods for such checks.

As always, we’ve decided whether a statistic is large by comparing it with its standard error.
In this case, our statistic is the difference in means.

We pooled data to find a standard deviation when we tested the hypothesis of equal proportions.
For that test, the assumption of equal variances was a consequence of the null hypothesis that the
proportions were equal, so it didn’t require an extra assumption. When two proportions are equal,
so are their variances. But means don’t have a linkage with their corresponding variances; so to use
pooled-t methods, we must make the additional assumption of equal variances. When we can make
this assumption, the pooled variance calculations are very similar to those for proportions, combin-
ing the squared deviations of each group from its own mean to find a common variance.

WHAT HAVE WE LEARNED?

Are the means of two groups the same? If not, how different are they? We’ve learned to use statisti-
cal inference to compare the means of two independent groups.

u We’ve seen that confidence intervals and hypothesis tests about the difference between two
means, like those for an individual mean, use t-models.

u Once again we’ve seen the importance of checking assumptions that tell us whether our method
will work.

u We’ve seen that, as when comparing proportions, finding the standard error for the difference in
sample means depends on believing that our data come from independent groups. Unlike pro-
portions, however, pooling is usually not the best choice here.

u And we’ve seen once again that we can add variances of independent random variables to find
the standard deviation of the difference in two independent means.

u Finally, we’ve learned that the reasoning of statistical inference remains the same; only the
mechanics change.
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Terms
Two-sample t methods 562. Two-sample t methods allow us to draw conclusions about the difference between the means

of two independent groups. The two-sample methods make relatively few assumptions about the
underlying populations, so they are usually the method of choice for comparing two sample means.
However, the Student’s t-models are only approximations for their true sampling distribution. To
make that approximation work well, the two-sample t methods have a special rule for estimating
degrees of freedom.

Two-sample t-interval for the 564. A confidence interval for the difference between the means of two independent groups found as
difference between means

where

and the number of degrees of freedom is given by a special formula (see footnote 3 on page 562).

Two-sample t-test for the 569. A hypothesis test for the difference between the means of two independent groups. It tests the 
difference between means null hypothesis

where the hypothesized difference, , is almost always 0, using the statistic

with the number of degrees of freedom given by the special formula.

Pooling 574. Data from two or more populations may sometimes be combined, or pooled, to estimate a sta-
tistic (typically a pooled variance) when we are willing to assume that the estimated value is the same
in both populations. The resulting larger sample size may lead to an estimate with lower sample vari-
ance. However, pooled estimates are appropriate only when the required assumptions are true.

Pooled-t methods 575. Pooled-t methods provide inferences about the difference between the means of two inde-
pendent populations under the assumption that both populations have the same standard deviation.
When the assumption is justified, pooled-t methods generally produce slightly narrower confidence
intervals and more powerful significance tests than two-sample t methods. When the assumption is
not justified, they generally produce worse results—sometimes substantially worse.

We recommend that you use two-sample t methods instead.

Skills
u Be able to recognize situations in which we want to do inference on the difference between the

means of two independent groups.

u Know how to examine your data for violations of conditions that would make inference about the
difference between two population means unwise or invalid.

u Be able to recognize when a pooled-t procedure might be appropriate and be able to explain why
you decided to use a two-sample method anyway.

u Be able to perform a two-sample t-test using a statistics package or calculator (at least for find-
ing the degrees of freedom).

u Be able to interpret a test of the null hypothesis that the means of two independent groups are
equal. (If the test is a pooled t-test, your interpretation should include a defense of your assump-
tion of equal variances.)

tdf =

(y1 - y2) - ¢0

SE(y1 - y2)
,

¢0

H0: m1 - m2 = ¢0,

SE(y1 - y2) = B
s2

1

n1
+

s2
2

n2

( y1 - y2) ; t*df * SE(y1 - y2)
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Most statistics packages compute the test statistic for you and report a P-value corresponding to that sta-
tistic. And, of course, statistics packages make it easy to examine the boxplots and histograms of the two
groups, so you have no excuse for skipping this important check.

Some statistics software automatically tries to test whether the variances of the two groups are equal. Some
automatically offer both the two-sample-t and pooled-t results. Ignore the test for the variances; it has little
power in any situation in which its results could matter. If the pooled and two-sample methods differ in any im-
portant way, you should stick with the two-sample method. Most likely, the Equal Variance Assumption needed
for the pooled method has failed.

The degrees of freedom approximation usually gives a fractional value. Most packages seem to round the approxi-
mate value down to the next smallest integer (although they may actually compute the P-value with the frac-
tional value, gaining a tiny amount of power).

TWO-SAMPLE METHODS ON THE COMPUTER

Here’s some typical computer package output with comments:

May just say “difference of means”

df found from approximation
formula and rounded down.
The unrounded value may be
given, or may be used to find 
the P-value.

Some programs will draw a
conclusion about the test. Others
just give the P-value and let you
decide for yourself. 

Many programs give far too many
digits. Ignore the excess digits.

Test Statistic

2–Sample t–Test of m1–m2 = 0 vs � 0

Difference Between Means = 0.99145299 t-Statistic = 1.540
w/196 df
Fail to reject Ho at Alpha = 0.05
P = 0.1251

of beef and meat hot dogs. The resulting 90% confidence
interval for is .
a) The endpoints of this confidence interval are negative

numbers. What does that indicate?
b) What does the fact that the confidence interval does

not contain 0 indicate?
c) If we use this confidence interval to test the hypothe-

sis that , what’s the corresponding
alpha level?

4. Washers. In June 2007, Consumer Reports examined top-
loading and front-loading washing machines, testing
samples of several different brands of each type. One of
the variables the article reported was “cycle time”, the
number of minutes it took each machine to wash a load
of clothes. Among the machines rated good to excellent,
the 98% confidence interval for the difference in mean
cycle time is .
a) The endpoints of this confidence interval are negative

numbers. What does that indicate?

(-40, -22)(mTop - mFront)

mMeat - mBeef = 0

(-6.5, -1.4)mMeat - mBeef

EXERCISES

1. Dogs and calories. In July 2007, Consumer Reports ex-
amined the calorie content of two kinds of hot dogs: meat
(usually a mixture of pork, turkey, and chicken) and all
beef. The researchers purchased samples of several differ-
ent brands. The meat hot dogs averaged 111.7 calories,
compared to 135.4 for the beef hot dogs. A test of the null
hypothesis that there’s no difference in mean calorie con-
tent yields a P-value of 0.124. Would a 95% confidence
interval for include 0? Explain.

2. Dogs and sodium. The Consumer Reports article de-
scribed in Exercise 1 also listed the sodium content (in
mg) for the various hot dogs tested. A test of the null hy-
pothesis that beef hot dogs and meat hot dogs don’t differ
in the mean amounts of sodium yields a P-value of 0.11.
Would a 95% confidence interval for in-
clude 0? Explain.

3. Dogs and fat. The Consumer Reports article described in
Exercise 1 also listed the fat content (in grams) for samples

mMeat - mBeef

mMeat - mBeef
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Most statistics packages compute the test statistic for you and report a P-value corresponding to that sta-
tistic. And, of course, statistics packages make it easy to examine the boxplots and histograms of the two
groups, so you have no excuse for skipping this important check.

Some statistics software automatically tries to test whether the variances of the two groups are equal. Some
automatically offer both the two-sample-t and pooled-t results. Ignore the test for the variances; it has little
power in any situation in which its results could matter. If the pooled and two-sample methods differ in any im-
portant way, you should stick with the two-sample method. Most likely, the Equal Variance Assumption needed
for the pooled method has failed.

The degrees of freedom approximation usually gives a fractional value. Most packages seem to round the approxi-
mate value down to the next smallest integer (although they may actually compute the P-value with the frac-
tional value, gaining a tiny amount of power).

TWO-SAMPLE METHODS ON THE COMPUTER

Here’s some typical computer package output with comments:

May just say “difference of means”

df found from approximation
formula and rounded down.
The unrounded value may be
given, or may be used to find 
the P-value.

Some programs will draw a
conclusion about the test. Others
just give the P-value and let you
decide for yourself. 

Many programs give far too many
digits. Ignore the excess digits.

Test Statistic

2–Sample t–Test of m1–m2 = 0 vs � 0

Difference Between Means = 0.99145299 t-Statistic = 1.540
w/196 df
Fail to reject Ho at Alpha = 0.05
P = 0.1251

of beef and meat hot dogs. The resulting 90% confidence
interval for is .
a) The endpoints of this confidence interval are negative

numbers. What does that indicate?
b) What does the fact that the confidence interval does

not contain 0 indicate?
c) If we use this confidence interval to test the hypothe-

sis that , what’s the corresponding
alpha level?

4. Washers. In June 2007, Consumer Reports examined top-
loading and front-loading washing machines, testing
samples of several different brands of each type. One of
the variables the article reported was “cycle time”, the
number of minutes it took each machine to wash a load
of clothes. Among the machines rated good to excellent,
the 98% confidence interval for the difference in mean
cycle time is .
a) The endpoints of this confidence interval are negative

numbers. What does that indicate?

(-40, -22)(mTop - mFront)

mMeat - mBeef = 0

(-6.5, -1.4)mMeat - mBeef

EXERCISES

1. Dogs and calories. In July 2007, Consumer Reports ex-
amined the calorie content of two kinds of hot dogs: meat
(usually a mixture of pork, turkey, and chicken) and all
beef. The researchers purchased samples of several differ-
ent brands. The meat hot dogs averaged 111.7 calories,
compared to 135.4 for the beef hot dogs. A test of the null
hypothesis that there’s no difference in mean calorie con-
tent yields a P-value of 0.124. Would a 95% confidence
interval for include 0? Explain.

2. Dogs and sodium. The Consumer Reports article de-
scribed in Exercise 1 also listed the sodium content (in
mg) for the various hot dogs tested. A test of the null hy-
pothesis that beef hot dogs and meat hot dogs don’t differ
in the mean amounts of sodium yields a P-value of 0.11.
Would a 95% confidence interval for in-
clude 0? Explain.

3. Dogs and fat. The Consumer Reports article described in
Exercise 1 also listed the fat content (in grams) for samples

mMeat - mBeef

mMeat - mBeef
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b) What does the fact that the confidence interval does
not contain 0 indicate?

c) If we use this confidence interval to test the hypothe-
sis that , what’s the corresponding
alpha level?

5. Dogs and fat, second helping. In Exercise 3, we 
saw a 90% confidence interval of grams for

, the difference in mean fat content for meat
vs. all-beef hot dogs. Explain why you think each of the
following statements is true or false:
a) If I eat a meat hot dog instead of a beef dog, there’s a

90% chance I’ll consume less fat.
b) 90% of meat hot dogs have between 1.4 and 6.5 grams

less fat than a beef hot dog.
c) I’m 90% confident that meat hot dogs average 1.4–

6.5 grams less fat than the beef hot dogs.
d) If I were to get more samples of both kinds of hot dogs,

90% of the time the meat hot dogs would average
1.4–6.5 grams less fat than the beef hot dogs.

e) If I tested many samples, I’d expect about 90% of the
resulting confidence intervals to include the true dif-
ference in mean fat content between the two kinds of
hot dogs.

6. Second load of wash. In Exercise 4, we saw a 98% con-
fidence interval of minutes for ,
the difference in time it takes top-loading and front-
loading washers to do a load of clothes. Explain why you
think each of the following statements is true or false:
a) 98% of top loaders are 22 to 40 minutes faster than

front loaders.
b) If I choose the laundromat’s top loader, there’s a 98%

chance that my clothes will be done faster than if I had
chosen the front loader.

c) If I tried more samples of both kinds of washing ma-
chines, in about 98% of these samples I’d expect the
top loaders to be an average of 22 to 40 minutes faster.

d) If I tried more samples, I’d expect about 98% of the
resulting confidence intervals to include the true
difference in mean cycle time for the two types of
washing machines.

e) I’m 98% confident that top loaders wash clothes an
average of 22 to 40 minutes faster than front-loaders.

7. Learning math. The Core Plus Mathematics Project
(CPMP) is an innovative approach to teaching Mathemat-
ics that engages students in group investigations and
mathematical modeling. After field tests in 36 high
schools over a three-year period, researchers compared
the performances of CPMP students with those taught
using a traditional curriculum. In one test, students had
to solve applied Algebra problems using calculators.
Scores for 320 CPMP students were compared to those of
a control group of 273 students in a traditional Math
program. Computer software was used to create a confi-
dence interval for the difference in mean scores. (Journal
for Research in Mathematics Education, 31, no. 3[2000])

Conf level: 95% Variable: Mu(CPMP) – Mu(Ctrl)

Inter val: (5.573, 11.427)

a) What’s the margin of error for this confidence interval?

mTop - mFront(-40, -22)

mMeat - mBeef

(-6.5, -1.4)

mTop - mFront = 0

b) If we had created a 98% CI, would the margin of error
be larger or smaller?

c) Explain what the calculated interval means in context.
d) Does this result suggest that students who learn Math-

ematics with CPMP will have significantly higher
mean scores in Algebra than those in traditional
programs? Explain.

8. Stereograms. Stereograms appear to be composed en-
tirely of random dots. However, they contain separate im-
ages that a viewer can “fuse” into a three-dimensional (3D)
image by staring at the dots while defocusing the eyes. An
experiment was performed to determine whether knowl-
edge of the form of the embedded image affected the time
required for subjects to fuse the images. One group of sub-
jects (group NV) received no information or just verbal in-
formation about the shape of the embedded object. A second
group (group VV) received both verbal information and vi-
sual information (specifically, a drawing of the object). The
experimenters measured how many seconds it took for the
subject to report that he or she saw the 3D image.

2-Sample t-Inter val for m1 – m2

Conf level = 90% df = 70

m(NV) – m(VV) inter val: (0.55, 5.47)

a) Interpret your interval in context.
b) Does it appear that viewing a picture of the image

helps people “see” the 3D image in a stereogram?
c) What’s the margin of error for this interval?
d) Explain what the 90% confidence level means.
e) Would you expect a 99% confidence level to be wider

or narrower? Explain.
f) Might that change your conclusion in part b? Explain.

9. CPMP, again. During the study described in Exer-
cise 7, students in both CPMP and traditional classes took
another Algebra test that did not allow them to use calcu-
lators. The table below shows the results. Are the mean
scores of the two groups significantly different?

Math Program n Mean SD

CPMP 312 29.0 18.8
Traditional 265 38.4 16.2

Performance on Algebraic Symbolic 
Manipulation Without Use of Calculators

a) Write an appropriate hypothesis.
b) Do you think the assumptions for inference are satis-

fied? Explain.
c) Here is computer output for this hypothesis test.

Explain what the P-value means in this context.

2-Sample t-T est of m1 - m2 0

t-Statistic = -6.451 w/574.8761 df

P 6 0.0001

d) State a conclusion about the CPMP program.

10. CPMP and word problems. The study of the new
CPMP Mathematics methodology described in Exercise 7
also tested students’ abilities to solve word problems. This

Z
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table shows how the CPMP and traditional groups per-
formed. What do you conclude?

Math Program n Mean SD

CPMP 320 57.4 32.1 
Traditional 273 53.9 28.5

a) What do the boxplots suggest about differences be-
tween male and female pulse rates?

b) Is it appropriate to analyze these data using the meth-
ods of inference discussed in this chapter? Explain.

c) Create a 90% confidence interval for the difference in
mean pulse rates.

d) Does the confidence interval confirm your answer to
part a? Explain.

13. Cereal. The data below show the sugar content (as a per-
centage of weight) of several national brands of children’s
and adults’ cereals. Create and interpret a 95% confidence
interval for the difference in mean sugar content. Be sure to
check the necessary assumptions and conditions.

Sex

Male Female

Count 28 24
Mean 72.75 72.625
Median 73 73
StdDev 5.37225 7.69987
Range 20 29
IQR 9 12.5

82.5

75.0

67.5

60.0 

Pu
ls

e

Male
Sex

Female

Children’s cereals: 40.3, 55, 45.7, 43.3, 50.3, 45.9,

53.5, 43, 44.2, 44, 47.4, 44, 33.6, 55.1, 48.8, 50.4,

37.8, 60.3, 46.6

Adults’ cereals: 20, 30.2, 2.2, 7.5, 4.4, 22.2, 16.6,

14.5, 21.4, 3.3, 6.6, 7.8, 10.6, 16.2, 14.5, 4.1, 15.8,

4.1, 2.4, 3.5, 8.5, 10, 1, 4.4, 1.3, 8.1, 4.7, 18.4

14. Egyptians. Some archaeologists theorize that ancient
Egyptians interbred with several different immigrant
populations over thousands of years. To see if there is any
indication of changes in body structure that might have
resulted, they measured 30 skulls of male Egyptians 
dated from 4000 B.C.E and 30 others dated from 200 B.C.E.
(A. Thomson and R. Randall-Maciver, Ancient Races of
the Thebaid, Oxford: Oxford University Press, 1905)
a) Are these data appropriate for inference? Explain.
b) Create a 95% confidence interval for the difference in

mean skull breadth between these two eras.
c) Do these data provide evidence that the mean breadth

of males’ skulls changed over this period? Explain.

T

T

Maximum Skull Breadth (mm)

4000 B.C.E. 200 B.C.E.

131 131 141 131
125 135 141 129
131 132 135 136
119 139 133 131
136 132 131 139
138 126 140 144
139 135 139 141
125 134 140 130
131 128 138 133
134 130 132 138
129 138 134 131
134 128 135 136
126 127 133 132
132 131 136 135
141 124 134 141

15. Reading. An educator believes that new reading activi-
ties for elementary school children will improve reading
comprehension scores. She randomly assigns third
graders to an eight-week program in which some will use
these activities and others will experience traditional
teaching methods. At the end of the experiment, both
groups take a reading comprehension exam. Their scores
are shown in the back-to-back stem-and-leaf display. Do
these results suggest that the new activities are better?
Test an appropriate hypothesis and state your conclusion.

T

11. Commuting. A man who moves to a new city sees that
there are two routes he could take to work. A neighbor
who has lived there a long time tells him Route A will
average 5 minutes faster than Route B. The man decides
to experiment. Each day he flips a coin to determine
which way to go, driving each route 20 days. He finds
that Route A takes an average of 40 minutes, with stan-
dard deviation 3 minutes, and Route B takes an average
of 43 minutes, with standard deviation 2 minutes. His-
tograms of travel times for the routes are roughly sym-
metric and show no outliers.
a) Find a 95% confidence interval for the difference in

average commuting time for the two routes.
b) Should the man believe the old-timer’s claim that he

can save an average of 5 minutes a day by always
driving Route A? Explain.

12. Pulse rates. A researcher wanted to see whether there
is a significant difference in resting pulse rates for men
and women. The data she collected are displayed in the
boxplots and summarized below.

New Activities Control
1
2
3
4
5
6
7
8

0
0
3
1
3
0

5

7
6
7
2
5
2

8
7
2
5

22238

4
3
3
2
1
1

3
3
2

3
4
7

6
6

9
789
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16. Streams. Researchers collected samples of water from
streams in the Adirondack Mountains to investigate the
effects of acid rain. They measured the pH (acidity) of the
water and classified the streams with respect to the kind of
substrate (type of rock over which they flow). A lower pH
means the water is more acidic. Here is a plot of the pH of
the streams by substrate (limestone, mixed, or shale):

8.0

7.6

7.2

6.8 

6.4 

pH

L M S

Substrate Type

Here are selected parts of a software analysis comparing
the pH of streams with limestone and shale substrates:

2-Sample t-T est of m1 – m2

Dif ference Between Means = 0.735

t-Statistic = 16.30 w/133 df

p # 0.0001

a) State the null and alternative hypotheses for this test.
b) From the information you have, do the assumptions

and conditions appear to be met?
c) What conclusion would you draw?

17. Baseball 2006. American League baseball teams play
their games with the designated hitter rule, meaning that
pitchers do not bat. The league believes that replacing the
pitcher, traditionally a weak hitter, with another player in
the batting order produces more runs and generates more
interest among fans. Below are the average numbers of
runs scored in American League and National League
stadiums for the 2006 season.

American National

11.4 9.9 10.5 9.5
10.5 9.7 10.3 9.4
10.4 9.1 10.0 9.1
10.3 9.0 10.0 9.0
10.2 9.0 9.7 9.0
10.0 8.9 9.7 8.9
9.9 8.8 9.6 8.9

9.5 7.9

T

a) Create an appropriate display of these data. What do
you see?

b) With a 95% confidence interval, estimate the mean
number of runs scored in American League games.

c) Coors Field, in Denver, stands a mile above sea level, 
an altitude far greater than that of any other National
League ball park. Some believe that the thinner air makes
it harder for pitchers to throw curve balls and easier for

batters to hit the ball a long way. Do you think the 10.5
runs scored per game at Coors is unusual? Explain.

d) Explain why you should not use two separate confi-
dence intervals to decide whether the two leagues
differ in average number of runs scored.

18. Handy. A factory hiring people to work on an assembly
line gives job applicants a test of manual agility. This test
counts how many strangely shaped pegs the applicant can
fit into matching holes in a one-minute period. The table
below summarizes the data by sex of the job applicant.
Assume that all conditions necessary for inference are met.

Male Female

Number of subjects 50 50
Pegs placed:

Mean 19.39 17.91
SD 2.52 3.39

a) Find 95% confidence intervals for the average number
of pegs that males and females can each place.

b) Those intervals overlap. What does this suggest about
any sex-based difference in manual agility?

c) Find a 95% confidence interval for the difference in
the mean number of pegs that could be placed by men
and women.

d) What does this interval suggest about any difference
in manual agility between men and women?

e) The two results seem contradictory. Which method is
correct: doing two-sample inference or doing one-
sample inference twice?

f) Why don’t the results agree?

19. Double header 2006. Do the data in Exercise 17 sug-
gest that the American League’s designated hitter rule
may lead to more runs?
a) Using a 95% confidence interval, estimate the differ-

ence between the mean number of runs scored in
American and National League games.

b) Interpret your interval.
c) Does that interval suggest that the two leagues may

differ in average number of runs scored per game?

20. Hard water. In an investigation of environmental
causes of disease, data were collected on the annual mor-
tality rate (deaths per 100,000) for males in 61 large towns
in England and Wales. In addition, the water hardness
was recorded as the calcium concentration (parts per mil-
lion, ppm) in the drinking water. The data set also notes,
for each town, whether it was south or north of Derby. Is
there a significant difference in mortality rates in the two
regions? Here are the summary statistics.

Summar y of: mortality
For categories in: Derby
Group Count Mean Median StdDev
North 34 1631.59 1631 138.470

South 27 1388.85 1369 151.114

a) Test appropriate hypotheses and state your conclusion.
b) On the next page, the boxplots of the two distributions

show an outlier among the data north of Derby. What
effect might that have had on your test?

T

T

T
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21. Job satisfaction. A company institutes an exercise break
for its workers to see if this will improve job satisfaction, as
measured by a questionnaire that assesses workers’ satis-
faction. Scores for 10 randomly selected workers before
and after implementation of the exercise program are
shown. The company wants to assess the effectiveness of
the exercise program. Explain why you can’t use the meth-
ods discussed in this chapter to do that. (Don’t worry, we’ll
give you another chance to do this the right way.)

a) Do these results indicate that viewer memory for ads
may differ depending on program content? A test of
the hypothesis that there is no difference in ad mem-
ory between programs with sexual content and those
with violent content has a P-value of 0.136. State your
conclusion.

b) Is there evidence that viewer memory for ads may dif-
fer between programs with sexual content and those
with neutral content? Test an appropriate hypothesis
and state your conclusion.

24. Ad campaign. You are a consultant to the marketing
department of a business preparing to launch an ad cam-
paign for a new product. The company can afford to run
ads during one TV show, and has decided not to sponsor
a show with sexual content. You read the study described
in Exercise 23, then use a computer to create a confidence
interval for the difference in mean number of brand
names remembered between the groups watching violent
shows and those watching neutral shows.

TWO-SAMPLE T

95% CI FOR MUviol – MUneut: (–1.578, – 0.602)

a) At the meeting of the marketing staff, you have to ex-
plain what this output means. What will you say?

b) What advice would you give the company about the
upcoming ad campaign?

25. Sex and violence II. In the study described in Exer-
cise 23, the researchers also contacted the subjects again,
24 hours later, and asked them to recall the brands
advertised. Results are summarized below.

T

2000

1800

1600

1400

1200

M
or

ta
lit

y

North
Derby

South

Worker 
Number

Job Satisfaction Index

Before After

1 34 33
2 28 36
3 29 50
4 45 41
5 26 37
6 27 41
7 24 39
8 15 21
9 15 20

10 27 37

22. Summer school. Having done poorly on their math
final exams in June, six students repeat the course in
summer school, then take another exam in August. If we
consider these students representative of all students
who might attend this summer school in other years, do
these results provide evidence that the program is
worthwhile?

June 54 49 68 66 62 62
Aug. 50 65 74 64 68 72

23. Sex and violence. In June 2002, the Journal of Applied
Psychology reported on a study that examined whether
the content of TV shows influenced the ability of viewers
to recall brand names of items featured in the commer-
cials. The researchers randomly assigned volunteers to
watch one of three programs, each containing the same
nine commercials. One of the programs had violent con-
tent, another sexual content, and the third neutral con-
tent. After the shows ended, the subjects were asked to
recall the brands of products that were advertised. Here
are summaries of the results:

Program Type

Violent Sexual Neutral

No. of subjects 108 108 108
Brands recalled

Mean 2.08 1.71 3.17
SD 1.87 1.76 1.77

Program Type

Violent Sexual Neutral

No. of subjects 101 106 103
Brands recalled

Mean 3.02 2.72 4.65
SD 1.61 1.85 1.62 

a) Is there a significant difference in viewers’ abilities to
remember brands advertised in shows with violent vs.
neutral content?

b) Find a 95% confidence interval for the difference in
mean number of brand names remembered between
the groups watching shows with sexual content and
those watching neutral shows. Interpret your interval
in this context.

26. Ad recall. In Exercises 23 and 25, we see the number
of advertised brand names people recalled immediately
after watching TV shows and 24 hours later. Strangely
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enough, it appears that they remembered more about the
ads the next day. Should we conclude this is true in gen-
eral about people’s memory of TV ads?
a) Suppose one analyst conducts a two-sample hypothe-

sis test to see if memory of brands advertised during
violent TV shows is higher 24 hours later. If his 
P-value is 0.00013, what might he conclude?

b) Explain why his procedure was inappropriate. Which
of the assumptions for inference was violated?

c) How might the design of this experiment have tainted
the results?

d) Suggest a design that could compare immediate
brand-name recall with recall one day later.

27. Hungry? Researchers investigated how the size of a
bowl affects how much ice cream people tend to scoop
when serving themselves.10 At an “ice cream social,” peo-
ple were randomly given either a 17 oz or a 34 oz bowl
(both large enough that they would not be filled to capac-
ity). They were then invited to scoop as much ice cream
as they liked. Did the bowl size change the selected por-
tion size? Here are the summaries:

Test an appropriate hypothesis and state your conclu-
sions. Assume any assumptions and conditions that you
cannot test are sufficiently satisfied to proceed.

28. Thirsty? Researchers randomly assigned participants
either a tall, thin “highball” glass or a short, wide “tum-
bler,” each of which held 355 ml. Participants were asked
to pour a shot ( ) into their glass. Did the
shape of the glass make a difference in how much liquid
they poured?11 Here are the summaries:

1.5 oz = 44.3 ml

Grade 4 Grade 8 Grade 12

Yes
No

100

150

200

156
143

159
140

153
136

M
ea

n 
Sc

or
e

Small Bowl Large Bowl

n 26 n 22
y 5.07 oz y 6.58 oz
s 1.84 oz s 2.91 oz

highball tumbler

n 99 n 99
y 42.2 ml y 60.9 ml
s 16.2 ml s 17.9 ml

Test an appropriate hypothesis and state your conclu-
sions. Assume any assumptions and conditions that you
cannot test are sufficiently satisfied to proceed.

29. Lower scores? Newspaper headlines recently an-
nounced a decline in science scores among high school
seniors. In 2000, a total of 15,109 seniors tested by The
National Assessment in Education Program (NAEP)

10 Brian Wansink, Koert van Ittersum, and James E. Painter,
“Ice Cream Illusions: Bowls, Spoons, and Self-Served Portion
Sizes,” Am J Prev Med 2006.
11 Brian Wansink and Koert van Ittersum, “Shape of Glass and
Amount of Alcohol Poured: Comparative Study of Effect of
Practice and Concentration,” BMJ 2005;331;1512–1514.

scored a mean of 147 points. Four years earlier, 7537 sen-
iors had averaged 150 points. The standard error of the
difference in the mean scores for the two groups was 1.22.
a) Have the science scores declined significantly? Cite

appropriate statistical evidence to support your con-
clusion.

b) The sample size in 2000 was almost double that in
1996. Does this make the results more convincing or
less? Explain.

30. The Internet. The NAEP report described in Exercise
29 compared science scores for students who had home
Internet access to the scores of those who did not, as
shown in the graph. They report that the differences are
statistically significant.
a) Explain what “statistically significant” means in this

context.
b) If their conclusion is incorrect, which type of error did

the researchers commit?
c) Does this prove that using the Internet at home can

improve a student’s performance in science?

31. Running heats. In Olympic running events, prelimi-
nary heats are determined by random draw, so we should
expect that the abilities of runners in the various heats to
be about the same, on average. Here are the times (in sec-
onds) for the 400-m women’s run in the 2004 Olympics in
Athens for preliminary heats 2 and 5. Is there any evi-
dence that the mean time to finish is different for ran-
domized heats? Explain. Be sure to include a discussion
of assumptions and conditions for your analysis.

Country Name Heat Time

USA HENNAGAN Monique 2 51.02
BUL DIMITROVA Mariyana 2 51.29
CHA NADJINA Kaltouma 2 51.50
JAM DAVY Nadia 2 52.04
BRA ALMIRAO Maria Laura 2 52.10
FIN MYKKANEN Kirsi 2 52.53
CHN BO Fanfang 2 56.01
BAH WILLIAMS-DARLING Tonique 5 51.20
BLR USOVICH Svetlana 5 51.37
UKR YEFREMOVA Antonina 5 51.53
CMR NGUIMGO Mireille 5 51.90
JAM BECKFORD Allison 5 52.85
TOG THIEBAUD-KANGNI Sandrine 5 52.87
SRI DHARSHA K V Damayanthi 5 54.58

32. Swimming heats. In Exercise 31 we looked at the
times in two different heats for the 400-m women’s run
from the 2004 Olympics. Unlike track events, swimming
heats are not determined at random. Instead, swimmers

T

T
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are seeded so that better swimmers are placed in later
heats. Here are the times (in seconds) for the women’s
400-m freestyle from heats 2 and 5. Do these results sug-
gest that the mean times of seeded heats are not equal?
Explain. Include a discussion of assumptions and condi-
tions for your analysis.

Country Name Heat Time

ARG BIAGIOLI Cecilia Elizabeth 2 256.42
SLO CARMAN Anja 2 257.79
CHI KOBRICH Kristel 2 258.68
MKD STOJANOVSKA Vesna 2 259.39
JAM ATKINSON Janelle 2 260.00
NZL LINTON Rebecca 2 261.58
KOR HA Eun-Ju 2 261.65
UKR BERESNYEVA Olga 2 266.30
FRA MANAUDOU Laure 5 246.76
JPN YAMADA Sachiko 5 249.10
ROM PADURARU Simona 5 250.39
GER STOCKBAUER Hannah 5 250.46
AUS GRAHAM Elka 5 251.67
CHN PANG Jiaying 5 251.81
CAN REIMER Brittany 5 252.33
BRA FERREIRA Monique 5 253.75

33. Tees. Does it matter what kind of tee a golfer places the
ball on? The company that manufactures “Stinger” tees
claims that the thinner shaft and smaller head will lessen
drag, reducing spin and allowing the ball to travel far-
ther. In August 2003, Golf Laboratories, Inc., compared
the distance traveled by golf balls hit off regular wooden
tees to those hit off Stinger tees. All the balls were struck
by the same golf club using a robotic device set to swing
the club head at approximately 95 miles per hour. Sum-
mary statistics from the test are shown in the table. As-
sume that 6 balls were hit off each tee and that the data
were suitable for inference.

Total 
Distance 
(yards)

Ball 
Velocity 
(mph)

Club 
Velocity 
(mph)

Regular Avg. 227.17 127.00 96.17
tee SD 2.14 0.89 0.41
Stinger Avg. 241.00 128.83 96.17
tee SD 2.76 0.41 0.52

Is there evidence that balls hit off the Stinger tees would
have a higher initial velocity?

34. Golf again. Given the test results on golf tees described
in Exercise 33, is there evidence that balls hit off Stinger tees
would travel farther? Again, assume that 6 balls were hit off
each tee and that the data were suitable for inference.

35. Crossing Ontario. Between 1954 and 2003, swimmers
have crossed Lake Ontario 43 times. Both women and
men have made the crossing. Here are some plots (we’ve

omitted a crossing by Vikki Keith, who swam a round
trip—North to South to North—in 3390 minutes):

F M
Sex

2000
8

6

4

2

750 1250 1750

1750

1500

1250

1000

Time (min)

Ti
m

e 
(m

in
)

Time (min)

Female

8

6

4

2

750 1250 1750

Male

The summary statistics are:

Summary of Time (min)

Group Count Mean StdDev

F 22 1271.59 261.111
M 20 1196.75 304.369

How much difference is there between the mean amount
of time (in minutes) it would take female and male swim-
mers to swim the lake?
a) Construct and interpret a 95% confidence interval

for the difference between female and male times.
b) Comment on the assumptions and conditions.

36. Music and memory. Is it a good idea to listen to music
when studying for a big test? In a study conducted by
some Statistics students, 62 people were randomly as-
signed to listen to rap music, music by Mozart, or no mu-
sic while attempting to memorize objects pictured on a
page. They were then asked to list all the objects they
could remember. Here are summary statistics:

Rap Mozart No Music

Count 29 20 13
Mean 10.72 10.00 12.77
SD 3.99 3.19 4.73

a) Does it appear that it is better to study while listening
to Mozart than to rap music? Test an appropriate hy-
pothesis and state your conclusion.

b) Create a 90% confidence interval for the mean differ-
ence in memory score between students who study to
Mozart and those who listen to no music at all. Inter-
pret your interval.

37. Rap. Using the results of the experiment described in
Exercise 36, does it matter whether one listens to rap mu-
sic while studying, or is it better to study without music
at all?
a) Test an appropriate hypothesis and state your

conclusion.
b) If you concluded there is a difference, estimate the size

of that difference with a confidence interval and ex-
plain what your interval means.
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38. Cuckoos. Cuckoos lay their eggs in the nests of other
(host) birds. The eggs are then adopted and hatched by
the host birds. But the potential host birds lay eggs of dif-
ferent sizes. Does the cuckoo change the size of her eggs
for different foster species? The numbers in the table are
lengths (in mm) of cuckoo eggs found in nests of three
different species of other birds. The data are drawn from
the work of O.M. Latter in 1902 and were used in a fun-
damental textbook on statistical quality control by L.H.C.
Tippett (1902–1985), one of the pioneers in that field.

CUCKOO EGG LENGTH (MM)

Foster Parent Species

Sparrow Robin Wagtail

20.85 21.05 21.05
21.65 21.85 21.85
22.05 22.05 21.85
22.85 22.05 21.85
23.05 22.05 22.05
23.05 22.25 22.45
23.05 22.45 22.65
23.05 22.45 23.05
23.45 22.65 23.05
23.85 23.05 23.25
23.85 23.05 23.45
23.85 23.05 24.05
24.05 23.05 24.05
25.05 23.05 24.05

23.25 24.85
23.85

Investigate the question of whether the mean length of
cuckoo eggs is the same for different species, and state
your conclusion.

JUST CHECKING
Answers

1. Randomization should balance unknown sources of
variability in the two groups of patients and helps us
believe the two groups are independent.

2. We can be 95% confident that after 4 weeks endo-
scopic surgery patients will have a mean pinch
strength between 0.04 kg and 2.96 kg higher than
open-incision patients.

3. The lower bound of this interval is close to 0, so the
difference may not be great enough that patients
could actually notice the difference. We may want to
consider other issues such as cost or risk in making a
recommendation about the two surgical procedures.

4. Without data, we can’t check the Nearly Normal
Condition.

5. : Mean pinch strength is the same after both
surgeries.

: Mean pinch strength is different after the two
surgeries.

6. With a P-value this low, we reject the null hypothesis.
We can conclude that mean pinch strength differs
after 4 weeks in patients who undergo endoscopic
surgery vs. patients who have open-incision surgery.
Results suggest that the endoscopic surgery patients
may be stronger, on average.

7. If some patients contributed two hands to the study,
then the groups may not be internally independent. It
is reasonable to assume that two hands from the
same patient might respond in similar ways to simi-
lar treatments.

(mE - mO Z 0)
HA

(mE - mO = 0)
H0

T
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FIGURE 25.1
Using boxplots to compare times in the
inner and outer lanes shows little be-
cause it ignores the fact that the skaters
raced in pairs.

WHO Olympic speed-
skaters

WHAT Time for women’s
1500 m

UNITS Seconds

WHEN 2006

WHERE Torino, Italy

WHY To see whether one
lane is faster than 
the other

Speed-skating races are run in pairs. Two skaters start at the same time, one
on the inner lane and one on the outer lane. Halfway through the race,
they cross over, switching lanes so that each will skate the same distance
in each lane. Even though this seems fair, at the 2006 Olympics some fans

thought there might have been an advantage to starting on the outside. After
all, the winner, Cindy Klassen, started on the outside and skated a remarkable
1.47 seconds faster than the silver medalist.

Here are the data for the women’s 1500-m race:

Inner Lane Outer Lane

Name Time Name Time

OLTEAN Daniela 129.24 (no competitor)
ZHANG Xiaolei 125.75 NEMOTO Nami 122.34
ABRAMOVA Yekaterina 121.63 LAMB Maria 122.12
REMPEL Shannon 122.24 NOH Seon Yeong 123.35
LEE Ju-Youn 120.85 TIMMER Marianne 120.45
ROKITA Anna Natalia 122.19 MARRA Adelia 123.07
YAKSHINA Valentina 122.15 OPITZ Lucille 122.75 
BJELKEVIK Hedvig 122.16 HAUGLI Maren 121.22
ISHINO Eriko 121.85 WOJCICKA Katarzyna 119.96
RANEY Catherine 121.17 BJELKEVIK Annette 121.03 
OTSU Hiromi 124.77 LOBYSHEVA Yekaterina 118.87 
SIMIONATO Chiara 118.76 JI Jia 121.85 
ANSCHUETZ THOMS Daniela 119.74 WANG Fei 120.13 
BARYSHEVA Varvara 121.60 van DEUTEKOM Paulien 120.15 
GROENEWOLD Renate 119.33 GROVES Kristina 116.74
RODRIGUEZ Jennifer 119.30 NESBITT Christine 119.15
FRIESINGER Anni 117.31 KLASSEN Cindy 115.27
WUST Ireen 116.90 TABATA Maki 120.77
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We can view this skating event as an experiment testing whether the lanes
were equally fast. Skaters were assigned to lanes randomly. The boxplots of times
recorded in the inner and outer lanes (look back a page) don’t show much differ-
ence. But that’s not the right way to compare these times. Conditions can change
during the day. The data are recorded for races run two at a time, so the two
groups are not independent.

Paired Data
Data such as these are called paired. We have the times for skaters in each lane for
each race. The races are run in pairs, so they can’t be independent. And since
they’re not independent, we can’t use the two-sample t methods. Instead, we can
focus on the differences in times for each racing pair.

Paired data arise in a number of ways. Perhaps the most common way is to
compare subjects with themselves before and after a treatment. When pairs arise
from an experiment, the pairing is a type of blocking. When they arise from an ob-
servational study, it is a form of matching.

Identifying paired dataFOR EXAMPLE

Do flexible schedules reduce the demand for resources? The Lake County, Illinois,
Health Department experimented with a flexible four-day workweek. For a year,
the department recorded the mileage driven by 11 field workers on an ordinary
five-day workweek. Then it changed to a flexible four-day workweek and
recorded mileage for another year.1 The data are shown.

Question: Why are these data paired?

The mileage data are paired because each driver’s mileage is
measured before and after the change in schedule. I’d expect
drivers who drove more than others before the schedule
change to continue to drive more afterwards, so the two sets
of mileages can’t be considered independent.

1 Charles S. Catlin, “Four-day Work Week Improves Environment,” Journal of Environmen-
tal Health, Denver, 59:7.

Pairing isn’t a problem; it’s an opportunity. If you know the data are paired,
you can take advantage of that fact—in fact, you must take advantage of it. You
may not use the two-sample and pooled methods of the previous chapter when
the data are paired. Remember: Those methods rely on the Pythagorean Theo-
rem of Statistics, and that requires the two samples be independent. Paired data
aren’t. There is no test to determine whether the data are paired. You must deter-
mine that from understanding how they were collected and what they mean
(check the W’s).

Once we recognize that the speed-skating data are matched pairs, it makes
sense to consider the difference in times for each two-skater race. So we look at
the pairwise differences:

Name 5-Day mileage 4-Day mileage

Jeff 2798 2914
Betty 7724 6112
Roger 7505 6177
Tom 838 1102
Aimee 4592 3281
Greg 8107 4997
Larry G. 1228 1695
Tad 8718 6606
Larry M. 1097 1063
Leslie 8089 6392
Lee 3807 3362
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The first skater raced alone, so we’ll omit that race. Because it is the differences
we care about, we’ll treat them as if they were the data, ignoring the original two
columns. Now that we have only one column of values to consider, we can use a
simple one-sample t-test. Mechanically, a paired t-test is just a one-sample t-test
for the means of these pairwise differences. The sample size is the number of
pairs.

So you’ve already seen the Show.

Assumptions and Conditions

Paired Data Assumption
Paired Data Assumption: The data must be paired. You can’t just decide to pair
data when in fact the samples are independent. When you have two groups with
the same number of observations, it may be tempting to match them up.

Don’t, unless you are prepared to justify your claim that the data are paired.
On the other hand, be sure to recognize paired data when you have them. Re-

member, two-sample t methods aren’t valid without independent groups, and
paired groups aren’t independent. Although this is a strictly required assumption,
it is one that can be easy to check if you understand how the data were collected.

Independence Assumption
Independence Assumption: If the data are paired, the groups are not independ-
ent. For these methods, it’s the differences that must be independent of each other.
There’s no reason to believe that the difference in speeds of one pair of races could
affect the difference in speeds for another pair.

Randomization Condition: Randomness can arise in many ways. The pairs
may be a random sample. In an experiment, the order of the two treatments may
be randomly assigned, or the treatments may be randomly assigned to one mem-
ber of each pair. In a before-and-after study, we may believe that the observed dif-
ferences are a representative sample from a population of interest. If we have any
doubts, we’ll need to include a control group to be able to draw conclusions.

Activity: Differences in
Means of Paired Groups. Are
married couples typically the
same age, or do wives tend to be
younger than their husbands, on
average?

Skating Pair Inner Time Outer Time Inner 2 Outer

1 129.24 ?
2 125.75 122.34 3.41
3 121.63 122.12 -0.49
4 122.24 123.35 -1.11
5 120.85 120.45 0.40
6 122.19 123.07 -0.88
7 122.15 122.75 -0.60
8 122.16 121.22 0.94
9 121.85 119.96 1.89

10 121.17 121.03 0.14
11 124.77 118.87 5.90
12 118.76 121.85 -3.09
13 119.74 120.13 -0.39
14 121.60 120.15 1.45
15 119.33 116.74 2.59
16 119.30 119.15 0.15
17 117.31 115.27 2.04
18 116.90 120.77 -3.87

BOCK_C25_0321570448 pp3.qxd  11/26/08  6:09 PM  Page 589



590 CHAPTER 25    Paired Samples and Blocks

What we want to know usually focuses our attention on where the randomness
should be.

In our example, skaters were assigned to the lanes at random.
10% Condition: We’re thinking of the speed-skating data as an experiment

testing the difference between lanes. The 10% Condition doesn’t apply to random-
ized experiments, where no sampling takes place.

Normal Population Assumption
We need to assume that the population of differences follows a Normal model. We
don’t need to check the individual groups.

Nearly Normal Condition: This condition can be checked with a histogram
or Normal probability plot of the differences—but not of the individual groups. As
with the one-sample t-methods, this assumption matters less the more pairs we
have to consider. You may be pleasantly surprised when you check this condition.
Even if your original measurements are skewed or bimodal, the differences may be
nearly Normal. After all, the individual who was way out in the tail on an initial
measurement is likely to still be out there on the second one, giving a perfectly or-
dinary difference.

10% of what?
A fringe benefit of checking
the 10% Condition is that it
forces us to think about what
population we’re hoping to
make inferences about.

Checking assumptions and conditionsFOR EXAMPLE

Recap: Field workers for a health department compared driving mileage
on a five-day work schedule with mileage on a new four-day schedule. 
To see if the new schedule changed the amount of driving they did, we’ll
look at paired differences in mileages before and after.

Question: Is it okay to use these data to test whether the new schedule
changed the amount of driving?

Ç Paired Data Assumption: The data are paired
because each value is the mileage driven by the same
person before and after a change in work schedule.

Ç Independence Assumption: The driving behavior 
of any individual worker is independent of the others,
so the differences are mutually independent.

Ç Randomization Condition: The mileages are the sums of
many individual trips, each of which experienced random
events that arose while driving. Repeating the experiment
in two new years would give randomly different values.

Ç Nearly Normal Condition: The histogram of the mileage dif-
ferences is unimodal and symmetric:

Since the assumptions and conditions are satisfied, it’s okay
to use paired-t methods for these data.
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The steps in testing a hypothesis for paired differences are very much like the
steps for a one-sample t-test for a mean.

Name
5-Day

mileage
4-Day

mileage Difference

Jeff 2798 2914 2116
Betty 7724 6112 1612
Roger 7505 6177 1328
Tom 838 1102 2264
Aimee 4592 3281 1311
Greg 8107 4997 3110
Larry G. 1228 1695 2467
Tad 8718 6606 2112
Larry M. 1097 1063 34
Leslie 8089 6392 1697
Lee 3807 3362 445
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THE PAIRED t-TEST
When the conditions are met, we are ready to test whether the mean of
paired differences is significantly different from zero. We test the hypothesis

where the d’s are the pairwise differences and is almost always 0.
We use the statistic

where is the mean of the pairwise differences, n is the number of pairs, and

is the ordinary standard error for the mean, applied to the differences.
When the conditions are met and the null hypothesis is true, we can

model the sampling distribution of this statistic with a Student’s t-model
with degrees of freedom, and use that model to obtain a P-value.n -  1

SE1d2

SE1d2 =

sd

1n
.

d

tn-1 =

d - ¢0

SE1d2
,

¢0

H0: md = ¢0,

Question: Was there a difference in speeds between the inner and outer speed-skating lanes at
the 2006 Winter Olympics?

A Paired t-TestSTEP-BY-STEP EXAMPLE

I want to know whether there really was a dif-
ference in the speeds of the two lanes for
speed skating at the 2006 Olympics. I have
data for the women’s 1500-m race.

Plan State what we want to know.

Identify the parameter we wish to esti-
mate. Here our parameter is the mean
difference in race times.

: Neither lane offered an advantage:

: The mean difference is different from zero:

md Z 0.

HA

md = 0.

H0

Identify the variables and check the W’s.

Hypotheses State the null and alterna-
tive hypotheses.

Although fans suspected one lane was
faster, we can’t use the data we have to
specify the direction of a test. We (and
Olympic officials) would be interested in
a difference in either direction, so we’d
better test a two-sided alternative.

Ç Independence Assumption: Each race is
independent of the others, so the differ-
ences are mutually independent.

The individual differences are all in 
seconds. We should expect the mean dif-
ference to be comparable in magnitude.

Model Think about the assumptions and
check the conditions.

REALITY CHECK
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The data give

 sd = 2.333 seconds.
 d = 0.499 seconds
 n = 17 pairs

Mechanics

n is the number of pairs—in this case, the
number of races.

is the mean difference.

is the standard deviation of the 
differences.
sd

d

Ç Paired Data Assumption: The data 
are paired because racers compete in
pairs.

Ç Randomization Condition: Skaters are
assigned to lanes at random. Repeating
the experiment with different pairings and
lane assignments would give randomly dif-
ferent values.

Ç Nearly Normal Condition: The histogram of
the differences is unimodal and symmetric:

State why you think the data are paired.
Simply having the same number of indi-
viduals in each group and displaying
them in side-by-side columns doesn’t
make them paired.

Think about what we hope to learn and
where the randomization comes from.
Here, the randomization comes from the
racer pairings and lane assignments.

The conditions are met, so I’ll use a Student’s
t-model with degrees of freedom,
and perform a paired t-test.

(n - 1) = 16

Make a picture—just one. Don’t plot 
separate distributions of the two
groups—that entirely misses the pairing.
For paired data, it’s the Normality of the
differences that we care about. Treat those
paired differences as you would a single
variable, and check the Nearly Normal
Condition with a histogram or a Normal
probability plot.

Specify the sampling distribution model.

Choose the method.

2

4

6

# 
of

 R
ac

es

Lane Differences (sec)
–4 0 4

I estimate the standard deviation of using

So t 16 =

d - 0
SE(d)

=

0.499
0.5658

= 0.882

SE(d) =

sd

1n
=

2.333
117

= 0.5658

dFind the standard error and the t-score of
the observed mean difference. There is
nothing new in the mechanics of the
paired-t methods. These are the mechan-
ics of the t-test for a mean applied to the
differences.

Make a picture. Sketch a t-model centered
at the hypothesized mean of 0. Because
this is a two-tail test, shade both the re-
gion to the right of the observed mean
difference of 0.499 seconds and the corre-
sponding region in the lower tail.

Find the P-value, using technology.

0 0.499
d

P-value = 2P(t 16 7 0.882) = 0.39
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The P-value is large. Events that happen more
than a third of the time are not remarkable. So,
even though there is an observed difference be-
tween the lanes, I can’t conclude that it isn’t
due simply to random chance. It appears the
fans may have interpreted a random fluctuation
in the data as favoring one lane. There’s insuffi-
cient evidence to declare any lack of fairness.

Conclusion Link the P-value to your 
decision about , and state your conclu-
sion in context.

H0

The mean difference is 0.499 seconds.
That may not seem like much, but a
smaller difference determined the Silver
and Bronze medals. The standard error is
about this big, so a t-value less than 1.0 
isn’t surprising. Nor is a large P-value.

Doing a paired t-testFOR EXAMPLE

Recap: We want to test whether a change from a five-day workweek to a four-day workweek could change the amount driven by field workers of a
health department. We’ve already confirmed that the assumptions and conditions for a paired t-test are met.

Question: Is there evidence that a four-day workweek would change how many miles workers drive?

: The change in the health department workers’ schedules didn’t change the mean mileage driven; the mean 
difference is zero:

: The mean difference is different from zero:

The conditions are met, so I’ll use a Student’s t-model with degrees of freedom and perform a 
paired t-test.
The data give

(n - 1) = 10

md Z 0.
HA

md = 0.

HO

The P-value is small, so I reject the null hypothesis and conclude that the change in workweek did lead to a change in
average driving mileage. It appears that changing the work schedule may reduce the mileage driven by workers.

Note: We should propose a course of action, but it’s hard to tell from the hypothesis test whether the reduction matters. Is the difference in mileage important
in the sense of reducing air pollution or costs, or is it merely statistically significant? To help make that decision, we should look at a confidence interval. 
If the difference in mileage proves to be large in a practical sense, then we might recommend a change in schedule for the rest of the department.

P-value = 2P(t 10 7 2.86) = 0.017

So t 10 =

d - 0
SE(d)

=

982.0
343.6

= 2.86

 SE(d) =

sd

1n
=

1139.6
111

= 343.6

 sd = 1139.6 miles.
 d = 982 miles

 n = 11 pairs

0 982
d

REALITY CHECK
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WHO 170 randomly sam-
pled couples

WHAT Ages

UNITS Years

WHEN Recently

WHERE Britain

Wife’s Age Husband’s Age Difference (husband – wife)

43 49 6
28 25 -3
30 40 10
57 52 -5
52 58 6
27 32 5
52 43 -9
o o o

Confidence Intervals for Matched Pairs
In developed countries, the average age of women is generally higher than that of
men. After all, women tend to live longer. But if we look at married couples, hus-
bands tend to be slightly older than wives. How much older, on average, are hus-
bands? We have data from a random sample of 200 British couples, the first 7 of
which are shown below. Only 170 couples provided ages for both husband and
wife, so we can work only with that many pairs. Let’s form a confidence interval
for the mean difference of husband’s and wife’s ages for these 170 couples. Here
are the first 7 pairs:

TI Tips Testing a hypothesis with paired data

Since the inference procedures for matched data are essentially just the one-
sample t procedures, you already know what to do . . . once you have the list
of paired differences, that is. That list is not hard to create.

Test a hypothesis about the mean of paired differences.
• Think: Are the samples independent or paired. Independent? Go back to the

last chapter! Paired? Read on.
• Enter the driving data from page 588 into two lists, say 5-Day mileage in ,

4-Day mileage in .
• Create a list of the differences. We want to take each value in , subtract the

corresponding value in , and store the paired difference in . The com-
mand is . (The arrow is the button.) Now take a look at

. See—it worked!
• Make a histogram of the differences, , to check the nearly Normal condi-

tion. Notice that we do not look at the histograms of the 5-day mileage or the
4-day mileage. Those are not the data that we care about now that we are us-
ing a paired procedure. Note also that the calculator’s first histogram is not
close to Normal. More work to do . . .

• As you have seen before, small samples often produce ragged histograms,
and these may look very different after a change in bar width. Reset the

to , , and . The new his-
togram looks okay.

• Under simply use , as you’ve done before for hy-
pothesis tests about a mean.

• Specify that the hypothesized difference is 0, you’re using the in ,
and it’s a two-tailed test.

• .

The small P-value shows strong evidence that on average the change in the
workweek reduces the number of miles workers drive.
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Clearly, these data are paired. The survey selected couples at random, not individ-
uals. We’re interested in the mean age difference within couples. How would we
construct a confidence interval for the true mean difference in ages?

PAIRED t-INTERVAL
When the conditions are met, we are ready to find the confidence interval
for the mean of the paired differences. The confidence interval is

where the standard error of the mean difference is 

The critical value from the Student’s t-model depends on the particular
confidence level, C, that you specify and on the degrees of freedom, ,
which is based on the number of pairs, n.

n - 1
t*

SE1d2 =

sd

1n
.

d ; t*
n-1 * SE1d2,

Making confidence intervals for matched pairs follows exactly the steps for a
one-sample t-interval.

Question: How big a difference is there, on average, between the ages of husbands and wives?

A Paired t-IntervalSTEP-BY-STEP EXAMPLE

I want to estimate the mean difference in age
between husbands and wives. I have a random
sample of 200 British couples, 170 of whom
provided both ages.

Plan State what we want to know.

Identify the variables and check the W’s.

Identify the parameter you wish to esti-
mate. For a paired analysis, the parameter
of interest is the mean of the differences.
The population of interest is the popula-
tion of differences.

Model Think about the assumptions and
check the conditions.

Ç Paired Data Assumption: The data are
paired because they are on members of
married couples.

Ç Independence Assumption: The data are
from a randomized survey, so couples
should be independent of each other.

Ç Randomization Condition: These couples
were randomly sampled.

Ç 10% Condition: The sample is less than
10% of the population of married couples in
Britain.
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I estimate the standard error of as

The df for the t-model is 

The 95% critical value for (from the table)
is 1.97.

The margin of error is

So the 95% confidence interval is

or an interval of (1.6, 2.8) years.

2.2 ; 0.6 years,

ME = t*
169 * SE(d) = 1.97(0.31) = 0.61

t 169

n - 1 = 169.

SE(d) =

sd

1n
=

4.1
1170

= 0.31 years.

d

 sd = 4.1 years
 d = 2.2 years
 n = 170 couplesMechanics

n is the number of pairs, here, the number
of couples.

is the mean difference.

is the standard deviation of the 
differences.

Be sure to include the units along with
the statistics.

The critical value we need to make a 95%
interval comes from a Student’s t table, a
computer program, or a calculator.

sd

d

The conditions are met, so I can use a Stu-
dent’s t-model with degrees of
freedom and find a paired t-interval.

(n - 1) = 169
State the sampling distribution model.

Choose your method.
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REALITY CHECK

I am 95% confident that British husbands are,
on average, 1.6 to 2.8 years older than their
wives.

Conclusion Interpret the confidence 
interval in context.

The histogram shows husbands are often
older than wives (because most of the dif-
ferences are greater than 0). The mean
difference seen here of about 2 years is
reasonable.

Make a picture. We focus on the differ-
ences, so a histogram or Normal
probability plot is best here.

REALITY CHECK

Ç Nearly Normal Condition: The histogram
of the husband − wife differences is uni-
modal and symmetric:

This result makes sense. Our everyday
experience confirms that an average age
difference of about 2 years is reasonable.
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Effect Size
When we examined the speed-skating times, we failed to reject the null hypoth-
esis, so we couldn’t be certain whether there really was a difference between the
lanes. Maybe there wasn’t any difference, or maybe whatever difference there
might have been was just too small to matter at all. Were the fans right to be
concerned?

We can’t tell from the hypothesis test, but using the same summary statistics,
we can find that the corresponding 95% confidence interval for the mean differ-
ence is seconds.

A confidence interval is a good way to get a sense for the size of the effect
we’re trying to understand. That gives us a plausible range of values for the true
mean difference in lane times. If differences of 1.7 seconds were too small to mat-

ter in 1500-m Olympic speed skating, we’d be pretty sure
there was no need for concern.

But in fact, except for the gap, the succes-
sive gaps between each skater and the next-faster one were
all less than the high end of this interval, and most were right
around the middle of the interval.

So even though we were unable to discern a real differ-
ence, the confidence interval shows that the effects we’re
considering may be big enough to be important. We may
want to continue this investigation by checking out other
races on this ice and being alert for possible differences at
other venues.

Gold - Silver

(-0.70 6 md 6 1.70)
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TI Tips Creating a confidence interval

Now let’s get the TI to create a confidence interval for the mean of paired dif-
ferences.

We’ll demonstrate by using the statistics about the ages of the British married
couples. (If we had all the data, we could enter that, of course. All 170 couples?
Um, no thanks.) The husband in the sample were an average of 2.2 years older
than their wives, with a standard deviation of 4.1 years. We’ve already seen
that the data are paired and that a histogram of the differences satisfies the
Nearly Normal Condition. (With a sample this large, we could proceed with 
inference even if we didn’t have the actual data and were unable to make the
histogram.)

• Once again, we treat the paired differences just like data from one sample. A
confidence interval for the mean difference, then, like that for a mean, uses
the one-sample procedure .

• Specify , and enter the statistics for the paired differences.
• .

Done. Finding the interval was the easy part. Now it’s time for you to Tell what
it means. Don’t forget to talk about married couples in Britain.
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Blocking
Because the sample of British husbands and wives includes both older and
younger couples, there’s a lot of variation in the ages of the men and in the ages
of the women. In fact, that variation is so great that a boxplot of the two groups
would show little difference. But that would be the wrong plot. It’s the difference
we care about. Pairing isolates the extra variation and allows us to focus on the
individual differences. In Chapter 13 we saw how we could design an experiment
with blocking to isolate the variability between identifiable groups of subjects, al-
lowing us to better see variability among treatment groups due to their response
to the treatment. A paired design is an example of blocking.

When we pair, we have roughly half the degrees of freedom of a two-sample
test. You may see discussions that suggest that in “choosing” a paired analysis we
“give up” these degrees of freedom. This isn’t really true, though. If the data are
paired, then there never were additional degrees of freedom, and we have no
“choice.” The fact of the pairing determines how many degrees of freedom are
available.

Matching pairs generally removes so much extra variation that it more than
compensates for having only half the degrees of freedom. Of course, inappropri-
ate matching when the groups are in fact independent (say, by matching on the
first letter of the last name of subjects) would cost degrees of freedom without the
benefit of reducing the variance. When you design a study or experiment, you
should consider using a paired design if possible.

Looking at effect size with a paired-t confidence intervalFOR EXAMPLE

Recap: We know that, on average, the switch from a five-day workweek to a four-day workweek reduced the amount driven by field workers in that
Illinois health department. However, finding that there is a significant difference doesn’t necessarily mean that difference is meaningful or worthwhile. To
assess the size of the effect, we need a confidence interval. We already know the assumptions and conditions are met.

Question: By how much, on average, might a change in workweek schedule reduce the amount driven by workers?

So the 95% confidence interval for is 
With 95% confidence, I estimate that by switching to a four-day workweek employees would drive an average of be-
tween 216 and 1748 fewer miles per year. With high gas prices, this could save a lot of money.

982 ; 765.54 or (216.46, 1747.54) fewer miles.md

ME = t*
10 * SE(d) = 2.228(343.6) = 765.54

d = 982 mi  SE(d) = 343.6  t*
10 = 2.228 (for 95%)
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FIGURE 25.2
This display is worthless. It does no
good to compare all the wives as a
group with all the husbands. We care
about the paired differences.

JUST CHECKING
Think about each of the situations described below.

u Would you use a two-sample t or paired-t method (or neither)? Why?

u Would you perform a hypothesis test or find a confidence interval?

1. Random samples of 50 men and 50 women are asked to imagine buying a birthday present for their best friend.
We want to estimate the difference in how much they are willing to spend.

2. Mothers of twins were surveyed and asked how often in the past month strangers had asked whether the twins
were identical.
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3. Are parents equally strict with boys and girls? In a random sample of families, researchers asked a brother and
sister from each family to rate how strict their parents were.

4. Forty-eight overweight subjects are randomly assigned to either aerobic or stretching exercise programs. They are
weighed at the beginning and at the end of the experiment to see how much weight they lost.
a) We want to estimate the mean amount of weight lost by those doing aerobic exercise.
b) We want to know which program is more effective at reducing weight.

5. Couples at a dance club were separated and each person was asked to rate the band. Do men or women like this
band more?

WHAT CAN GO WRONG?
u Don’t use a two-sample t-test when you have paired data. See the What Can Go Wrong?

discussion in Chapter 24.

u Don’t use a paired-t method when the samples aren’t paired. Just because two groups have
the same number of observations doesn’t mean they can be paired, even if they are
shown side by side in a table. We might have 25 men and 25 women in our study,
but they might be completely independent of one another. If they were siblings or
spouses, we might consider them paired. Remember that you cannot choose which
method to use based on your preferences. If the data are from two independent sam-
ples, use two-sample t methods. If the data are from an experiment in which obser-
vations were paired, you must use a paired method. If the data are from an observa-
tional study, you must be able to defend your decision to use matched pairs or
independent groups.

u Don’t forget outliers. The outliers we care about now are in the differences. A subject
who is extraordinary both before and after a treatment may still have a perfectly typ-
ical difference. But one outlying difference can completely distort your conclusions.
Be sure to plot the differences (even if you also plot the data).

u Don’t look for the difference between the means of paired groups with side-by-side boxplots.
The point of the paired analysis is to remove extra variation. The boxplots of each
group still contain that variation. Comparing them is likely to be misleading.

CONNECTIONS
The most important connection is to the concept of blocking that we first discussed when we con-
sidered designed experiments in Chapter 13. Pairing is a basic and very effective form of blocking.

Of course, the details of the mechanics for paired t-tests and intervals are identical to those for
the one-sample t-methods. Everything we know about those methods applies here.

The connection to the two-sample and pooled methods of the previous chapter is that when the
data are naturally paired, those methods are not appropriate because paired data fail the required
condition of independence.
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WHAT HAVE WE LEARNED?

When we looked at various ways to design experiments, back in Chapter 13, we saw that pairing
can be a very effective strategy. Because pairing can help control variability between individual sub-
jects, paired methods are usually more powerful than methods that compare independent groups.
Now we’ve learned that analyzing data from matched pairs requires different inference procedures.

u We’ve learned that paired t-methods look at pairwise differences. Based on these differences,
we test hypotheses and generate confidence intervals. These procedures are mechanically iden-
tical to the one-sample t-methods we saw in Chapter 23.

u We’ve also learned to Think about the design of the study that collected the data before we pro-
ceed with inference. We must be careful to recognize pairing when it is present but not assume
it when it is not. Making the correct decision about whether to use independent t-procedures or
paired t-methods is the first critical step in analyzing the data.

Terms
Paired data 588. Data are paired when the observations are collected in pairs or the observations in one group

are naturally related to observations in the other. The simplest form of pairing is to measure each
subject twice—often before and after a treatment is applied. More sophisticated forms of pairing in
experiments are a form of blocking and arise in other contexts. Pairing in observational and survey
data is a form of matching.

Paired t-test 591. A hypothesis test for the mean of the pairwise differences of two groups. It tests the null 
hypothesis

where the hypothesized difference is almost always 0, using the statistic

with degrees of freedom, where , and n is the number of pairs.

Paired-t confidence interval 595. A confidence interval for the mean of the pairwise differences between paired groups found as

Skills
u Be able to recognize whether a design that compares two groups is paired.

u Be able to find a paired confidence interval, recognizing that it is mechanically equivalent to do-
ing a one-sample t-interval applied to the differences.

u Be able to perform a paired t-test, recognizing that it is mechanically equivalent to a one-sample
t-test applied to the differences.

u Be able to interpret a paired t-test, recognizing that the hypothesis tested is about the mean of
the differences between paired values rather than about the differences between the means of
two independent groups.

u Be able to interpret a paired t-interval, recognizing that it gives an interval for the mean differ-
ence in the pairs.

d ; t*
n-1 * SE(d), where SE(d) =

sd

1n
 and n is the number of pairs.

SE(d) =

sd

1n
n - 1

t =

d - ¢0

SE(d)

H0: md = ¢0,
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Individual group means

Correlation is often reported. Be careful. We have
not checked for nonlinearity or outlying pairs.
Either could make the correlation meaningless,
even though the paired    was still appropriate.

Corresponding confidence
interval bounds on the
mean difference.

Its df

Matched Pairs

Group 1 Mean
Group 2 Mean
Mean Difference
Std Error
Upper 95%
Lower 95%
N
Correlation

42.9176
40.6824
2.23529
0.31255
2.85230
1.61829
170
0.93858

7.151783
169
<0.0001
<0.0001
1.0000

t-Ratio
DF
Prob > ⎢t ⎢
Prob > t
Prob < t 

Mean of the differences
and its SE

P-values for:
Two-sided
One-sided
alternatives

Could be called "Matched Pair" or
"Paired-  " analysis

Paired   –statistic

PAIRED t ON THE COMPUTER

Most statistics programs can compute paired-t analyses. Some may want you to find the differences yourself
and use the one-sample t methods. Those that perform the entire procedure will need to know the two variables
to compare. The computer, of course, cannot verify that the variables are naturally paired. Most programs will
check whether the two variables have the same number of observations, but some stop there, and that can
cause trouble. Most programs will automatically omit any pair that is missing a value for either variable (as we
did with the British couples). You must look carefully to see whether that has happened.
As we’ve seen with other inference results, some packages pack a lot of information into a simple table, but you
must locate what you want for yourself. Here’s a generic example with comments:

Other packages try to be more descriptive. It may be easier to find the results, but you may get less information
from the output table.

Paired T for hAge–wAge

hAge
wAge
Paired Difference

199
170
170

42.62
40.68
 2.235

11.646
11.414
 4.0752

0.8255
0.8254
0.31255

Groups may have missing values. 
Only cases with both values present 
are used in a paired-   analysis. You
may not learn that from some packages.

Even simple tables can
have superfluous
numbers such as these.

CI corresponds
to specified a.

95% CI for mean difference: (1.618, 2.852)
T-Test of mean difference = 0(vs � 0): T-Value = 7.1518 P-Value < 0.0001

Some packages let you specify
the alternative and report only
results for that alternative.

N Mean Std Dev SE(Mean)

SD (differences)

SE(  )

d

d

-statistic and its P-value
(You may need to calculate      – 1
for yourself to get the df.) 

t
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Computers make it easy to examine the boxplots of the two groups and the histogram of the differences—both
important steps. Some programs offer a scatterplot of the two variables. That can be helpful. In terms of the
scatterplot, a paired t-test is about whether the points tend to be above or below the line . (Note,
though, that pairing says nothing about whether the scatterplot should be straight. That doesn’t matter for 
our t-methods.)

y = x45°

EXERCISES

1. More eggs? Can a food additive increase egg produc-
tion? Agricultural researchers want to design an experi-
ment to find out. They have 100 hens available. They
have two kinds of feed: the regular feed and the new feed
with the additive. They plan to run their experiment for a
month, recording the number of eggs each hen produces.
a) Design an experiment that will require a two-sample 

t procedure to analyze the results.
b) Design an experiment that will require a matched-

pairs t procedure to analyze the results.
c) Which experiment would you consider the stronger

design? Why?

2. MTV. Some students do homework with the TV on.
(Anyone come to mind?) Some researchers want to see if
people can work as effectively with as without distrac-
tion. The researchers will time some volunteers to see
how long it takes them to complete some relatively easy
crossword puzzles. During some of the trials, the room
will be quiet; during other trials in the same room, a TV
will be on, tuned to MTV.
a) Design an experiment that will require a two-sample 

t procedure to analyze the results.
b) Design an experiment that will require a matched-

pairs t procedure to analyze the results.
c) Which experiment would you consider the stronger

design? Why?

3. Sex sells? Ads for many products use sexual images 
to try to attract attention to the product. But do these ads
bring people’s attention to the item that was being ad-
vertised? We want to design an experiment to see if the
presence of sexual images in an advertisement affects
people’s ability to remember the product.
a) Describe an experimental design requiring a matched-

pairs t procedure to analyze the results.
b) Describe an experimental design requiring an inde-

pendent sample procedure to analyze the results.

4. Freshman 15? Many people believe that students gain
weight as freshmen. Suppose we plan to conduct a study
to see if this is true.
a) Describe a study design that would require a

matched-pairs t procedure to analyze the results.
b) Describe a study design that would require a two-

sample t procedure to analyze the results.

5. Women. Values for the labor force participation rate 
of women (LFPR) are published by the U.S. Bureau of
Labor Statistics. We are interested in whether there was a

difference between female participation in 1968 and 1972,
a time of rapid change for women. We check LFPR values
for 19 randomly selected cities for 1968 and 1972. Shown
below is software output for two possible tests:

Paired t-T est of µ (1 2 2)

Test Ho: µ (1972-1968) 5 0 vs Ha: µ (1972-1968) 2 0

Mean of Paired Dif ferences 5 0.0337

t-Statistic 5 2.458 w/18 df

p = 0.0244

2-Sample t-T est of µ 1 2 µ 2

Ho: µ 1 2 µ 2 = 0 Ha: µ 1 2 µ 2 2 0

Test Ho: µ (1972) 2 µ (1968) = 0 vs

Ha: µ (1972) 2 µ (1968) 2 0

Dif ference Between Means 5 0.0337

t-Statistic 5 1.496 w/35 df

p 5 0.1434

a) Which of these tests is appropriate for these data? 
Explain.

b) Using the test you selected, state your conclusion.

6. Rain. Simpson, Alsen, and Eden (Technometrics 1975) re-
port the results of trials in which clouds were seeded and
the amount of rainfall recorded. The authors report on 
26 seeded and 26 unseeded clouds in order of the amount
of rainfall, largest amount first. Here are two possible tests
to study the question of whether cloud seeding works.
Which test is appropriate for these data? Explain your
choice. Using the test you select, state your conclusion.

Paired t-T est of µ (1 2 2)

Mean of Paired Dif ferences 5 2277.39615

t-Statistic 5 23.641 w/25 df

p = 0.0012

2-Sample t-T est of µ 1 2 µ 2

Dif ference Between Means 5 2277.4

t-Statistic 5 21.998 w/33 df

p 5 0.0538

a) Which of these tests is appropriate for these data? 
Explain.

b) Using the test you selected, state your conclusion.

7. Friday the 13th, I. In 1993 the British Medical Journal
published an article titled, “Is Friday the 13th Bad for
Your Health?” Researchers in Britain examined how Fri-
day the 13th affects human behavior. One question was

T

T
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Computers make it easy to examine the boxplots of the two groups and the histogram of the differences—both
important steps. Some programs offer a scatterplot of the two variables. That can be helpful. In terms of the
scatterplot, a paired t-test is about whether the points tend to be above or below the line . (Note,
though, that pairing says nothing about whether the scatterplot should be straight. That doesn’t matter for 
our t-methods.)

y = x45°

EXERCISES

1. More eggs? Can a food additive increase egg produc-
tion? Agricultural researchers want to design an experi-
ment to find out. They have 100 hens available. They
have two kinds of feed: the regular feed and the new feed
with the additive. They plan to run their experiment for a
month, recording the number of eggs each hen produces.
a) Design an experiment that will require a two-sample 

t procedure to analyze the results.
b) Design an experiment that will require a matched-

pairs t procedure to analyze the results.
c) Which experiment would you consider the stronger

design? Why?

2. MTV. Some students do homework with the TV on.
(Anyone come to mind?) Some researchers want to see if
people can work as effectively with as without distrac-
tion. The researchers will time some volunteers to see
how long it takes them to complete some relatively easy
crossword puzzles. During some of the trials, the room
will be quiet; during other trials in the same room, a TV
will be on, tuned to MTV.
a) Design an experiment that will require a two-sample 

t procedure to analyze the results.
b) Design an experiment that will require a matched-

pairs t procedure to analyze the results.
c) Which experiment would you consider the stronger

design? Why?

3. Sex sells? Ads for many products use sexual images 
to try to attract attention to the product. But do these ads
bring people’s attention to the item that was being ad-
vertised? We want to design an experiment to see if the
presence of sexual images in an advertisement affects
people’s ability to remember the product.
a) Describe an experimental design requiring a matched-

pairs t procedure to analyze the results.
b) Describe an experimental design requiring an inde-

pendent sample procedure to analyze the results.

4. Freshman 15? Many people believe that students gain
weight as freshmen. Suppose we plan to conduct a study
to see if this is true.
a) Describe a study design that would require a

matched-pairs t procedure to analyze the results.
b) Describe a study design that would require a two-

sample t procedure to analyze the results.

5. Women. Values for the labor force participation rate 
of women (LFPR) are published by the U.S. Bureau of
Labor Statistics. We are interested in whether there was a

difference between female participation in 1968 and 1972,
a time of rapid change for women. We check LFPR values
for 19 randomly selected cities for 1968 and 1972. Shown
below is software output for two possible tests:

Paired t-T est of µ (1 2 2)

Test Ho: µ (1972-1968) 5 0 vs Ha: µ (1972-1968) 2 0

Mean of Paired Dif ferences 5 0.0337

t-Statistic 5 2.458 w/18 df

p = 0.0244

2-Sample t-T est of µ 1 2 µ 2

Ho: µ 1 2 µ 2 = 0 Ha: µ 1 2 µ 2 2 0

Test Ho: µ (1972) 2 µ (1968) = 0 vs

Ha: µ (1972) 2 µ (1968) 2 0

Dif ference Between Means 5 0.0337

t-Statistic 5 1.496 w/35 df

p 5 0.1434

a) Which of these tests is appropriate for these data? 
Explain.

b) Using the test you selected, state your conclusion.

6. Rain. Simpson, Alsen, and Eden (Technometrics 1975) re-
port the results of trials in which clouds were seeded and
the amount of rainfall recorded. The authors report on 
26 seeded and 26 unseeded clouds in order of the amount
of rainfall, largest amount first. Here are two possible tests
to study the question of whether cloud seeding works.
Which test is appropriate for these data? Explain your
choice. Using the test you select, state your conclusion.

Paired t-T est of µ (1 2 2)

Mean of Paired Dif ferences 5 2277.39615

t-Statistic 5 23.641 w/25 df

p = 0.0012

2-Sample t-T est of µ 1 2 µ 2

Dif ference Between Means 5 2277.4

t-Statistic 5 21.998 w/33 df

p 5 0.0538

a) Which of these tests is appropriate for these data? 
Explain.

b) Using the test you selected, state your conclusion.

7. Friday the 13th, I. In 1993 the British Medical Journal
published an article titled, “Is Friday the 13th Bad for
Your Health?” Researchers in Britain examined how Fri-
day the 13th affects human behavior. One question was

T

T
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whether people tend to stay at home more on Friday the
13th. The data below are the number of cars passing Junc-
tions 9 and 10 on the M25 motorway for consecutive Fri-
days (the 6th and 13th) for five different periods.

9. Online insurance I. After seeing countless commercials
claiming one can get cheaper car insurance from an online
company, a local insurance agent was concerned that he
might lose some customers. To investigate, he randomly
selected profiles (type of car, coverage, driving record, etc.)
for 10 of his clients and checked online price quotes for
their policies. The comparisons are shown in the table 
below. His statistical software produced the following
summaries (where PriceDiff = Local – Online):

Variable Count Mean StdDev

Local 10 799.200 229.281

Online 10 753.300 256.267

PriceDif f 10 45.9000 175.663Here are summaries of two possible analyses:

Paired t-T est of mu(1 2 2) 5 0 vs. mu(1 2 2) > 0

Mean of Paired Dif ferences: 2022.4

t-Statistic 5 2.9377 w/4 df

P = 0.0212

2-Sample t-T est of mu1 5 mu2 vs. mu1 > mu2

Dif ference Between Means: 2022.4

t-Statistic 5 0.4273 w/7.998 df

P 5 0.3402

a) Which of the tests is appropriate for these data? 
Explain.

b) Using the test you selected, state your conclusion.
c) Are the assumptions and conditions for inference

met?

8. Friday the 13th, II: The researchers in Exercise 7 also
examined the number of people admitted to emergency
rooms for vehicular accidents on 12 Friday evenings 
(6 each on the 6th and 13th).

Based on these data, is there evidence that more people
are admitted, on average, on Friday the 13th? Here are
two possible analyses of the data:

Paired t-T est of mu(1 2 2) = 0 vs. mu(1 2 2) < 0

Mean of Paired Dif ferences = 3.333

t-Statistic 5 2.7116 w/5 df

P 5 0.0211

2-Sample t-T est of mu1 5 mu2 vs. mu1 < mu2

Dif ference Between Means 5 3.333

t-Statistic 5 1.6644 w/9.940 df

P 5 0.0636

a) Which of these tests is appropriate for these data? 
Explain.

b) Using the test you selected, state your conclusion.
c) Are the assumptions and conditions for inference met?

At first, the insurance agent wondered whether there 
was some kind of mistake in this output. He thought the
Pythagorean Theorem of Statistics should work for find-
ing the standard deviation of the price differences— 
in other words, that 

. But when he checked, 
he found that , not
175.663 as given by the software. Tell him where his 
mistake is.

10. Windy, part I. To select the site for an electricity-
generating wind turbine, wind speeds were recorded at
several potential sites every 6 hours for a year. Two sites not
far from each other looked good. Each had a mean wind
speed high enough to qualify, but we should choose the site
with a higher average daily wind speed. Because the sites
are near each other and the wind speeds were recorded at
the same times, we should view the speeds as paired. Here
are the summaries of the speeds (in miles per hour):

2(229.281)2
+ (256.267)2

= 343.864
2SD2(Local) + SD2(Online)

SD(Local - Online) =

Is there a mistake in this output? Why doesn’t the
Pythagorean Theorem of Statistics work here? In other
words, shouldn’t 

?

But , not 2.551 as given by
the software. Explain why this happened.

2(3.586)2
+ (3.421)2

= 4.956

SD(site2 - site4) = 2SD2(site2) + SD2(site4)

Year Month 6th 13th

1990 July 134,012 132,908
1991 September 133,732 131,843
1991 December 121,139 118,723
1992 March 124,631 120,249
1992 November 117,584 117,263

Year Month 6th 13th

1989 October 9 13
1990 July 6 12
1991 September 11 14
1991 December 11 10
1992 March 3 4
1992 November 5 12

Local Online PriceDiff

568 391 177
872 602 270
451 488 -37

1229 903 326
605 677 -72

1021 1270 -249
783 703 80
844 789 55
907 1008 -101
712 702 10

Variable Count Mean StdDev

site2 1114 7.452 3.586

site4 1114 7.248 3.421

site2 – site4 1114 0.204 2.551

T

T
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604 CHAPTER 25    Paired Samples and Blocks

11. Online insurance II. In Exercise 9, we saw summary
statistics for 10 drivers’ car insurance premiums quoted
by a local agent and an online company. Here are dis-
plays for each company’s quotes and for the difference
(Local – Online):

a) The boxplots show outliers for each site, yet the his-
togram shows none. Discuss why.

b) Which of the summaries would you use to select be-
tween these sites? Why?

c) Using the information you have, discuss the assump-
tions and conditions for paired t inference for these
data. (Hint: Think hard about the independence as-
sumption in particular.)

13. Online insurance 3. Exercises 9 and 11 give sum-
maries and displays for car insurance premiums quoted
by a local agent and an online company. Test an appropri-
ate hypothesis to see if there is evidence that drivers
might save money by switching to the online company.

14. Windy, part III. Exercises 10 and 12 give summaries
and displays for two potential sites for a wind turbine.
Test an appropriate hypothesis to see if there is evidence
that either of these sites has a higher average wind speed.

15. Temperatures. The table below gives the average high
temperatures in January and July for several European
cities. Write a 90% confidence interval for the mean tem-
perature difference between summer and winter in Eu-
rope. Be sure to check conditions for inference, and
clearly explain what your interval means.
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a) Which of the summaries would help you decide
whether the online company offers cheaper insur-
ance? Why?

b) The standard deviation of PriceDiff is quite a bit
smaller than the standard deviation of prices quoted
by either the local or online companies. Discuss why.

c) Using the information you have, discuss the assump-
tions and conditions for inference with these data.

12. Windy, part II. In Exercise 10, we saw summary statis-
tics for wind speeds at two sites near each other, both be-
ing considered as locations for an electricity-generating
wind turbine. The data, recorded every 6 hours for a year,
showed each of the sites had a mean wind speed high
enough to qualify, but how can we tell which site is best?
Here are some displays:
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16. Marathons 2006. The table on the next page shows the
winning times (in minutes) for men and women in the
New York City Marathon between 1978 and 2006. Assum-
ing that performances in the Big Apple resemble perform-
ances elsewhere, we can think of these data as a sample
of performance in marathon competitions. Create a 90%
confidence interval for the mean difference in winning
times for male and female marathon competitors. 
(www.nycmarathon.org)

Mean High
Temperatures (°F)

City Jan. July

Vienna 34 75
Copenhagen 36 72
Paris 42 76
Berlin 35 74
Athens 54 90
Rome 54 88
Amsterdam 40 69
Madrid 47 87
London 44 73
Edinburgh 43 65
Moscow 21 76
Belgrade 37 84

T

T

T

T
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17. Push-ups. Every year the students at Gossett High
School take a physical fitness test during their gym
classes. One component of the test asks them to do as
many push-ups as they can. Results for one class are
shown below, separately for boys and girls. Assuming
that students at Gossett are assigned to gym classes at
random, create a 90% confidence interval for how many
more push-ups boys can do than girls, on average, at that
high school.

a) What are the null and alternative hypotheses? Be sure
to define all the terms and symbols you use.

b) Are the assumptions necessary for inference met?
c) Perform the appropriate test, indicating the formula

you used, the calculated value of the test statistic, the
df, and the P-value.

d) State your conclusion.

19. Job satisfaction. (When you first read about this 
exercise break plan in Chapter 24, you did not have an 
inference method that would work. Try again now.) A
company institutes an exercise break for its workers to
see if it will improve job satisfaction, as measured by a
questionnaire that assesses workers’ satisfaction. Scores
for 10 randomly selected workers before and after the im-
plementation of the exercise program are shown in the
table below.
a) Identify the procedure you would use to assess the 

effectiveness of the exercise program, and check to see
if the conditions allow the use of that procedure.

b) Test an appropriate hypothesis and state your 
conclusion.

c) If your conclusion turns out to be incorrect, what kind
of error did you commit?

18. Brain waves. An experiment was performed to see
whether sensory deprivation over an extended period of
time has any effect on the alpha-wave patterns produced
by the brain. To determine this, 20 subjects, inmates in a
Canadian prison, were randomly split into two groups.
Members of one group were placed in solitary confinement.
Those in the other group were allowed to remain in their
own cells. Seven days later, alpha-wave frequencies were
measured for all subjects, as shown in the following table.
(P. Gendreau et al., “Changes in EEG Alpha Frequency and
Evoked Response Latency During Solitary Confinement,”
Journal of Abnormal Psychology 79 [1972]: 54–59)

20. Summer school. (When you first read about the sum-
mer school issue in Chapter 24 you did not have an infer-
ence method that would work. Try again now.) Having
done poorly on their Math final exams in June, six stu-
dents repeat the course in summer school and take an-
other exam in August.

a) If we consider these students to be representative of
all students who might attend this summer school in
other years, do these results provide evidence that the
program is worthwhile?

b) This conclusion, of course, may be incorrect. If so,
which type of error was made?

21. Yogurt. Is there a significant difference in calories be-
tween servings of strawberry and vanilla yogurt? Based
on the data shown in the table, test an appropriate

Year Men Women

1978 132.2 152.5
1979 131.7 147.6
1980 129.7 145.7
1981 128.2 145.5
1982 129.5 147.2
1983 129.0 147.0
1984 134.9 149.5
1985 131.6 148.6
1986 131.1 148.1
1987 131.0 150.3
1988 128.3 148.1
1989 128.0 145.5
1990 132.7 150.8
1991 129.5 147.5
1992 129.5 144.7

Year Men Women

1993 130.1 146.4
1994 131.4 147.6
1995 131.0 148.1
1996 129.9 148.3
1997 128.2 148.7
1998 128.8 145.3
1999 129.2 145.1
2000 130.2 145.8
2001 127.7 144.4
2002 128.1 145.9
2003 130.5 142.5
2004 129.5 143.2
2005 129.5 144.7
2006 130.0 145.1

Boys 17 27 31 17 25 32 28 23 25 16 11 34
Girls 24 7 14 16 2 15 19 25 10 27 31 8

Nonconfined Confined
10.7 9.6
10.7 10.4
10.4 9.7
10.9 10.3
10.5 9.2
10.3 9.3
9.6 9.9

11.1 9.5
11.2 9.0
10.4 10.9

Worker 
Number

Job Satisfaction Index

Before After

1 34 33
2 28 36
3 29 50
4 45 41
5 26 37
6 27 41
7 24 39
8 15 21
9 15 20

10 27 37

June 54 49 68 66 62 62
Aug. 50 65 74 64 68 72

T

T

T

T

T
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606 CHAPTER 25    Paired Samples and Blocks

hypothesis and state your conclusion. Don’t forget to
check assumptions and conditions!

a) Write a 95% confidence interval for the mean dry
pavement stopping distance. Be sure to check the ap-
propriate assumptions and conditions, and explain
what your interval means.

b) Write a 95% confidence interval for the mean increase
in stopping distance on wet pavement. Be sure to
check the appropriate assumptions and conditions,
and explain what your interval means.

24. Braking test 2. For another test of the tires in Exer-
cise 23, a car made repeated stops from 60 miles per hour.
The test was run on both dry and wet pavement, with re-
sults as shown in the table. (Note that actual braking dis-
tance, which takes into account the driver’s reaction time,
is much longer, typically nearly 300 feet at 60 mph!)
a) Write a 95% confidence interval for the mean dry

pavement stopping distance. Be sure to check the ap-
propriate assumptions and conditions, and explain
what your interval means.

b) Write a 95% confidence interval for the mean increase
in stopping distance on wet pavement. Be sure to
check the appropriate assumptions and conditions,
and explain what your interval means.

22. Gasoline. Many drivers of cars that can run on regular
gas actually buy premium in the belief that they will get
better gas mileage. To test that belief, we use 10 cars from
a company fleet in which all the cars run on regular gas.
Each car is filled first with either regular or premium
gasoline, decided by a coin toss, and the mileage for that
tankful is recorded. Then the mileage is recorded again
for the same cars for a tankful of the other kind of gaso-
line. We don’t let the drivers know about this experiment.

Here are the results (miles per gallon):

a) Is there evidence that cars get significantly better fuel
economy with premium gasoline?

b) How big might that difference be? Check a 90% confi-
dence interval.

c) Even if the difference is significant, why might the
company choose to stick with regular gasoline?

d) Suppose you had done a “bad thing.” (We’re sure you
didn’t.) Suppose you had mistakenly treated these
data as two independent samples instead of matched
pairs. What would the significance test have found?
Carefully explain why the results are so different.

23. Braking test. A tire manufacturer tested the braking
performance of one of its tire models on a test track. The
company tried the tires on 10 different cars, recording the
stopping distance for each car on both wet and dry pave-
ment. Results are shown in the table.

Br
an

d

Calories per Serving
Strawberry Vanilla

America’s Choice 210 200
Breyer’s Lowfat 220 220
Columbo 220 180
Dannon Light ’n Fit 120 120
Dannon Lowfat 210 230
Dannon la Crème 140 140
Great Value 180 80
La Yogurt 170 160
Mountain High 200 170
Stonyfield Farm 100 120
Yoplait Custard 190 190
Yoplait Light 100 100

Car # 1 2 3 4 5 6 7 8 9 10

Regular 16 20 21 22 23 22 27 25 27 28
Premium 19 22 24 24 25 25 26 26 28 32

Stopping Distance (ft)
Car 
#

Dry
Pavement

Wet
Pavement

1 150 201
2 147 220
3 136 192
4 134 146
5 130 182
6 134 173
7 134 202
8 128 180
9 136 192

10 158 206

Stopping Distance (ft)
Dry

Pavement
Wet

Pavement

145 211
152 191
141 220
143 207
131 198
148 208
126 206
140 177
135 183
133 223

T

T

T
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25. Tuition 2006. How much more do public colleges and
universities charge out-of-state students for tuition per
semester? A random sample of 19 public colleges and
universities listed at www.collegeboard.com yielded the
following data. Tuition figures per semester are rounded
to the nearest hundred dollars.

27. Strikes. Advertisements for an instructional video
claim that the techniques will improve the ability of Little
League pitchers to throw strikes and that, after undergo-
ing the training, players will be able to throw strikes on 
at least 60% of their pitches. To test this claim, we have 
20 Little Leaguers throw 50 pitches each, and we record
the number of strikes. After the players participate in the
training program, we repeat the test. The table shows the
number of strikes each player threw before and after the
training.
a) Is there evidence that after training players can throw

strikes more than 60% of the time?
b) Is there evidence that the training is effective in im-

proving a player’s ability to throw strikes?

a) Create a 90% confidence interval for the mean differ-
ence in cost. Be sure to justify your procedure.

b) Interpret your interval in context.
c) A national magazine claims that public institutions

charge state residents an average of $3500 less than
out-of-staters for tuition each semester. What does
your confidence interval indicate about this assertion?

26. Sex sells, part II. In Exercise 3 you considered the
question of whether sexual images in ads affected peo-
ple’s abilities to remember the item being advertised. To
investigate, a group of Statistics students cut ads out of
magazines. They were careful to find two ads for each of
10 similar items, one with a sexual image and one with-
out. They arranged the ads in random order and had 39
subjects look at them for one minute. Then they asked the
subjects to list as many of the products as they could re-
member. Their data are shown in the table. Is there evi-
dence that the sexual images mattered?

Institution Resident Nonresident

Univ of Akron (OH) 4200 8800
Athens State (AL) 1900 3600
Ball State (IN) 3400 8600
Bloomsburg U (PA) 3200 7000
UC Irvine (CA) 3400 12700
Central State (OH) 2600 5700
Clarion U (PA) 3300 5900
Dakota State 2900 3400
Fairmont State (WV) 2200 4600
Johnson State (VT) 3400 7300
Lock Haven U (PA) 3200 6000
New College of Florida 1600 8300
Oakland U (MI) 3300 7700
U Pittsburgh 6100 10700
Savannah State (GA) 1600 5400
SE Louisiana 1700 4400
W Liberty State (WV) 2000 4800
W Texas College 800 1000
Worcester State (MA) 2800 5800

Subject 
Number

Ads Remembered
Sexual Image No Sex

1 2 2
2 6 7
3 3 1
4 6 5
5 1 0
6 3 3
7 3 5
8 7 4
9 3 7

10 5 4
11 1 3
12 3 2
13 6 3
14 7 4
15 3 2
16 7 4
17 4 4
18 1 3
19 5 5
20 2 2

Subject 
Number

Ads Remembered
Sexual Image No Sex

21 2 3
22 4 2
23 3 3
24 5 3
25 4 5
26 2 4
27 2 2
28 2 4
29 7 6
30 6 7
31 4 3
32 4 5
33 3 0
34 4 3
35 2 3
36 3 3
37 5 5
38 3 4
39 4 3

Number of Strikes 
(out of 50)

Number of Strikes 
(out of 50)

Before After Before After

28 35 33 33
29 36 33 35
30 32 34 32
32 28 34 30
32 30 34 33
32 31 35 34
32 32 36 37
32 34 36 33
32 35 37 35
33 36 37 32

T

T

T
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608 CHAPTER 25    Paired Samples and Blocks

28. Freshman 15, revisited. In Exercise 4 you thought
about how to design a study to see if it’s true that stu-
dents tend to gain weight during their first year in col-
lege. Well, Cornell Professor of Nutrition David Levitsky
did just that. He recruited students from two large sec-
tions of an introductory health course. Although they
were volunteers, they appeared to match the rest of the
freshman class in terms of demographic variables such as
sex and ethnicity. The students were weighed during the
first week of the semester, then again 12 weeks later.
Based on Professor Levitsky’s data, estimate the mean
weight gain in first-semester freshmen and comment on
the “freshman 15.” (Weights are in pounds.)

JUST CHECKING
Answers

1. These are independent groups sampled at random,
so use a two-sample t confidence interval to estimate
the size of the difference.

2. There is only one sample. Use a one-sample 
t-interval.

3. A brother and sister from the same family represent a
matched pair. The question calls for a paired t-test.

4. a) A before-and-after study calls for paired 
t-methods. To estimate the loss, find a confidence
interval for the before–after differences.

b) The two treatment groups were assigned ran-
domly, so they are independent. Use a two-
sample t-test to assess whether the mean weight
losses differ.

5. Sometimes it just isn’t clear. Most likely, couples
would discuss the band or even decide to go to the
club because they both like a particular band. If we
think that’s likely, then these data are paired. But
maybe not. If we asked them their opinions of, say,
the decor or furnishings at the club, the fact that they
were couples might not affect the independence of
their answers.

Subject 
Number

Initial 
Weight

Terminal 
Weight

Subject 
Number

Initial 
Weight

Terminal 
Weight

1 171 168 35 148 150
2 110 111 36 164 165
3 134 136 37 137 138
4 115 119 38 198 201
5 150 155 39 122 124
6 104 106 40 146 146
7 142 148 41 150 151
8 120 124 42 187 192
9 144 148 43 94 96

10 156 154 44 105 105
11 114 114 45 127 130
12 121 123 46 142 144
13 122 126 47 140 143
14 120 115 48 107 107
15 115 118 49 104 105
16 110 113 50 111 112
17 142 146 51 160 162
18 127 127 52 134 134
19 102 105 53 151 151
20 125 125 54 127 130
21 157 158 55 106 108
22 119 126 56 185 188
23 113 114 57 125 128
24 120 128 58 125 126
25 135 139 59 155 158
26 148 150 60 118 120
27 110 112 61 149 150
28 160 163 62 149 149
29 220 224 63 122 121
30 132 133 64 155 158
31 145 147 65 160 161
32 141 141 66 115 119
33 158 160 67 167 170
34 135 134 68 131 131

T
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Review of Part VI 609

Quick Review
We continue to explore how to answer questions about the
statistics we get from samples and experiments. In this part,
those questions have been about means—means of one sam-
ple, two independent samples, or matched pairs. Here’s a
brief summary of the key concepts and skills:

u A confidence interval uses a sample statistic to estimate a
range of possible values for a parameter of interest.

u A hypothesis test proposes a model, then examines the
plausibility of that model by seeing how surprising our
observed data would be if the model were true.

u Statistical inference procedures for proportions are based
on the Central Limit Theorem. We can make inferences
about a single proportion or the difference of two propor-
tions using Normal models.

u Statistical inference procedures for means are also based
on the Central Limit Theorem, but we don’t usually know
the population standard deviation. Student’s t-models
take into account the additional uncertainty of independ-
ently estimating the standard deviation.
• We can make inferences about one mean, the difference

of two independent means, or the mean of paired differ-
ences using t-models.

• No inference procedure is valid unless the underlying
assumptions are true. Always check the conditions be-
fore proceeding.

• Because t-models assume that samples are drawn from
Normal populations, data in the sample should appear
to be nearly Normal. Skewness and outliers are particu-
larly problematic, especially for small samples.

• When there are two variables, you must think carefully
about how the data were collected. You may use two-
sample t procedures only if the groups are independent.

• Unless there is some obvious reason to suspect that two
independent populations have the same standard devi-
ation, you should not pool the variances. It is never
wrong to use unpooled t procedures.

• If the two groups are somehow paired, the data are not
from independent groups. You must use matched-pairs
t procedures.

Now for some opportunities to review these concepts. Be
careful. You have a lot of thinking to do. These review exer-
cises mix questions about proportions and means. You have to
determine which of our inference procedures is appropriate in
each situation. Then you have to check the proper assump-
tions and conditions. Keeping track of those can be difficult,
so first we summarize the many procedures with their corre-
sponding assumptions and conditions on the next page. Look
them over carefully . . . then, on to the Exercises!

VI
PA R T

REVIEW OF PART VI

Learning About the World
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610 PART VI    Learning About the World

Assumptions for Inference And the Conditions That Support or Override Them

Proportions (z)
• One sample

1. Individuals are independent. 1. SRS and n , 10% of the population.
2. Sample is sufficiently large. 2. Successes and failures each $ 10.

• Two groups
1. Groups are independent. 1. (Think about how the data were collected.)
2. Data in each group are independent. 2. Both are SRSs and n , 10% of populations

OR random allocation.
3. Both groups are sufficiently large. 3. Successes and failures each $ 10 for both groups.

Means (t )
• One sample (df 5 n 2 1)

1. Individuals are independent. 1. SRS and n , 10% of the population.
2. Population has a Normal model. 2. Histogram is unimodal and symmetric.*

• Matched pairs (df 5 n 2 1)
1. Data are matched. 1. (Think about the design.)
2. Individuals are independent. 2. SRS and n , 10% OR random allocation.
3. Population of differences is Normal. 3. Histogram of differences is unimodal and symmetric.* 

• Two independent groups (df from technology)
1. Groups are independent. 1. (Think about the design.)
2. Data in each group are independent. 2. SRSs and n , 10% OR random allocation.
3. Both populations are Normal. 3. Both histograms are unimodal and symmetric.*

(*less critical as n increases)

Quick Guide to Inference

Think Show Tell?
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Review Exercises 611

REVIEW EXERCISES

1. Crawling. A study published in 1993 found that babies
born at different times of the year may develop the ability
to crawl at different ages! The author of the study sug-
gested that these differences may be related to the tem-
perature at the time the infant is 6 months old. (Benson
and Janette, Infant Behavior and Development [1993])
a) The study found that 32 babies born in January

crawled at an average age of 29.84 weeks, with a stan-
dard deviation of 7.08 weeks. Among 21 July babies,
crawling ages averaged 33.64 weeks, with a standard
deviation of 6.91 weeks. Is this difference significant?

b) For 26 babies born in April the mean and standard de-
viation were 31.84 and 6.21 weeks, while for 44 Octo-
ber babies the mean and standard deviation of crawl-
ing ages were 33.35 and 7.29 weeks. Is this difference
significant?

c) Are these results consistent with the researcher’s
conjecture?

2. Mazes and smells. Can
pleasant smells improve
learning? Researchers timed
21 subjects as they tried to
complete paper-and-pencil
mazes. Each subject at-
tempted a maze both with
and without the presence of a
floral aroma. Subjects were
randomized with respect to
whether they did the scented
trial first or second. Is there
any evidence that the floral
scent improved the subjects’
ability to complete the mazes?
(A. R. Hirsch and L. H. John-
ston, “Odors and Learning.”
Chicago: Smell and Taste
Treatment and Research
Foundation)

3. Women. The U.S. Census
Bureau reports that 26% of all
U.S. businesses are owned by
women. A Colorado consult-
ing firm surveys a random
sample of 410 businesses in
the Denver area and finds that 115 of them have women
owners. Should the firm conclude that its area is un-
usual? Test an appropriate hypothesis and state your
conclusion.

4. Drugs. In a full-page ad that ran in many U.S. newspa-
pers in August 2002, a Canadian discount pharmacy
listed costs of drugs that could be ordered from a Web
site in Canada. The table compares prices (in US$) for
commonly prescribed drugs.

a) Give a 95% confidence interval for the average savings
in dollars.

b) Give a 95% confidence interval for the average savings
in percent.

c) Which analysis is more appropriate? Why?
d) In small print the newspaper ad says, “Complete list

of all 1500 drugs available on request.” How does this
comment affect your conclusions above?

5. Pottery. Archaeologists can use the chemical com-
position of clay found in pottery artifacts to determine
whether different sites were populated by the same
ancient people. They collected five samples of Romano–
British pottery from each of two sites in Great Britain and
measured the percentage of aluminum oxide in each.
Based on these data, do you think the same people used
these two kiln sites? Base your conclusion on a 95% confi-
dence interval for the difference in aluminum oxide con-
tent of pottery made at the sites. (A. Tubb, A. J. Parker,
and G. Nickless, “The Analysis of Romano–British Pot-
tery by Atomic Absorption Spectrophotometry.”
Archaeometry, 22[1980]:153–171)

6. Streams. Researchers in the Adirondack Mountains
collect data on a random sample of streams each year.
One of the variables recorded is the substrate of the
streams—the type of soil and rock over which they flow.
The researchers found that 69 of the 172 sampled streams
had a substrate of shale. Construct a 95% confidence in-
terval for the proportion of Adirondack streams with a
shale substrate. Clearly interpret your interval in context.

Time to Complete 
the Maze (sec)

Unscented Scented

25.7 30.2
41.9 56.7
51.9 42.4
32.2 34.4
64.7 44.8
31.4 42.9
40.1 42.7
43.2 24.8
33.9 25.1
40.4 59.2
58.0 42.2
61.5 48.4
44.6 32.0
35.3 48.1
37.2 33.7
39.4 42.6
77.4 54.9
52.8 64.5
63.6 43.1
56.6 52.8
58.9 44.3

Cost per 100 Pills

United States Canada
Percent
savings

D
ru

g 
N

am
e

Cardizem 131 83 37
Celebrex 136 72 47
Cipro 374 219 41
Pravachol 370 166 55
Premarin 61 17 72
Prevacid 252 214 15
Prozac 263 112 57
Tamoxifen 349 50 86
Vioxx 243 134 45
Zantac 166 42 75
Zocor 365 200 45
Zoloft 216 105 51

Ashley Rails 19.1 14.8 16.7 18.3 17.7
New Forest 20.8 18.0 18.0 15.8 18.3

T

T

T

BOCK_C25_0321570448 pp3.qxd  11/26/08  6:10 PM  Page 611



612 PART VI    Learning About the World

7. Gehrig. Ever since Lou Gehrig developed amyotrophic
lateral sclerosis (ALS), this deadly condition has been
commonly known as Lou Gehrig’s disease. Some believe
that ALS is more likely to strike athletes or the very fit.
Columbia University neurologist Lewis P. Rowland
recorded personal histories of 431 patients he examined
between 1992 and 2002. He diagnosed 280 as having ALS;
38% of them had been varsity athletes. The other 151 had
other neurological disorders, and only 26% of them had
been varsity athletes. (Science News, Sept. 28 [2002])
a) Is there evidence that ALS is more common among

athletes?
b) What kind of study is this? How does that affect the

inference you made in part a?

8. Teen drinking. A study of the health behavior of
school-aged children asked a sample of 15-year-olds in
several different countries if they had been drunk at least
twice. The results are shown in the table, by gender. Give
a 95% confidence interval for the difference in the rates for
males and females. Be sure to check the assumptions that
support your chosen procedure, and explain what your
interval means. (Health and Health Behavior Among Young
People. Copenhagen: World Health Organization, 2000)

9. Babies. The National Perinatal Statistics Unit of the
Sydney Children’s Hospital reports that the mean birth
weight of all babies born in Australia in 1999 was 3361
grams—about 7.41 pounds. A Missouri hospital reports
that the average weight of 112 babies born there last
year was 7.68 pounds, with a standard deviation of
1.31 pounds. If we believe the Missouri babies fairly
represent American newborns, is there any evidence that
U.S. babies and Australian babies do not weigh the same
amount at birth?

10. Petitions. To get a voter initiative on a state ballot,
petitions that contain at least 250,000 valid voter signa-
tures must be filed with the Elections Commission. 
The board then has 60 days to certify the petitions. A
group wanting to create a statewide system of universal
health insurance has just filed petitions with a total of
304,266 signatures. As a first step in the process, the
Board selects an SRS of 2000 signatures and checks them
against local voter lists. Only 1772 of them turn out to be
valid.
a) What percent of the sample signatures were valid?
b) What percent of the petition signatures submitted

must be valid in order to have the initiative certified
by the Elections Commission?

c) What will happen if the Elections Commission com-
mits a Type I error?

d) What will happen if the Elections Commission com-
mits a Type II error?

e) Does the sample provide evidence in support of certi-
fication? Explain.

f ) What could the Elections Commission do to increase
the power of the test?

11. Feeding fish. In the midwestern United States, a large
aquaculture industry raises largemouth bass. Researchers
wanted to know whether the fish would grow better if
fed a natural diet of fathead minnows or an artificial diet
of food pellets. They stocked six ponds with bass finger-
lings weighing about 8 grams. For one year, the fish in
three of the ponds were fed minnows, and the others
were fed the commercially prepared pellets. The fish
were then harvested, weighed, and measured. The bass
fed a natural food source had a higher average length
(19.6 cm) and weight (95.9 g) than those fed the commer-
cial fish food (17.3 cm and 72.0 g, respectively). The re-
searchers reported P-values for differences in both meas-
urements to be less than 0.001.
a) Explain to someone who has not studied Statistics

what the P-values mean here.
b) What advice should the researchers give the people

who raise largemouth bass?
c) If that advice turns out to be incorrect, what type of

error occurred?

12. Risk. A study of auto safety determined the number of
driver deaths per million vehicle sales, classified by type
of vehicle. The data on the next page are for 6 midsize

Percent of 15-Year-Olds
Drunk at Least Twice

Country Female Male

Denmark 63 71
Wales 63 72
Greenland 59 58
England 62 51
Finland 58 52
Scotland 56 53
No. Ireland 44 53
Slovakia 31 49
Austria 36 49
Canada 42 42
Sweden 40 40
Norway 41 37
Ireland 29 42
Germany 31 36
Latvia 23 47
Estonia 23 44
Hungary 22 43
Poland 21 39
USA 29 34
Czech Rep. 22 36
Belgium 22 36
Russia 25 32
Lithuania 20 32
France 20 29
Greece 21 24
Switzerland 16 25
Israel 10 18

T
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models and 6 SUVs. Wondering if there is evidence that
drivers of SUVs are safer, we hope to create a 95% confi-
dence interval for the difference in driver death rates for
the two types of vehicles. Are these data appropriate for
this inference? Explain. (Ross and Wenzel, An Analysis of
Traffic Deaths by Vehicle Type and Model, March 2002)

b) Based on your confidence interval, are you convinced
that this new form of recruiting has been effective?
Explain.

17. Hearing. Fitting someone for a hearing aid requires
assessing the patient’s hearing ability. In one method of 
assessment, the patient
listens to a tape of 50 Eng-
lish words. The tape is
played at low volume,
and the patient is asked
to repeat the words. The
patient’s hearing ability
score is the number of
words perceived cor-
rectly. Four tapes of
equivalent difficulty are
available so that each ear
can be tested with more
than one hearing aid.
These lists were created
to be equally difficult to
perceive in silence, but
hearing aids must work
in the presence of back-
ground noise. Re-
searchers had 24 subjects
with normal hearing com-
pare two of the tapes
when a background noise
was present, with the or-
der of the tapes random-
ized. Is it reasonable to
assume that the two lists
are still equivalent for
purposes of the hearing test when there is background
noise? Base your decision on a confidence interval for the
mean difference in the number of words people might
misunderstand. (Faith Loven, A Study of the Interlist
Equivalency of the CID W-22 Word List Presented in Quiet
and in Noise. University of Iowa [1981])

18. Cesareans. Some people fear that differences in insur-
ance coverage can affect healthcare decisions. A survey of
several randomly selected hospitals found that 16.6% of
223 recent births in Vermont involved cesarean deliveries,
compared to 18.8% of 186 births in New Hampshire. Is
this evidence that the rate of cesarean births in the two
states is different?

19. Newspapers. Who reads the newspaper more, men 
or women? Eurostat, an agency of the European Union
(EU), conducts surveys on several aspects of daily life 
in EU countries. Recently, the agency asked samples of
1000 respondents in each of 14 European countries
whether they read the newspaper on a daily basis. The
table on the next page shows the data.

13. Age. In a study of how depression may affect one’s
ability to survive a heart attack, the researchers reported
the ages of the two groups they examined. The mean age
of 2397 patients without cardiac disease was 69.8 years

, while for the 450 patients with cardiac
disease, the mean and standard deviation of the ages
were 74.0 and 7.9, respectively.
a) Create a 95% confidence interval for the difference in

mean ages of the two groups.
b) How might an age difference confound these research

findings about the relationship between depression
and ability to survive a heart attack?

14. Smoking. In the depression and heart attack research
described in Exercise 13, 32% of the diseased group were
smokers, compared with only 23.7% of those free of heart
disease.
a) Create a 95% confidence interval for the difference in

the proportions of smokers in the two groups.
b) Is this evidence that the two groups in the study were

different? Explain.
c) Could this be a problem in analyzing the results of the

study? Explain.

15. Computer use. A Gallup telephone poll of 1240 teens
conducted in 2001 found that boys were more likely than
girls to play computer games, by a margin of 77% to 65%.
Equal numbers of boys and girls were surveyed.
a) What kind of sampling design was used?
b) Give a 95% confidence interval for the difference in

game playing by gender.
c) Does your confidence interval suggest that among all

teens a higher percentage of boys than girls play com-
puter games?

16. Recruiting. In September 2002, CNN reported on a
method of grad student recruiting by the Haas School of
Business at U.C.-Berkeley. The school notifies applicants
by formal letter that they have been admitted, and also 
e-mails the accepted students a link to a Web site that
greets them with personalized balloons, cheering, and
applause. The director of admissions says this extra effort
at recruiting has really worked well. The school accepts
500 applicants each year, and the percentage that actually
choose to enroll at Berkeley increased from 52% the year
before the Web greeting to 54% this year.
a) Create a 95% confidence interval for the change in

enrollment rates.

(SD = 8.7 years)

Midsize 47 54 64 76 88 97
SUV 55 60 62 76 91 109

Subject List A List B

1 24 26
2 32 24
3 20 22
4 14 18
5 32 24
6 22 30
7 20 22
8 26 28
9 26 30

10 38 16
11 30 18
12 16 34
13 36 32
14 32 34
15 38 32
16 14 18
17 26 20
18 14 20
19 38 40
20 20 26
21 14 14
22 18 14
23 22 30
24 34 42
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a) Examine the differences in the percentages for each
country. Which of these countries seem to be outliers?
What do they have in common?

b) After eliminating the outliers, is there evidence that in
Europe men are more likely than women to read the
newspaper?

20. Meals. A college student is on a “meal program.” His
budget allows him to spend an average of $10 per day for
the semester. He keeps track of his daily food expenses for
2 weeks; the data are given in the table. Is there strong evi-
dence that he will overspend his food allowance? Explain.

22. Teach for America. Several programs attempt to
address the shortage of qualified teachers by placing
uncertified instructors in schools with acute needs—often
in inner cities. A 1999–2000 study compared students
taught by certified teachers to others taught by uncerti-
fied teachers in the same schools. Reading scores of the
students of certified teachers averaged 35.62 points with
standard deviation 9.31. The scores of students instructed
by uncertified teachers had mean 32.48 points with stan-
dard deviation 9.43 points on the same test. There were
44 students in each group. The appropriate t procedure
has 86 degrees of freedom. Is there evidence of lower
scores with uncertified teachers? Discuss. (The Effective-
ness of “Teach for America” and Other Under-certified Teach-
ers on Student Academic Achievement: A Case of Harmful
Public Policy. Education Policy Analysis Archives [2002])

23. Legionnaires’ disease. In 1974, the Bellevue-Stratford
Hotel in Philadelphia was the scene of an outbreak of what
later became known as legionnaires’ disease. The cause of
the disease was finally discovered to be bacteria that
thrived in the air-conditioning units of the hotel. Owners
of the Rip Van Winkle Motel, hearing about the Bellevue-
Stratford, replaced their air-conditioning system. The fol-
lowing data are the bacteria counts in the air of eight
rooms, before and after a new air-conditioning system was
installed (measured in colonies per cubic foot of air). Has
the new system succeeded in lowering the bacterial count?
Base your analysis on a confidence interval. Be sure to list
all your assumptions, methods, and conclusions.

21. Wall Street. In September of 2000, the Harris Poll
organization asked 1002 randomly sampled American
adults whether they agreed or disagreed with the follow-
ing statement:

Most people on Wall Street would be willing to break the
law if they believed they could make a lot of money and get
away with it.

Of those asked, 60% said they agreed with this statement.
We know that if we could ask the entire population of
American adults, we would not find that exactly 60%
think that Wall Street workers would be willing to break
the law to make money. Construct a 95% confidence in-
terval for the true percentage of American adults who
agree with the statement.

24. Teach for America, Part II. The study described in
Exercise 22 also looked at scores in mathematics and
language. Here are software outputs for the appropriate
tests. Explain what they show.

Mathematics
T-TEST OF Mu(1) – Mu(2) = 0

Mu(Cer t) – Mu(NoCer t) = 4.53  t (86) = 2.95 p = 0.002

Language
T-TEST OF Mu(1) - Mu(2) = 0

Mu(Cer t) – Mu(NoCer t) = 2.13  t (84) = 1.71  p = 0.045

25. Bipolar kids. The June 2002 American Journal of Psychia-
try reported that researchers used medication and psy-
chotherapy to treat children aged 7 to 16 who exhibit
bipolar symptoms. After 2 years, symptoms had cleared
up in only 26 of the 89 children involved in the study.

% Reading a
Newspaper Daily

Country Men Women

Belgium 56.3 45.5
Denmark 76.8 70.3
Germany 79.9 76.8
Greece 22.5 17.2
Spain 46.2 24.8
Ireland 58.0 54.0
Italy 50.2 29.8
Luxembourg 71.0 67.0
Netherlands 71.3 63.0
Austria 78.2 74.1
Portugal 58.3 24.1
Finland 93.0 90.0
Sweden 89.0 88.0
UK 32.6 30.4

Date Cost ($) Date Cost ($)

7/29 15.20 8/5 8.55
7/30 23.20 8/6 20.05
7/31 3.20 8/7 14.95
8/1 9.80 8/8 23.45
8/2 19.53 8/9 6.75
8/3 6.25 8/10 0
8/4 0 8/11 9.01

Room Number Before After

121 11.8 10.1
163 8.2 7.2
125 7.1 3.8
264 14 12
233 10.8 8.3
218 10.1 10.5
324 14.6 12.1
325 14 13.7
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a) Write a 95% confidence interval; interpret it in context.
b) If researchers subsequently hope to produce an esti-

mate of treatment effectiveness for bipolar disorder
that has a margin of error of only 6%, how many pa-
tients should they study?

26. Online testing. The Ed-
ucational Testing Service
is now administering sev-
eral of its standardized
tests online—the CLEP
and GMAT exams, for ex-
ample. Since taking a test
on a computer is different
from taking a test with
pencil and paper, one
wonders if the scores will
be the same. To investi-
gate this question, re-
searchers created two ver-
sions of an SAT-type test
and got 20 volunteers to
participate in an experi-
ment. Each volunteer took
both versions of the test,
one with pencil and paper
and the other online. Sub-
jects were randomized
with respect to the order
in which they sat for the
tests (online/paper) and
which form they took
(Test A, Test B) in which
environment. The scores (out of a possible 20) are sum-
marized in the table.
a) Were the two forms (A/B) of the test equivalent in

terms of difficulty? Test an appropriate hypothesis
and state your conclusion.

b) Is there evidence that the testing environment (pa-
per/online) matters? Test an appropriate hypothesis
and state your conclusion.

27. Bread. Clarksburg Bakery is trying to predict how
many loaves of bread to bake. In the last 100 days, the
bakery has sold between 95 and 140 loaves per day. Here
are a histogram and the summary statistics for the num-
ber of loaves sold for the last 100 days.

b) Explain why you can use these data to construct a 95%
confidence interval for the mean number of loaves
sold per day.

c) Calculate a 95% confidence interval and carefully
interpret what that confidence interval means.

d) If the bakery would have been satisfied with a con-
fidence interval whose margin of error was twice 
as wide, how many days’ data could they have 
used?

e) When the bakery opened, the owners estimated that
they would sell an average of 100 loaves per day. Does
your confidence interval provide strong evidence that
this estimate was incorrect? Explain.

28. Irises. Can measurements of the petal length of flowers
be of value when you need to determine the species of a
certain flower? Here are the summary statistics from
measurements of the petals of two species of irises. (R. A.
Fisher, “The Use of Multiple Measurements in Axonomic
Problems.” Annals of Eugenics 7 [1936]:179–188)

Subject Paper Online

Test A Test B

1 14 13
2 10 13
3 16 8
4 15 14
5 17 16
6 14 11
7 9 12
8 12 12
9 16 16

10 7 14

Test B Test A

11 8 13
12 11 13
13 15 17
14 11 13
15 13 14
16 9 9
17 15 9
18 14 15
19 16 12
20 8 10

Summary of Sales

Mean 103

Median 100

SD 9.000

Min 95

Max 140

Q1 97

Q3 105.5
95 120 145

# of Loaves Sold

# 
of

 D
ay

s

50

40

30

20

10

0

a) Can you use these data to estimate the number of
loaves sold on the busiest 10% of all days? Explain.

Species

Versicolor Virginica

Count 50 50
Mean 55.52 43.22
Median 55.50 44.00
SD 5.519 5.362
Min 45 30
Max 69 56
Lower Quartile 51 40
Upper Quartile 59 47

a) Make parallel boxplots of petal lengths for the two
species.

b) Describe the differences seen in the boxplots.
c) Write a 95% confidence interval for the difference in

petal length.
d) Explain what your interval means.
e) Based on your confidence interval, is there evidence of

a difference in petal length? Explain.

29. Insulin and diet. A study published in the Journal of
the American Medical Association examined people to see 
if they showed any signs of IRS (insulin resistance syn-
drome) involving major risk factors for Type 2 diabetes
and heart disease. Among 102 subjects who consumed
dairy products more than 35 times per week, 24 were
identified with IRS. In comparison, IRS was identified in
85 of 190 individuals with the lowest dairy consumption,
fewer than 10 times per week.
a) Is this strong evidence that IRS risk is different in peo-

ple who frequently consume dairy products than in
those who do not?

b) Does this indicate that diary consumption influences
the development of IRS? Explain.

30. Speeding. A newspaper report in August 2002 raised
the issue of racial bias in the issuance of speeding tickets.
The following facts were noted:
• 16% of drivers registered in New Jersey are black.

T
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• Of the 324 speeding tickets issued in one month on a
65-mph section of the New Jersey Turnpike, 25% went
to black drivers.

a) Is the percentage of speeding tickets issued to blacks
unusually high compared to registrations?

b) Does this suggest that racial profiling may be present?
c) What other statistics would you like to know about

this situation?

31. Rainmakers? In an experiment to determine whether
seeding clouds with silver iodide increases rainfall, 52
clouds were randomly assigned to be seeded or not. The
amount of rain they generated was then measured (in
acre-feet). Create a 95% confidence interval for the aver-
age amount of additional rain created by seeding clouds.
Explain what your interval means.

34. And it means? Every statement about a confidence in-
terval contains two parts: the level of confidence and the
interval. Suppose that an insurance agent estimating the
mean loss claimed by clients after home burglaries cre-
ated the 95% confidence interval ($1644, $2391).
a) What’s the margin of error for this estimate?
b) Carefully explain what the interval means.
c) Carefully explain what the confidence level means.

35. Batteries. We work for the “Watchdog for the Con-
sumer” consumer advocacy group. We’ve been asked to
look at a battery company that claims its batteries last an
average of 100 hours under normal use. There have been
several complaints that the batteries don’t last that long,
so we decide to test them. To do this, we select 16 batter-
ies and run them until they die. They lasted a mean of
97 hours, with a standard deviation of 12 hours.
a) One of the editors of our newsletter (who does not

know statistics) says that 97 hours is a lot less than the
advertised 100 hours, so we should reject the company’s
claim. Explain to him the problem with doing that.

b) What are the null and alternative hypotheses?
c) What assumptions must we make in order to proceed

with inference?
d) At a 5% level of significance, what do you conclude?
e) Suppose that, in fact, the average life of the company’s

batteries is only 98 hours. Has an error been made in
part d? If so, what kind?

36. Hamsters. How large are hamster litters? Among
47 golden hamster litters recorded, there were an average
of 7.72 baby hamsters, with a standard deviation of 2.5.
a) Create and interpret a 90% confidence interval.
b) Would a 98% confidence interval have a larger or

smaller margin of error? Explain.
c) How many litters must be used to estimate the aver-

age litter size to within 1 baby hamster with 95%
confidence?
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Unseeded 

Clouds

Seeded 

Clouds

Count 26 26

Mean 164.588 441.985
Median 44.200 221.600
SD 278.426 650.787
IntQRange 138.600 337.600
25 %ile 24.400 92.400

75 %ile 163 430

32. Fritos. As a project for an introductory Statistics course,
students checked 6 bags of Fritos marked with a net
weight of 35.4 grams. They carefully weighed the con-
tents of each bag, recording the following weights (in
grams): 35.5, 35.3, 35.1, 36.4, 35.4, 35.5. Is there evidence
that the mean weight of bags of Fritos is less than
advertised?
a) Write appropriate hypotheses.
b) Check the assumptions for inference.
c) Test your hypothesis using all 6 weights.
d) Retest your hypothesis with the one unusually high

weight removed.
e) What would you conclude about the stated weight?

33. Color or text? In an experiment, 32 volunteer subjects
are briefly shown seven cards, each displaying the name
of a color printed in a different color (example: red, blue,
and so on). The subject is asked to perform one of two
tasks: memorize the order of the words or memorize the
order of the colors. Researchers record the number of
cards remembered correctly. Then the cards are shuffled
and the subject is asked to perform the other task. The
table displays the results for each subject. Is there any
evidence that either the color or the written word domi-
nates perception?
a) What role does randomization play in this

experiment?
b) Test appropriate hypotheses and state your 

conclusion.

T

T

Subject Color Word

1 4 7
2 1 4
3 5 6
4 1 6
5 6 4
6 4 5
7 7 3
8 2 5
9 7 5

10 4 3
11 2 0
12 5 4
13 6 7
14 3 6
15 4 6
16 4 7

Subject Color Word

17 4 3
18 7 4
19 4 3
20 0 6
21 3 3
22 3 5
23 7 3
24 3 7
25 5 6
26 3 4
27 3 5
28 1 4
29 2 3
30 5 3
31 3 4
32 6 7
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CHAPTER

26
Comparing 
Counts

Does your zodiac sign predict how success-
ful you will be later in life? Fortune maga-
zine collected the zodiac signs of 256 heads
of the largest 400 companies. The table

shows the number of births for each sign.
We can see some variation in the number of births

per sign, and there are more Pisces, but is that enough
to claim that successful people are more likely to be
born under some signs than others?

Goodness-of-Fit
If births were distributed uniformly across the year, we would expect about 1/12
of them to occur under each sign of the zodiac. That suggests 256/12, or about
21.3 births per sign. How closely do the observed numbers of births per sign fit
this simple “null” model?

A hypothesis test to address this question is called a test of “goodness-of-fit.”
The name suggests a certain badness-of-grammar, but it is quite standard. After all,
we are asking whether the model that births are uniformly distributed over the signs
fits the data good, . . . er, well. Goodness-of-fit involves testing a hypothesis. We have
specified a model for the distribution and want to know whether it fits. There is no
single parameter to estimate, so a confidence interval wouldn’t make much sense.

If the question were about only one astrological sign (for example, “Are exec-
utives more likely to be Pisces?”1), we could use a one-proportion z-test and ask if

1 A question actually asked us by someone who was undoubtedly a Pisces.

WHO Executives of Fortune
400 companies

WHAT Zodiac birth sign

WHY Maybe the researcher
was a Gemini and 
naturally curious?

Activity: Children at Risk.
See how a contingency table
helps us understand the different
risks to which an incident
exposed children.

“All creatures have their
determined time for giving
birth and carrying fetus, only a
man is born all year long, not
in determined time, one in the
seventh month, the other in the
eighth, and so on till the
beginning of the eleventh
month.”

—Aristotle

Births Sign

23 Aries
20 Taurus
18 Gemini
23 Cancer
20 Leo
19 Virgo
18 Libra
21 Scorpio
19 Sagittarius
22 Capricorn
24 Aquarius
29 Pisces

Birth totals by sign for 256
Fortune 400 executives. 
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the true proportion of executives with that sign is equal to 1/12. However, here
we have 12 hypothesized proportions, one for each sign. We need a test that con-
siders all of them together and gives an overall idea of whether the observed dis-
tribution differs from the hypothesized one.

Assumptions and Conditions
These data are organized in tables as we saw in Chapter 3, and the assumptions
and conditions reflect that. Rather than having an observation for each individ-
ual, we typically work with summary counts in categories. In our example, we
don’t see the birth signs of each of the 256 executives, only the totals for each sign.

Counted Data Condition: The data must be counts for the categories of a cat-
egorical variable. This might seem a simplistic, even silly condition. But many
kinds of values can be assigned to categories, and it is unfortunately common to
find the methods of this chapter applied incorrectly to proportions, percentages,
or measurements just because they happen to be organized in a table. So check to
be sure the values in each cell really are counts.

Independence Assumption
Independence Assumption: The counts in the cells should be independent of
each other. The easiest case is when the individuals who are counted in the cells
are sampled independently from some population. That’s what we’d like to have
if we want to draw conclusions about that population. Randomness can arise in

Finding expected countsFOR EXAMPLE

Birth month may not be related to success as a CEO, but what about on the ball field? It has been proposed by some researchers that children who are
the older ones in their class at school naturally perform better in sports and that these children then get more coaching and encouragement. Could that
make a difference in who makes it to the professional level in sports?

Baseball is a remarkable sport, in part
because so much data are available. We
have the birth dates of every one of the
16,804 players who ever played in a major
league game. Since the effect we’re sus-
pecting may be due to relatively recent poli-
cies (and to keep the sample size moder-
ate), we’ll consider the birth months of the
1478 major league players born since 1975
and who have played through 2006. We can
also look up the national demographic sta-
tistics to find what percentage of people
were born in each month. Let’s test whether
the observed distribution of ballplayers’ birth months shows just random fluctua-
tions or whether it represents a real deviation from the national pattern.

Question: How can we find the expected counts?

There are 1478 players in this set of data. I’d expect 8% of
them to have been born in January, and . 
I won’t round off, because expected “counts” needn’t be inte-
gers. Multiplying 1478 by each of the birth percentages gives
the expected counts shown in the table.

1478(0.08) = 118.24

Month
Ballplayer

count
National 
birth %

1 137 8%
2 121 7%
3 116 8%
4 121 8%
5 126 8%
6 114 8%

Month
Ballplayer 

count
National 
birth %

7 102 9%
8 165 9%
9 134 9%

10 115 9%
11 105 8%
12 122 9%

Total 1478 100%

Month Expected Month Expected

1 118.24 7 133.02
2 103.46 8 133.02
3 118.24 9 133.02
4 118.24 10 133.02
5 118.24 11 118.24
6 118.24 12 133.02
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NOTATION ALERT:

We compare the counts observed
in each cell with the counts 
we expect to find.The usual
notation uses O’s and E’s or
abbreviations such as those
we’ve used here.The method
for finding the expected counts
depends on the model.

other ways, though. For example, these Fortune 400 executives are not a random
sample, but we might still think that their birth dates are randomly distributed
throughout the year. If we want to generalize to a large population, we should
check the Randomization Condition.

Randomization Condition: The individuals who have been counted should
be a random sample from the population of interest.

Sample Size Assumption
We must have enough data for the methods to work. We usually check the 
following:

Expected Cell Frequency Condition: We should expect to see at least 5 indi-
viduals in each cell.

The Expected Cell Frequency Condition sounds like—and is, in fact, quite
similar to—the condition that np and nq be at least 10 when we tested proportions.
In our astrology example, assuming equal births in each month leads us to expect
21.3 births per month, so the condition is easily met here.

620 CHAPTER 26    Comparing Counts

Calculations
We have observed a count in each category from the data, and have an expected
count for each category from the hypothesized proportions. Are the differences just
natural sampling variability, or are they so large that they indicate something im-
portant? It’s natural to look at the differences between these observed and expected
counts, denoted . We’d like to think about the total of the differences,
but just adding them won’t work because some differences are positive, others neg-
ative. We’ve been in this predicament before—once when we looked at deviations
from the mean and again when we dealt with residuals. In fact, these are residuals.
They’re just the differences between the observed data and the counts given by the
(null) model. We handle these residuals in essentially the same way we did in re-
gression: We square them. That gives us positive values and focuses attention on
any cells with large differences from what we expected. Because the differences be-
tween observed and expected counts generally get larger the more data we have,
we also need to get an idea of the relative sizes of the differences. To do that, we di-
vide each squared difference by the expected count for that cell.

(Obs - Exp)

Checking assumptions and conditionsFOR EXAMPLE

Recap: Are professional baseball players more likely to be born in some months than in others? We have observed and expected counts for the 
1478 players born since 1975.

Question: Are the assumptions and conditions met for performing a goodness-of-fit test?

Ç Counted Data Condition: I have month-by-month counts of ballplayer births.
Ç Independence Assumption: These births were independent.
Ç Randomization Condition: Although they are not a random sample, we can take these players to be representa-

tive of players past and future.
Ç Expected Cell Frequency Condition: The expected counts range from 103.46 to 133.02, all much greater than 5.
Ç 10% Condition: These 1478 players are less than 10% of the population of 16,804 players who have ever played 

(or will play) major league baseball.

It’s okay to use these data for a goodness-of-fit test.
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The test statistic, called the chi-square (or chi-squared) statistic, is found by
adding up the sum of the squares of the deviations between the observed and
expected counts divided by the expected counts:

The chi-square statistic is denoted , where is the Greek letter chi (pronounced
“ky” as in “sky”). It refers to a family of sampling distribution models we have
not seen before called (remarkably enough) the chi-square models.

This family of models, like the Student’s t-models, differ only in the number
of degrees of freedom. The number of degrees of freedom for a goodness-of-fit
test is . Here, however, n is not the sample size, but instead is the number of
categories. For the zodiac example, we have 12 signs, so our statistic has 11 de-
grees of freedom.

One-Sided or Two-Sided?
The chi-square statistic is used only for testing hypotheses, not for constructing
confidence intervals. If the observed counts don’t match the expected, the statis-
tic will be large. It can’t be “too small.” That would just mean that our model
really fit the data well. So the chi-square test is always one-sided. If the calcu-
lated statistic value is large enough, we’ll reject the null hypothesis. What could
be simpler?

Even though its mechanics work like a one-sided test, the interpretation of a
chi-square test is in some sense many-sided. With more than two proportions,
there are many ways the null hypothesis can be wrong. By squaring the differ-
ences, we made all the deviations positive, whether our observed counts were
higher or lower than expected. There’s no direction to the rejection of the null
model. All we know is that it doesn’t fit.

x2
n - 1

xx2

x2
= a

all cells

(Obs - Exp)2

Exp
.

NOTATION ALERT:

The only use of the Greek letter
in Statistics is to represent this

statistic and the associated
sampling distribution.This is
another violation of our  “rule”
that Greek letters represent
population parameters. Here we
are using a Greek letter simply
to name a family of distribution
models and a statistic.

x

20

Doing a goodness-of-fit testFOR EXAMPLE

Recap: We’re looking at data on the birth months of major league baseball players. We’ve checked the assumptions and conditions for performing a
test.

Questions: What are the hypotheses, and what does the test show?

: The distribution of birth months for major league ballplayers is the same as that for the general population.
: The distribution of birth months for major league ballplayers differs from that of the rest of the population.

Because of the small P-value, I reject ; there’s evidence that birth months of major league ballplayers have a differ-
ent distribution from the rest of us.

H0

 P-value = P(x2
11 Ú 26.48) = 0.0055 (by technology)

 = 26.48 (by technology)

 =

(137 - 118.24)2

118.24
+

(121 - 103.46)2

103.46
+ . . . 

 x2
= a

(Obs - Exp)2

Exp

 df = 12 - 1 = 11

HA

HO

x2

15 20 26.480 5 10

The Models. See what a 
model looks like, and watch it
change as you change the degrees
as freedom.

x2X2
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622 CHAPTER 26    Comparing Counts

2 It may seem that we have broken our rule of thumb that null hypotheses should specify
parameter values. If you want to get formal about it, the null hypothesis is that

That is, we hypothesize that the true proportions of births of CEOs under each sign are
equal. The role of the null hypothesis is to specify the model so that we can compute the
test statistic. That’s what this one does.

pAries = pTaurus =
Á

= pPisces.

We have counts of 256 executives in 12 zodiac sign categories. The natural null hypothesis is that
birth dates of executives are divided equally among all the zodiac signs. The test statistic looks at
how closely the observed data match this idealized situation.

Question: Are zodiac signs of CEOs distributed uniformly?

A Chi-Square Test for Goodness-of-FitSTEP–BY–STEP EXAMPLE

I want to know whether births of successful peo-
ple are uniformly distributed across the signs of
the zodiac. I have counts of 256 Fortune 400
executives, categorized by their birth sign.

: Births are uniformly distributed over zodiac
signs.2

: Births are not uniformly distributed over
zodiac signs.

HA

H0

Plan State what you want to know.

Identify the variables and check the W’s.

Aqr

10

20

30

Sign
PiscesCapScorpioVirgoLeoCancerGeminiTaurusAries Libra Sag

C
ou

nt

Hypotheses State the null and alterna-
tive hypotheses. For tests, it’s usually
easier to do that in words than in symbols.

x2

Model Make a picture. The null hypoth-
esis is that the frequencies are equal, so a
bar chart (with a line at the hypothesized
“equal” value) is a good display.

The bar chart shows some variation from sign
to sign, and Pisces is the most frequent. But it
is hard to tell whether the variation is more
than I’d expect from random variation.

Ç Counted Data Condition: I have counts of
the number of executives in 12 categories.

Ç Independence Assumption: The birth
dates of executives should be independent
of each other.

Ç Randomization Condition: This is a con-
venience sample of executives, but there’s
no reason to suspect bias.

Ç Expected Cell Frequency Condition: The
null hypothesis expects that 1/12 of the
256 births, or 21.333, should occur in each
sign. These expected values are all at least
5, so the condition is satisfied.

Think about the assumptions and check
the conditions.
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The Chi-Square Calculation 623

The expected value for each zodiac sign is 21.333.

= 5.094 for all 12 signs.

+

(20 - 21.333)2

21.333
+

. . .

x2
= a

(Obs - Exp)2

Exp
=

(23 - 21.333)2

21.333

Mechanics Each cell contributes an

value to the chi-square sum.

We add up these components for each zo-
diac sign. If you do it by hand, it can be
helpful to arrange the calculation in a
table. We show that after this Step-By-
Step.

The P-value is the area in the upper tail of
the model above the computed 
value.

The models are skewed to the high
end, and change shape depending on the
degrees of freedom. The P-value considers
only the right tail. Large statistic values
correspond to small P-values, which lead
us to reject the null hypothesis.

x2

x2

x2x2

(Obs - Exp)2

Exp

The conditions are satisfied, so I’ll use a 
model with degrees of freedom and
do a chi-square goodness-of-fit test.

12 - 1 = 11
x2Specify the sampling distribution model.

Name the test you will use.

20155 10

P-value = P(x2
7 5.094) = 0.926

The P-value of 0.926 says that if the zodiac
signs of executives were in fact distributed uni-
formly, an observed chi-square value of 5.09 or
higher would occur about 93% of the time. This
certainly isn’t unusual, so I fail to reject the
null hypothesis, and conclude that these data
show virtually no evidence of nonuniform distri-
bution of zodiac signs among executives.

Conclusion Link the P-value to your 
decision. Remember to state your conclu-
sion in terms of what the data mean,
rather than just making a statement about
the distribution of counts.

The Chi-Square Calculation
Let’s make the chi-square procedure very clear. Here are the steps:

1. Find the expected values. These come from the null hypothesis model. Every
model gives a hypothesized proportion for each cell. The expected value is
the product of the total number of observations times this proportion.

For our example, the null model hypothesizes equal proportions. With 12
signs, 1/12 of the 256 executives should be in each category. The expected
number for each sign is 21.333.

2. Compute the residuals. Once you have expected values for each cell, find the
residuals, .

3. Square the residuals.
4. Compute the components. Now find the component, , for

each cell.

(Observed - Expected)2

Expected

Observed - Expected

Activity: Calculating
Standardized Residuals. Women
were at risk, too. Standardized
residuals help us understand the
relative risks.
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624 CHAPTER 26    Comparing Counts

5. Find the sum of the components. That’s the chi-square statistic.
6. Find the degrees of freedom. It’s equal to the number of cells minus one. For

the zodiac signs, that’s degrees of freedom.
7. Test the hypothesis. Large chi-square values mean lots of deviation from the

hypothesized model, so they give small P-values. Look up the critical value
from a table of chi-square values, or use technology to find the P-value directly.

The steps of the chi-square calculations are often laid out in tables. Use one row
for each category, and columns for observed counts, expected counts, residuals,
squared residuals, and the contributions to the chi-square total like this:

12 - 1 = 11
Activity: The Chi-Square

Test. This animation completes
the calculation of the chi-square
statistic and the hypothesis test
based on it.

TI Tips Testing goodness of fit

As always, the TI makes doing the mechanics of a goodness-of-fit test pretty
easy, but it does take a little work to set it up. Let’s use the zodiac data to run
through the steps for a GOF-Test.

• Enter the counts of executives born under each star sign in L1.

Those counts were: 23 20 18 23 20 19 18 21 19 22 24 29

• Enter the expected percentages (or fractions, here 1/12) in L2. In this exam-
ple they are all the same value, but that’s not always the case.

• Convert the expected percentages to expected counts by multiplying each of
them by the total number of observations. We use the calculator’s summa-
tion command in the LIST MATH menu to find the total count for the data
summarized in L1 and then multiply that sum by the percentages stored in
L2 to produce the expected counts. The command is sum(L1)*L2 L2.
(We don’t ever need the percentages again, so we can replace them by stor-
ing the expected counts in L2 instead.)

• Choose D: GOF-Test from the STATS TESTS menu.
• Specify the lists where you stored the observed and expected counts, and en-

ter the number of degrees of freedom, here 11.

x2

˚
x2

Sign Observed Expected
Residual 5

(Obs 2 Exp)
(Obs 2 Exp)2

Component

(Obs 2 Exp)2

Exp

�

Aries 23 21.333 1.667 2.778889 0.130262
Taurus 20 21.333 21.333 1.776889 0.083293
Gemini 18 21.333 23.333 11.108889 0.520737
Cancer 23 21.333 1.667 2.778889 0.130262
Leo 20 21.333 21.333 1.776889 0.083293
Virgo 19 21.333 22.333 5.442889 0.255139
Libra 18 21.333 23.333 11.108889 0.520737
Scorpio 21 21.333 20.333 0.110889 0.005198
Sagittarius 19 21.333 22.333 5.442889 0.255139
Capricorn 22 21.333 0.667 0.444889 0.020854
Aquarius 24 21.333 2.667 7.112889 0.333422
Pisces 29 21.333 7.667 58.782889 2.755491

g 5 5.094
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The Chi-Square Calculation 625

• Ready, set, Calculate. . .
• . . . and there are the calculated value of and your P-value.
• Notice, too, there’s a list of values called CNTRB. You can scroll across

them, or use LIST NAMES to display them as a data list (as seen on the
next page). Those are the cell-by-cell components of the calculation. We
aren’t very interested in them this time, because our data failed to provide
evidence that the zodiac sign mattered. However, in a situation where we
rejected the null hypothesis, we’d want to look at the components to see
where the biggest effects occurred. You’ll read more about doing that later
in this chapter.

By hand?
If there are only a few cells, you may find that it’s just as easy to write out the
formula and then simply use the calculator to help you with the arithmetic. After
you have found you can use your TI to find the P-value, the 
probability of observing a value at least as high as the one you calculated
from your data. As you probably expect, that process is akin to normalcdf
and tcdf. You’ll find what you need in the DISTR menu at 8:χ2cdf. Just
specify the left and right boundaries and the number of degrees of freedom.

• Enter χ2 cdf(5.09375,999,11), as shown. (Why 999? Unlike t and z,
chi-square values can get pretty big, especially when there are many cells.
You may need to go a long way to the right to get to where the curve’s tail
becomes essentially meaningless. You can see what we mean by looking at
Table C, showing chi-square values.)

And there’s the P-value, a whopping 0.93! There’s nothing at all unusual about
these data. (So much for the zodiac’s predictive power.)

x2
x2

= 5.09375

x2

x2

How big is big? When we calculated for the zodiac sign example, we got
5.094. That value would have been big for z or t, leading us to reject the null hy-
pothesis. Not here. Were you surprised that had a huge P-value of
0.926? What is big for a statistic, anyway?

Think about how is calculated. In every cell, any deviation from the expected
count contributes to the sum. Large deviations generally contribute more, but if
there are a lot of cells, even small deviations can add up, making the value x2

x2
x2

x2
= 5.094

x2

0 5 10 15 20

df = 5 df = 9

Notice that the value might seem somewhat extreme when there are 5 de-
grees of freedom, but appears to be rather ordinary for 9 degrees of freedom. Here
are two simple facts to help you think about models:x2

x2
= 10

Lesson: The Chi-Square
Family of Curves. (Not an activity
like the others, but there’s no
better way to see how changes
with more df.) Click on the Lesson
Book’s Resources tab and open
the chi-square table. Watch the
curve at the top as you click on 
a row and scroll down the
degrees-of freedom column.

x2

larger. So the more cells there are, the higher the value of has to get before it x2

becomes noteworthy. For , then, the decision about how big is big depends on
the number of degrees of freedom.

Unlike the Normal and t families, models are skewed. Curves in the family
change both shape and center as the number of degrees of freedom grows. Here,
for example, are the curves for 5 and 9 degrees of freedom.x2

x2x2

x2
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626 CHAPTER 26    Comparing Counts

But I Believe the Model . . .
Goodness-of-fit tests are likely to be performed by people who have a theory of
what the proportions should be in each category and who believe their theory to
be true. Unfortunately, the only null hypothesis available for a goodness-of-fit test
is that the theory is true. And as we know, the hypothesis-testing procedure al-
lows us only to reject the null or fail to reject it. We can never confirm that a theory
is in fact true, which is often what people want to do.

Unfortunately, they’re stuck. At best, we can point out that the data are con-
sistent with the proposed theory. But this doesn’t prove the theory. The data could
be consistent with the model even if the theory were wrong. In that case, we fail
to reject the null hypothesis but can’t conclude anything for sure about whether
the theory is true.

And we can’t fix the problem by turning things around. Suppose we try to
make our favored hypothesis the alternative. Then it is impossible to pick a single
null. For example, suppose, as a doubter of astrology, you want to prove that the
distribution of executive births is uniform. If you choose uniform as the null hy-
pothesis, you can only fail to reject it. So you’d like uniformity to be your alterna-
tive hypothesis. Which particular violation of equally distributed births would
you choose as your null? The problem is that the model can be wrong in many,
many ways. There’s no way to frame a null hypothesis the other way around.
There’s just no way to prove that a favored model is true.

u The mode is at . (Look back at the curves; their peaks are at 3 and 7,
see?)

u The expected value (mean) of a model is its number of degrees of freedom.
That’s a bit to the right of the mode—as we would expect for a skewed distribu-
tion.

Our test for zodiac birthdays had 11 df, so the relevant curve peaks at 9 and has
a mean of 11. Knowing that, we might have easily guessed that the calculated 
value of 5.094 wasn’t going to be significant.

x2
x2

x2

x2
= df - 2

Why can’t we prove the null? A biologist wanted to show that her inheri-
tance theory about fruit flies is valid. It says that 10% of the flies should be type 1,
70% type 2, and 20% type 3. After her students collected data on 100 flies, she
did a goodness-of-fit test and found a P-value of 0.07. She started celebrating,
since her null hypothesis wasn’t rejected—that is, until her students collected data
on 100 more flies. With 200 flies, the P-value dropped to 0.02. Although she knew
the answer was probably no, she asked the statistician somewhat hopefully if she
could just ignore half the data and stick with the original 100. By this reasoning we
could always “prove the null” just by not collecting much data. With only a little
data, the chances are good that they’ll be consistent with almost anything. But they
also have little chance of disproving anything either. In this case, the test has no
power. Don’t let yourself be lured into this scientist’s reasoning. With data, more is
always better. But you can’t ever prove that your null hypothesis is true.

Comparing Observed Distributions
Many colleges survey graduating classes to determine the plans of the graduates.
We might wonder whether the plans of students are the same at different colleges.
Here’s a two-way table for Class of 2006 graduates from several colleges at one
university. Each cell of the table shows how many students from a particular col-
lege made a certain choice.
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Assumptions and Conditions 627

Because class sizes are so different, we see differences better by examining the
proportions for each class rather than the counts:

WHO Graduates from 
4 colleges at an 
upstate New 
York university

WHAT Post-graduation 
activities

WHEN 2006

WHY Survey for general 
information

Video: The Incident. You
may have guessed which famous
incident put women and children
at risk. Here you can view the
story complete with rare film
footage.

We already know how to test whether two proportions are the same. For 
example, we could use a two-proportion z-test to see whether the proportion of
students choosing graduate school is the same for Agriculture students as for En-
gineering students. But now we have more than two groups. We want to test
whether the students’ choices are the same across all four colleges. The z-test for
two proportions generalizes to a chi-square test of homogeneity.

Chi-square again? It turns out that the mechanics of this test are identical to
the chi-square test for goodness-of-fit that we just saw. (How similar can you
get?) Why a different name, then? The goodness-of-fit test compared counts
with a theoretical model. But here we’re asking whether choices are the same
among different groups, so we find the expected counts for each category di-
rectly from the data. As a result, we count the degrees of freedom slightly dif-
ferently as well.

The term “homogeneity” means that things are the same. Here, we ask
whether the post-graduation choices made by students are the same for these
four colleges. The homogeneity test comes with a built-in null hypothesis: We
hypothesize that the distribution does not change from group to group. The test
looks for differences large enough to step beyond what we might expect from
random sample-to-sample variation. It can reveal a large deviation in a single
category or small, but persistent, differences over all the categories—or any-
thing in between.

Assumptions and Conditions
The assumptions and conditions are the same as for the chi-square test for goodness-
of-fit. The Counted Data Condition says that these data must be counts. You
can’t do a test of homogeneity on proportions, so we have to work with the
counts of graduates given in the first table. Also, you can’t do a chi-square test
on measurements. For example, if we had recorded GPAs for these same groups,

Agriculture
Arts & 

Sciences Engineering Social Science Total

Employed 379 305 243 125 1052
Grad School 186 238 202 96 722
Other 104 123 37 58 322

Total 669 666 482 279 2096

Table 26.1 Post-graduation activities of the class of 2006 for several colleges of a large university.

Agriculture
Arts & 

Sciences Engineering Social Science Total

Employed 56.7% 45.8% 50.4% 44.8% 50.2
Grad School 27.8 35.7 41.9 34.4 34.4
Other 15.5 18.5 7.7 20.8 15.4

Total 100 100 100 100 100

Table 26.2 Activities of graduates as a percentage of respondents from each college.
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628 CHAPTER 26    Comparing Counts

3 To do that, you’d use a method called Analysis of Variance, discussed in a supplementary
chapter on the DVD and in ActivStats.

we wouldn’t be able to determine whether the mean GPAs were different using
this test.3

Often when we test for homogeneity, we aren’t interested in some larger pop-
ulation, so we don’t really need a random sample. (We would need one if we
wanted to draw a more general conclusion—say, about the choices made by all
members of the Class of ’06.) Don’t we need some randomness, though? Fortu-
nately, the null hypothesis can be thought of as a model in which the counts in the
table are distributed as if each student chose a plan randomly according to the
overall proportions of the choices, regardless of the student’s class. As long as we
don’t want to generalize, we don’t have to check the Randomization Condition
or the 10% Condition.

We still must be sure we have enough data for this method to work. The
Expected Cell Frequency Condition says that the expected count in each cell
must be at least 5. We’ll confirm that as we do the calculations.

Calculations
The null hypothesis says that the proportions of graduates choosing each alterna-
tive should be the same for all four colleges, so we can estimate those overall pro-
portions by pooling our data from the four colleges together. Within each college,
the expected proportion for each choice is just the overall proportion of all stu-
dents making that choice. The expected counts are those proportions applied to
the number of students in each graduating class.

For example, overall, 1052, or about 50.2%, of the 2096 students who re-
sponded to the survey were employed. If the distributions are homogeneous (as
the null hypothesis asserts), then 50.2% of the 669 Agriculture school graduates
(or about 335.8 students) should be employed. Similarly, 50.2% of the 482 Engi-
neering grads (or about 241.96) should be employed.

Working in this way, we (or, more likely, the computer) can fill in expected
values for each cell. Because these are theoretical values, they don’t have to be in-
tegers. The expected values look like this:

Now check the Expected Cell Frequency Condition. Indeed, there are at least
5 individuals expected in each cell.

Following the pattern of the goodness-of-fit test, we compute the component
for each cell of the table. For the highlighted cell, employed students graduating
from the Ag school, that’s

(Obs - Exp)2

Exp
=

(379 - 335.777)2

335.777
= 5.564

Agriculture
Arts & 

Sciences Engineering Social Science Total

Employed 335.777 334.271 241.920 140.032 1052
Grad School 230.448 229.414 166.032 96.106 722
Other 102.776 102.315 74.048 42.862 322

Total 669 666 482 279 2096

Table 26.3 Expected values for the ’06 graduates.
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Summing these components across all cells gives

How about the degrees of freedom? We don’t really need to calculate all the
expected values in the table. We know there is a total of 1052 employed students,
so once we find the expected values for three of the colleges, we can determine
the expected number for the fourth by just subtracting. Similarly, we know how
many students graduated from each college, so after filling in three rows, we can
find the expected values for the remaining row by subtracting. To fill out the table,
we need to know the counts in only rows and columns. So the table
has degrees of freedom.

In our example, we need to calculate only 2 choices in each column and
counts for 3 of the 4 colleges, for a total of degrees of freedom. We’ll
need the degrees of freedom to find a P-value for the chi-square statistic.

2 * 3 = 6

(R - 1)(C - 1)
C - 1R - 1

x2
= a

all cells

(Obs - Exp)2

Exp
= 54.51

NOTATION ALERT:

For a contingency table, R
represents the number of rows
and C the number of columns.

We have reports from four colleges on the post-graduation activities of their 2006 graduating
classes.

Question: Are students’ choices of post-graduation activities the same across all the colleges?

A Chi-Square Test for HomogeneitySTEP–BY–STEP EXAMPLE

I want to know whether post-graduation
choices are the same for students from each
of four colleges. I have a table of counts classi-
fying each college’s Class of 2006 respondents
according to their activities.

: Students’ post-graduation activities are
distributed in the same way for all four 
colleges.

: Students’ plans do not have the same 
distribution.

HA

H0

Plan State what you want to know.

Identify the variables and check the W’s.

A side-by-side bar chart shows how the distribu-
tions of choices differ across the four colleges.

Hypotheses State the null and alterna-
tive hypotheses.

60

50

40

30

20

10

0
Agriculture Arts & Sciences Engineering Social Science

Employed
Grad School
Other

College

Pe
rc

en
t

Post-Graduation ActivitiesModel Make a picture: A side-by-side
bar chart shows the four distributions of
post-graduation activities. Plot column
percents to remove the effect of class size
differences. A split bar chart would also
be an appropriate choice.
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630 CHAPTER 26    Comparing Counts

 = 54.52

 =

(379 - 335.777)2

335.777
+

. . .

 x2
= a

all cells

(Obs - Exp)2

Exp

Mechanics Show the expected counts
for each cell of the data table. You could
make separate tables for the observed and
expected counts, or put both counts in
each cell as shown here. While observed
counts must be whole numbers, expected
counts rarely are—don’t be tempted to
round those off.

Calculate .x2

Ç Counted Data Condition: I have counts of
the number of students in categories.

Ç Independence Assumption: Student plans
should be largely independent of each
other. The occasional friends who decide to
join Teach for America together or couples
who make grad school decisions together
are too rare to affect this analysis.

Ç Randomization Condition: I don’t want to
draw inferences to other colleges or other
classes, so there is no need to check for a
random sample.

Ç Expected Cell Frequency Condition: The 
expected values (shown below) are all at
least 5.

The conditions seem to be met, so I can use a
model with degrees

of freedom and do a chi-square test of 
homogeneity.

(3 - 1) * (4 - 1) = 6x2

Think about the assumptions and check
the conditions.

State the sampling distribution model
and name the test you will use.

Ag A&S Eng

Empl.

Grad
sch.

Other

379

335.777

186

104

305

238

123

334.271

243

202

37

241.920

Soc Sci
125

96

58

140.032

230.448 229.414 166.032 96.106

102.776 102.315 74.048 42.862

0 5 10 15

P-value = P(x2
7 54.52) 6 0.0001

The P-value considers only the right tail.
Here, the calculated value of the statistic
is off the scale, so the P-value is quite small.

x2

The P-value is very small, so I reject the null hypoth-
esis and conclude that there’s evidence that the
post-graduation activities of students from these
four colleges don’t have the same distribution.

Conclusion State your conclusion in the
context of the data. You should specifi-
cally talk about whether the distributions
for the groups appear to be different.

The shape of a model depends on the
degrees of freedom. A model with 6 df
is skewed to the high end.

x2
x2
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Examining the Residuals 631

If you find that simply rejecting the hypothesis of homogeneity is a bit unsatisfy-
ing, you’re in good company. Ok, so the post-graduation plans are different. What
we’d really like to know is what the differences are, where they’re the greatest,
and where they’re smallest. The test for homogeneity doesn’t answer these inter-
esting questions, but it does provide some evidence that can help us.

Examining the Residuals
Whenever we reject the null hypothesis, it’s a good idea to examine residuals. (We
don’t need to do that when we fail to reject because when the value is small, all
of its components must have been small.) For chi-square tests, we want to com-
pare residuals for cells that may have very different counts. So we’re better off
standardizing the residuals. We know the mean residual is zero,4 but we need to
know each residual’s standard deviation. When we tested proportions, we saw a
link between the expected proportion and its standard deviation. For counts,
there’s a similar link. To standardize a cell’s residual, we just divide by the square
root of its expected value:

Notice that these standardized residuals are just the square roots of the
components we calculated for each cell, and their sign indicates whether we ob-
served more cases than we expected, or fewer.

The standardized residuals give us a chance to think about the underlying
patterns and to consider the ways in which the distribution of post-graduation
plans may differ from college to college. Now that we’ve subtracted the mean
(zero) and divided by their standard deviations, these are z-scores. If the null hy-
pothesis were true, we could even appeal to the Central Limit Theorem, think of
the Normal model, and use the 68–95–99.7 Rule to judge how extraordinary the
large ones are.

Here are the standardized residuals for the Class of ’06 data:

c =

(Obs - Exp)

2Exp
.

x2

The column for Engineering students immediately attracts our attention. It holds
both the largest positive and the largest negative standardized residuals. It looks
like Engineering college graduates are more likely to go on to graduate work and
very unlikely to take time off for “volunteering and travel, among other activi-
ties” (as the “Other” category is explained). By contrast, Ag school graduates
seem to be readily employed and less likely to pursue graduate work immedi-
ately after college.

4 Residual observed expected. Because the total of the expected values is set to be the
same as the observed total, the residuals must sum to zero.

-=

Ag A&S Eng Soc Sci

Employed 2.359 21.601 0.069 21.270
Grad School 22.928 0.567 2.791 20.011
Other 0.121 2.045 24.305 2.312

Table 26.4

Standardized residuals can
help show how the table differs
from the null hypothesis 
pattern.
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632 CHAPTER 26    Comparing Counts

Independence
A study from the University of Texas Southwestern Medical Center examined
whether the risk of hepatitis C was related to whether people had tattoos and to
where they got their tattoos. Hepatitis C causes about 10,000 deaths each year in
the United States, but often lies undetected for years after infection.

The data from this study can be summarized in a two-way table, as follows:

Looking at residualsx2FOR EXAMPLE

Recap: Some people suggest that school children who are the older ones in their class
naturally perform better in sports and therefore get more coaching and encouragement. To
see if there’s any evidence for this, we looked at major league baseball players born since
1975. A goodness-of-fit test found their birth months to have a distribution that’s signifi-
cantly different from the rest of us. The table shows the standardized residuals.

Question: What’s different about the distribution of birth months among major league
ballplayers?

It appears that, compared to the general population, fewer ballplayers
than expected were born in July and more than expected in August. Either month would make them the younger kids in
their grades in school, so these data don’t offer support for the conjecture that being older is an advantage in terms
of a career as a pro athlete.

JUST CHECKING
Tiny black potato flea beetles can damage potato plants in a vegetable garden. These pests chew holes in the

leaves, causing the plants to wither or die. They can be killed with an insecticide, but a canola oil spray has been sug-
gested as a non-chemical “natural” method of controlling the beetles. To conduct an experiment to test the effective-
ness of the natural spray, we gather 500 beetles and place them in three Plexiglas® containers. Two hundred beetles go
in the first container, where we spray them with the canola oil mixture. Another 200 beetles go in the second container;
we spray them with the insecticide. The remaining 100 beetles in the last container serve as a control group; we simply
spray them with water. Then we wait 6 hours and count the number of surviving beetles in each container.

1. Why do we need the control group?

2. What would our null hypothesis be?

3. After the experiment is over, we could summa-
rize the results in a table as shown. How many
degrees of freedom does our test have?

4. Suppose that, all together, 125 beetles survived.
(That’s the first-row total.) What’s the expected
count in the first cell—survivors among those
sprayed with the natural spray?

5. If it turns out that only 40 of the beetles in the first container survived, what’s the calculated component of for
that cell?

6. If the total calculated value of for this table turns out to be around 10, would you expect the P-value of our test
to be large or small? Explain.

x2

x2

x2

Month Residual Month Residual

1 1.73 7 -2.69
2 1.72 8 2.77
3 -0.21 9 0.08
4 0.25 10 -1.56
5 0.71 11 -1.22
6 -0.39 12 -0.96

Natural spray Insecticide Water Total

Survived
Died
Total 200 200 100 500
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These data differ from the kinds of data we’ve considered before in this chapter
because they categorize subjects from a single group on two categorical variables
rather than on only one. The categorical variables here are Hepatitis C Status
(“Hepatitis C” or “No Hepatitis C”) and Tattoo Status (“Parlor,” “Elsewhere,”
“None”). We’ve seen counts classified by two categorical variables displayed
like this in Chapter 3, so we know such tables are called contingency tables.
Contingency tables categorize counts on two (or more) variables so that we can
see whether the distribution of counts on one variable is contingent on the other.

The natural question to ask of these data is whether the chance of having
hepatitis C is independent of tattoo status. Recall that for events A and B to be 
independent P(A) must equal P(A|B). Here, this means the probability that a
randomly selected patient has hepatitis C should not change when we learn the
patient’s tattoo status. We examined the question of independence in just this way
back in Chapter 15, but we lacked a way to test it. The rules for independent
events are much too precise and absolute to work well with real data. A chi-square
test for independence is called for here.

If Hepatitis Status is independent of tattoos, we’d expect the proportion of
people testing positive for hepatitis to be the same for the three levels of Tattoo
Status. This sounds a lot like the test of homogeneity. In fact, the mechanics of the
calculation are identical.

The difference is that now we have two categorical variables measured on a
single population. For the homogeneity test, we had a single categorical variable
measured independently on two or more populations. But now we ask a different
question: “Are the variables independent?” rather than “Are the groups homoge-
neous?” These are subtle differences, but they are important when we state hy-
potheses and draw conclusions.

WHO Patients being treated
for non–blood-related
disorders

WHAT Tattoo status and 
hepatitis C status

WHEN 1991, 1992

WHERE Texas

Table 26.5

Counts of patients classi-
fied by their hepatitis C test
status according to whether
they had a tattoo from a tat-
too parlor or from another
source, or had no tattoo.

Activity: Independence
and Chi-Square. This unusual
simulation shows how
independence arises (and fails) 
in contingency tables.

The only difference between
the test for homogeneity and
the test for independence is
in what you . . .

Which test?x2FOR EXAMPLE

Many states and localities now collect data on traffic stops regarding the race of
the driver. The initial concern was that Black drivers were being stopped more
often (the “crime” ironically called “Driving While Black”). With more data in
hand, attention has turned to other issues. For example, data from 2533 traffic
stops in Cincinnati5 report the race of the driver (Black, White, or Other) and
whether the traffic stop resulted in a search of the vehicle.

Question: Which test would be appropriate to examine whether race is a factor
in vehicle searches? What are the hypotheses?

5 John E. Eck, Lin Liu, and Lisa Growette Bostaph, Police Vehicle Stops in Cincinnati, Oct. 1,
2003, available at http://www.cincinnati-oh.gov. Data for other localities can be found by
searching from http://www.racialprofilinganalysis.neu.edu.

(continued)

Hepatitis C No Hepatitis C Total

Tattoo, parlor 17 35 52

Tattoo, elsewhere 8 53 61

None 22 491 513

Total 47 579 626

Race

Black White Other Total

Se
ar

ch

No 787 594 27 1408
Yes 813 293 19 1125

Total 1600 887 46 2533
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634 CHAPTER 26    Comparing Counts

Assumptions and Conditions
Of course, we still need counts and enough data so that the expected values are at
least 5 in each cell.

If we’re interested in the independence of variables, we usually want to general-
ize from the data to some population. In that case, we’ll need to check that the data
are a representative random sample from, and fewer than 10% of, that population.

6 Once again, parameters are hard to express. The hypothesis of independence itself tells
us how to find expected values for each cell of the contingency table. That’s all we need.

These data represent one group of traffic stops in Cincinnati, categorized on two variables, Race and Search. I’ll do a
chi-square test of independence.

: Whether or not police search a vehicle is independent of the race of the driver.
: Decisions to search vehicles are not independent of the driver’s race.HA

H0

For Example (continued)

We have counts of 626 individuals categorized according to their  “tattoo status” and their “hepa-
titis status.”

Question: Are tattoo status and hepatitis status independent?

A Chi-Square Test for IndependenceSTEP–BY–STEP EXAMPLE

I want to know whether the categorical vari-
ables Tattoo Status and Hepatitis Status
are statistically independent. I have a contin-
gency table of 626 Texas patients with an
unrelated disease.

Plan State what you want to know.

Identify the variables and check the W’s.

Hypotheses State the null and alterna-
tive hypotheses.

: Tattoo Status and Hepatitis Status are
independent.6

: Tattoo Status and Hepatitis Status are
not independent.

HA

H0We perform a test of independence when
we suspect the variables may not be inde-
pendent. We are on the familiar ground of
making a claim (in this case, that know-
ing Tattoo Status will change probabilities
for Hepatitis C Status) and testing the null
hypothesis that it is not true.

Model Make a picture. Because these are
only two categories—Hepatitis C and No
Hepatitis C—a simple bar chart of the
distribution of tattoo sources for Hep C
patients shows all the information.

No Tattoo Tattoo
Parlor

Tattoo
Elsewhere

Tattoo Status

Tattoos and Hepatitis C

Pr
op

or
tio

n 
In

fe
ct

ed

10
15
20

35
30
25

5
0

Activity: Chi-Square
Tables. Work with ActivStats’
interactive chi-square table to
perform a hypothesis test.

The bar chart suggests strong differences in
Hepatitis C risk based on tattoo status.
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Assumptions and Conditions 635

Ç Counted Data Condition: I have counts of
individuals categorized on two variables.

Ç Independence Assumption: The people in
this study are likely to be independent of
each other.

Ç Randomization Condition: These data are
from a retrospective study of patients be-
ing treated for something unrelated to
hepatitis. Although they are not an SRS,
they were selected to avoid biases.

Ç 10% Condition: These 626 patients are far
fewer than 10% of all those with tattoos or
hepatitis.

I Expected Cell Frequency Condition: The
expected values do not meet the condition
that all are at least 5.

Think about the assumptions and check
the conditions.

Although the Expected Cell Frequency Condition
is not satisfied, the values are close to 5. I’ll go
ahead, but I’ll check the residuals carefully. I’ll
use a model with df
and do a chi-square test of independence.

(3 - 1) * (2 - 1) = 2x2

This table shows both the observed and
expected counts for each cell. The ex-
pected counts are calculated exactly as
they were for a test of homogeneity; in
the first cell, for example, we expect 
(that’s 8.3%) of 47.

Warning: Be wary of proceeding when
there are small expected counts, If we see
expected counts that fall far short of 5, or
if many cells violate the condition, we
should not use . (We will soon discuss
ways you can fix the problem.) If you do
continue, always check the residuals to be
sure those cells did not have a major in-
fluence on your result.

Specify the model.

Name the test you will use.

x2

52
626

 =

(17 - 3.094)2

3.094
+

. . .
= 57.91

 x2
= a

all cells

(Obs - Exp)2

Exp
Mechanics Calculate .

The shape of a chi-square model depends
on its degrees of freedom. With 2 df, the
model looks quite different, as you can

x2

Hepatitis C No Hepatitis C Total

Tattoo, 17 35 52
parlor 3.904 48.096

Tattoo, 8 53 61
elsewhere 4.580 56.420

None 22 491 513
38.516 474.484

Total 47 579 626
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636 CHAPTER 26    Comparing Counts

The P-value is very small, so I reject the null hy-
pothesis and conclude that Hepatitis Status
is not independent of Tattoo Status. Because
the Expected Cell Frequency Condition was vio-
lated, I need to check that the two cells with
small expected counts did not influence this re-
sult too greatly.

Conclusion Link the P-value to your de-
cision. State your conclusion about the
independence of the two variables.

(We should be wary of this conclusion 
because of the small expected counts. A
complete solution must include the addi-
tional analysis, recalculation, and final
conclusion discussed in the following 
section.)

see here. We still care only about the
right tail.

0 2 4 6 8

P-Value = P(x2
7 57.91) 6 0.0001

Chi-square mechanicsFOR EXAMPLE

Recap: We have data that allow us to investigate whether police searches of vehi-
cles they stop are independent of the driver’s race.

Questions: What are the degrees of freedom for this test? What is the expected fre-
quency of searches for the Black drivers who were stopped? What’s that cell’s com-
ponent in the computation? And how is the standardized residual for that cell
computed?

This is a contingency table, so 
Overall, 1125 of 2533 vehicles were searched. If searches are conducted independent of race, then I’d expect of 

the 1600 Black drivers to have been searched: .

That cell’s term in the calculation is 

The standardized residual for that cell is 
Obs - Exp

2Exp
=

813 - 710.62

2710.62
= 3.84

(Obs - Exp)2

Exp
=

(813 - 710.62)2

710.62
= 14.75x2

1125
2533

* 1600 L 710.62

1125
2533

df = (2 - 1)(3 - 1) = 2.2 * 3

x2

Examine the Residuals
Each cell of the contingency table contributes a term to the chi-square sum. As
we did earlier, we should examine the residuals because we have rejected the
null hypothesis. In this instance, we have an additional concern that the cells
with small expected frequencies not be the ones that make the chi-square statis-
tic large.

Race

Black White Other Total

Se
ar

ch

No 787 594 27 1408
Yes 813 293 19 1125

Total 1600 887 46 2533
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Examine the Residuals 637

Our interest in the data arises from the potential for improving public health.
If patients with tattoos are more likely to test positive for hepatitis C, perhaps
physicians should be advised to suggest blood tests for such patients.

The standardized residuals look like this:

The chi-square value of 57.91 is the sum of the squares of these six values. The
cell for people with tattoos obtained in a tattoo parlor who have hepatitis C is
large and positive, indicating there are more people in that cell than the null
hypothesis of independence would predict. Maybe tattoo parlors are a source
of infection or maybe those who go to tattoo parlors also engage in risky be-
havior.

The second-largest component is a negative value for those with no tattoos
who test positive for hepatitis C. A negative value says that there are fewer peo-
ple in this cell than independence would expect. That is, those who have no tat-
toos are less likely to be infected with hepatitis C than we might expect if the two
variables were independent.

What about the cells with small expected counts? The formula for the chi-
square standardized residuals divides each residual by the square root of the ex-
pected frequency. Too small an expected frequency can arbitrarily inflate the
residual and lead to an inflated chi-square statistic. Any expected count close to
the arbitrary minimum of 5 calls for checking that cell’s standardized residual to
be sure it is not particularly large. In this case, the standardized residual for the
“Hepatitis C and Tattoo, elsewhere” cell is not particularly large, but the stan-
dardized residual for the “Hepatitis C and Tattoo, parlor” cell is large.

We might choose not to report the results because of concern with the small
expected frequency. Alternatively, we could include a warning along with our re-
port of the results. Yet another approach is to combine categories to get a larger
sample size and correspondingly larger expected frequencies, if there are some
categories that can be appropriately combined. Here, we might naturally combine
the two rows for tattoos, obtaining a table:2 * 2

AGAIN

Table 26.6

Standardized residuals for 
the hepatitis and tattoos data.
Are any of them particularly
large in magnitude?

MORE

Table 26.7

Combining the two tattoo
categories gives a table with
all expected counts greater
than 5.

This table has expected values of at least 5 in every cell, and a chi-square value of
42.42 on 1 degree of freedom. The corresponding P-value is

We conclude that Tattoo Status and Hepatitis C Status are not independent. The
data suggest that tattoo parlors may be a particular problem, but we haven’t
enough data to draw that conclusion.

60.0001.

ALL

Hepatitis C No Hepatitis C

Tattoo, parlor 6.628 -1.888

Tattoo, elsewhere 1.598 -0.455

None -2.661 0.758

Hepatitis C No Hepatitis C Total

Tattoo 25 88 113

None 22 491 513

Total 47 579 626
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Writing conclusions for testsx2FOR EXAMPLE

Recap: We’re looking at Cincinnati traffic stop data to see if police decisions
about searching cars show evidence of racial bias. With 2 df, technology 
calculates , a P-value less than 0.0001, and these standardized
residuals:

Question: What’s your conclusion?

The very low P-value leads me to reject the null hypothesis.
There’s strong evidence that police decisions to search cars at traffic stops are associated with the driver’s race.
The largest residuals are for White drivers, who are searched less often than independence would predict. It appears
that Black drivers’ cars are searched more often.

x2
= 73.25

TI Tips Testing homogeneity or independence

Yes, the TI will do chi-square tests of homogeneity and independence. Let’s use
the tattoo data. Here goes.

Test a hypothesis of homogeneity or independence
Stage 1: You need to enter the data as a matrix. A “matrix” is just a formal
mathematical term for a table of numbers.

• Push the MATRIX button, and choose to EDIT matrix [A].
• First specify the dimensions of the table, rows × coloumns.
• Enter the appropriate counts, one cell at a time. The calculator automatically

asks for them row by row.

Stage 2: Do the test.

• In the STAT TESTS menu choose C:χ2-Test.
• The TI now confirms that you have placed the observed frequencies in [A].

It also tells you that when it finds the expected frequencies it will store those
in [B] for you. Now Calculate the mechanics of the test.

The TI reports a calculated value of and an exceptionally small 
P-value.

Stage 3: Check the expected counts.

• Go back to MATRIX EDIT and choose [B].

Notice that two of the cells fail to meet the condition that expected counts be at
least 5. This problem enters into our analysis and conclusions.

Stage 4: And now some bad news. There’s no easy way to calculate the stan-
dardized residuals. Look at the two matrices, [A] and [B]. Large residuals
will happen when the corresponding entries differ greatly, especially when the
expected count in [B] is small (because you will divide by the square root of
the entry in [B]). The first cell is a good candidate, so we show you the calcu-
lation of its standardized residual.

A residual of over 6 is pretty large—possibly an indication that you’re more
likely to get hepatitis in a tattoo parlor, but the expected count is smaller that 5.
We’re pretty sure that hepatitis status is not independent of having a tattoo, but
we should be wary of saying anything more. Probably the best approach is to
combine categories to get cells with expected counts above 5.

x2
= 57.91

Se
ar

ch

Race

Black White Other

No –3.43 4.55 0.28
Yes 3.84 –5.09 –0.31
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Chi-Square and Causation
Chi-square tests are common. Tests for independence are especially widespread.
Unfortunately, many people interpret a small P-value as proof of causation. We
know better. Just as correlation between quantitative variables does not demon-
strate causation, a failure of independence between two categorical variables does
not show a cause-and-effect relationship between them, nor should we say that
one variable depends on the other.

The chi-square test for independence treats the two variables symmetrically.
There is no way to differentiate the direction of any possible causation from one
variable to the other. In our example, it is unlikely that having hepatitis causes
one to crave a tattoo, but other examples are not so clear.

In this case it’s easy to imagine that lurking variables are responsible for the
observed lack of independence. Perhaps the lifestyles of some people include
both tattoos and behaviors that put them at increased risk of hepatitis C, such as
body piercings or even drug use. Even a small subpopulation of people with such
a lifestyle among those with tattoos might be enough to create the observed re-
sult. After all, we observed only 25 patients with both tattoos and hepatitis.

In some sense, a failure of independence between two categorical variables is
less impressive than a strong, consistent, linear association between quantitative
variables. Two categorical variables can fail the test of independence in many ways,
including ways that show no consistent pattern of failure. Examination of the chi-
square standardized residuals can help you think about the underlying patterns.

JUST CHECKING
Which of the three chi-square tests—goodness-of-fit, homogeneity, or independence—would you use in each of

the following situations?

7. A restaurant manager wonders whether customers who dine on Friday nights have the same preferences among
the four “chef’s special” entrées as those who dine on Saturday nights. One weekend he has the wait staff record
which entrées were ordered each night. Assuming these customers to be typical of all weekend diners, he’ll com-
pare the distributions of meals chosen Friday and Saturday.

8. Company policy calls for parking spaces to be assigned to everyone at random, but you suspect that may not be
so. There are three lots of equal size: lot A, next to the building; lot B, a bit farther away; and lot C, on the other
side of the highway. You gather data about employees at middle management level and above to see how many
were assigned parking in each lot.

9. Is a student’s social life affected by where the student lives? A campus survey asked a random sample of students
whether they lived in a dormitory, in off-campus housing, or at home, and whether they had been out on a date 0,
1–2, 3–4, or 5 or more times in the past two weeks.

WHAT CAN GO WRONG?
u Don’t use chi-square methods unless you have counts. All three of the chi-square tests ap-

ply only to counts. Other kinds of data can be arrayed in two-way tables. Just be-
cause numbers are in a two-way table doesn’t make them suitable for chi-square
analysis. Data reported as proportions or percentages can be suitable for chi-square
procedures, but only after they are converted to counts. If you try to do the calculations
without first finding the counts, your results will be wrong.

(continued)
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640 CHAPTER 26    Comparing Counts

u Beware large samples. Beware large samples?! That’s not the advice you’re used to
hearing. The chi-square tests, however, are unusual. You should be wary of chi-
square tests performed on very large samples. No hypothesized distribution fits per-
fectly, no two groups are exactly homogeneous, and two variables are rarely per-
fectly independent. The degrees of freedom for chi-square tests don’t grow with the
sample size. With a sufficiently large sample size, a chi-square test can always reject
the null hypothesis. But we have no measure of how far the data are from the null
model. There are no confidence intervals to help us judge the effect size.

u Don’t say that one variable “depends” on the other just because they’re not independent.
Dependence suggests a pattern and implies causation, but variables can fail to be in-
dependent in many different ways. When variables fail the test for independence,
you might just say they are “associated.”

Simulation: Sample Size
and Chi-Square. Chi-square
statistics have a peculiar problem.
They don’t respond to increasing
the sample size in quite the same
way you might expect.

CONNECTIONS
Chi-square methods relate naturally to inference methods for proportions. We can think of a test of
homogeneity as stepping from a comparison of two proportions to a question of whether three or
more proportions are equal. The standard deviations of the residuals in each cell are linked to the
expected counts much like the standard deviations we found for proportions.

Independence is, of course, a fundamental concept in Statistics. But chi-square tests do not offer
a general way to check on independence for all those times when we have had to assume it.

Stacked bar charts or side-by-side pie charts can help us think about patterns in two-way tables.
A histogram or boxplot of the standardized residuals can help locate extraordinary values.

WHAT HAVE WE LEARNED?

We’ve learned how to test hypotheses about categorical variables. We use one of three related
methods. All look at counts of data in categories, and all rely on chi-square models, a new family
indexed by degrees of freedom.

u Goodness-of-fit tests compare the observed distribution of a single categorical variable to an ex-
pected distribution based on a theory or model.

u Tests of homogeneity compare the distribution of several groups for the same categorical variable.
u Tests of independence examine counts from a single group for evidence of an association be-

tween two categorical variables.

We’ve seen that, mechanically, these tests are almost identical. Although the tests appear to be
one-sided, we’ve learned that conceptually they are many-sided, because there are many ways that
a table of counts can deviate significantly from what we hypothesized. When that happens and we
reject the null hypothesis, we’ve learned to examine standardized residuals in order to better un-
derstand patterns as in the table.

Terms
Chi-square model 621, 625. Chi-square models are skewed to the right. They are parameterized by their degrees of

freedom and become less skewed with increasing degrees of freedom.

Cell 619, 626. A cell is one element of a table corresponding to a specific row and a specific column.
Table cells can hold counts, percentages, or measurements on other variables. Or they can hold 
several values.
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What Have We Learned? 641

Chi-square statistic 621. The chi-square statistic can be used to test whether the observed counts in a frequency distri-
bution or contingency table match the counts we would expect according to some model. It is calcu-
lated as

Chi-square statistics differ in how expected counts are found, depending on the question asked.

Chi-square test of 618, 622. A test of whether the distribution of counts in one categorical variable matches the
goodness-of-fit distribution predicted by a model is called a test of goodness-of-fit. In a chi-square goodness-of-fit

test, the expected counts come from the predicting model. The test finds a P-value from a chi-
square model with degrees of freedom, where n is the number of categories in the categori-
cal variable.

Chi-square test of 627. A test comparing the distribution of counts for two or more groups on the same categorical
homogeneity variable is called a test of homogeneity. A chi-square test of homogeneity finds expected counts

based on the overall frequencies, adjusted for the totals in each group under the (null hypothesis)
assumption that the distributions are the same for each group. We find a P-value from a chi-square
distribution with degrees of freedom, where #Rows gives the number of
categories and #Cols gives the number of independent groups.

Chi-square test of 633. A test of whether two categorical variables are independent examines the distribution of 
independence counts for one group of individuals classified according to both variables. A chi-square test of independ-

ence finds expected counts by assuming that knowing the marginal totals tells us the cell frequencies,
assuming that there is no association between the variables. This turns out to be the same calculation as
a test of homogeneity. We find a P-value from a chi-square distribution with 
degrees of freedom, where #Rows gives the number of categories in one variable and #Cols gives
the number of categories in the other.

Chi-square component 623, 628. The components of a chi-square calculation are

found for each cell of the table.

Standardized residual 631. In each cell of a two-way table, a standardized residual is the square root of the chi-square
component for that cell with the sign of the difference:

When we reject a chi-square test, an examination of the standardized residuals can sometimes re-
veal more about how the data deviate from the null model.

Two-way table 626, 633. Each cell of a two-way table shows counts of individuals. One way classifies a sample
according to a categorical variable. The other way can classify different groups of individuals ac-
cording to the same variable or classify the same individuals according to a different categorical
variable.

Contingency table 633. A two-way table that classifies individuals according to two categorical variables is called a
contingency table.

Skills
u Be able to recognize when a test of goodness-of-fit, a test of homogeneity, or a test of independ-

ence would be appropriate for a table of counts.

u Understand that the degrees of freedom for a chi-square test depend on the dimensions of the
table and not on the sample size. Understand that this means that increasing the sample size in-
creases the ability of chi-square procedures to reject the null hypothesis.

u Be able to display and interpret counts in a two-way table.

u Know how to use the chi-square tables to perform chi-square tests.

(Obs - Exp)

2Exp
.

Observed - Expected

(Observed - Expected )2

Expected
,

(#Rows - 1) * (#Cols - 1)

(#Rows - 1) * (#Cols - 1)

n - 1

x2
= a

all cells

(Obs - Exp)2

Exp
.
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u Know how to compute a chi-square test using your statistics software or calculator.

u Be able to examine the standardized residuals to explain the nature of the deviations from the
null hypothesis.

u Know how to interpret chi-square as a test of goodness-of-fit in a few sentences.

u Know how to interpret chi-square as a test of homogeneity in a few sentences.

u Know how to interpret chi-square as a test of independence in a few sentences.

CHI-SQUARE ON THE COMPUTER

Most statistics packages associate chi-square tests with contingency tables. Often chi-square is available as
an option only when you make a contingency table. This organization can make it hard to locate the chi-square
test and may confuse the three different roles that the chi-square test can take. In particular, chi-square tests
for goodness-of-fit may be hard to find or missing entirely. Chi-square tests for homogeneity are computationally
the same as chi-square tests for independence, so you may have to perform the mechanics as if they were tests
of independence and interpret them afterwards as tests of homogeneity.

Most statistics packages work with data on individuals rather than with the summary counts. If the only in-
formation you have is the table of counts, you may find it more difficult to get a statistics package to compute
chi-square. Some packages offer a way to reconstruct the data from the summary counts so that they can
then be passed back through the chi-square calculation, finding the cell counts again. Many packages offer chi-
square standardized residuals (although they may be called something else).

EXERCISES

1. Which test? For each of the following situations, state
whether you’d use a chi-square goodness-of-fit test, a chi-
square test of homogeneity, a chi-square test of independ-
ence, or some other statistical test:
a) A brokerage firm wants to see whether the type of 

account a customer has (Silver, Gold, or Platinum) 
affects the type of trades that customer makes (in per-
son, by phone, or on the Internet). It collects a random
sample of trades made for its customers over the past
year and performs a test.

b) That brokerage firm also wants to know if the type of
account affects the size of the account (in dollars). It
performs a test to see if the mean size of the account is
the same for the three account types.

c) The academic research office at a large community
college wants to see whether the distribution of
courses chosen (Humanities, Social Science, or Sci-
ence) is different for its residential and nonresidential
students. It assembles last semester’s data and per-
forms a test.

2. Which test again? For each of the following situations,
state whether you’d use a chi-square goodness-of-fit test,

a chi-square test of homogeneity, a chi-square test of inde-
pendence, or some other statistical test:
a) Is the quality of a car affected by what day it was

built? A car manufacturer examines a random sample
of the warranty claims filed over the past two years to
test whether defects are randomly distributed across
days of the work week.

b) A medical researcher wants to know if blood choles-
terol level is related to heart disease. She examines a
database of 10,000 patients, testing whether the cho-
lesterol level (in milligrams) is related to whether or
not a person has heart disease.

c) A student wants to find out whether political leaning
(liberal, moderate, or conservative) is related to choice
of major. He surveys 500 randomly chosen students
and performs a test.

3. Dice. After getting trounced by your little brother in a
children’s game, you suspect the die he gave you to roll
may be unfair. To check, you roll it 60 times, recording the
number of times each face appears. Do these results cast
doubt on the die’s fairness?
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u Know how to compute a chi-square test using your statistics software or calculator.

u Be able to examine the standardized residuals to explain the nature of the deviations from the
null hypothesis.

u Know how to interpret chi-square as a test of goodness-of-fit in a few sentences.

u Know how to interpret chi-square as a test of homogeneity in a few sentences.

u Know how to interpret chi-square as a test of independence in a few sentences.

CHI-SQUARE ON THE COMPUTER

Most statistics packages associate chi-square tests with contingency tables. Often chi-square is available as
an option only when you make a contingency table. This organization can make it hard to locate the chi-square
test and may confuse the three different roles that the chi-square test can take. In particular, chi-square tests
for goodness-of-fit may be hard to find or missing entirely. Chi-square tests for homogeneity are computationally
the same as chi-square tests for independence, so you may have to perform the mechanics as if they were tests
of independence and interpret them afterwards as tests of homogeneity.

Most statistics packages work with data on individuals rather than with the summary counts. If the only in-
formation you have is the table of counts, you may find it more difficult to get a statistics package to compute
chi-square. Some packages offer a way to reconstruct the data from the summary counts so that they can
then be passed back through the chi-square calculation, finding the cell counts again. Many packages offer chi-
square standardized residuals (although they may be called something else).

EXERCISES

1. Which test? For each of the following situations, state
whether you’d use a chi-square goodness-of-fit test, a chi-
square test of homogeneity, a chi-square test of independ-
ence, or some other statistical test:
a) A brokerage firm wants to see whether the type of 

account a customer has (Silver, Gold, or Platinum) 
affects the type of trades that customer makes (in per-
son, by phone, or on the Internet). It collects a random
sample of trades made for its customers over the past
year and performs a test.

b) That brokerage firm also wants to know if the type of
account affects the size of the account (in dollars). It
performs a test to see if the mean size of the account is
the same for the three account types.

c) The academic research office at a large community
college wants to see whether the distribution of
courses chosen (Humanities, Social Science, or Sci-
ence) is different for its residential and nonresidential
students. It assembles last semester’s data and per-
forms a test.

2. Which test again? For each of the following situations,
state whether you’d use a chi-square goodness-of-fit test,

a chi-square test of homogeneity, a chi-square test of inde-
pendence, or some other statistical test:
a) Is the quality of a car affected by what day it was

built? A car manufacturer examines a random sample
of the warranty claims filed over the past two years to
test whether defects are randomly distributed across
days of the work week.

b) A medical researcher wants to know if blood choles-
terol level is related to heart disease. She examines a
database of 10,000 patients, testing whether the cho-
lesterol level (in milligrams) is related to whether or
not a person has heart disease.

c) A student wants to find out whether political leaning
(liberal, moderate, or conservative) is related to choice
of major. He surveys 500 randomly chosen students
and performs a test.

3. Dice. After getting trounced by your little brother in a
children’s game, you suspect the die he gave you to roll
may be unfair. To check, you roll it 60 times, recording the
number of times each face appears. Do these results cast
doubt on the die’s fairness?
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a) If the die is fair, how many times
would you expect each face to show?

b) To see if these results are unusual,
will you test goodness-of-fit, homo-
geneity, or independence?

c) State your hypotheses.
d) Check the conditions.
e) How many degrees of freedom are

there?
f) Find and the P-value.
g) State your conclusion.

4. M&M’s. As noted in an earlier chapter, the Master-
foods Company says that until very recently yellow can-
dies made up 20% of its milk chocolate M&M’s, red an-
other 20%, and orange, blue, and green 10% each. The
rest are brown. On his way home from work the day he
was writing these exercises, one of the authors bought a
bag of plain M&M’s. He got 29 yellow ones, 23 red, 12 or-
ange, 14 blue, 8 green, and 20 brown. Is this sample con-
sistent with the company’s stated proportions? Test an
appropriate hypothesis and state your conclusion.
a) If the M&M’s are packaged in the stated proportions,

how many of each color should the author have ex-
pected to get in his bag?

b) To see if his bag was unusual, should he test 
goodness-of-fit, homogeneity, or independence?

c) State the hypotheses.
d) Check the conditions.
e) How many degrees of freedom are there?
f) Find and the P-value.
g) State a conclusion.

5. Nuts. A company says its premium mixture of nuts
contains 10% Brazil nuts, 20% cashews, 20% almonds,
and 10% hazelnuts, and the rest are peanuts. You buy a
large can and separate the various kinds of nuts. Upon
weighing them, you find there are 112 grams of Brazil
nuts, 183 grams of cashews, 207 grams of almonds, 
71 grams of hazelnuts, and 446 grams of peanuts. You
wonder whether your mix is significantly different from
what the company advertises.
a) Explain why the chi-square goodness-of-fit test is not

an appropriate way to find out.
b) What might you do instead of weighing the nuts in or-

der to use a test?

6. Mileage. A salesman who is on the road visiting clients
thinks that, on average, he drives the same distance each
day of the week. He keeps track of his mileage for several
weeks and discovers that he averages 122 miles on Mon-
days, 203 miles on Tuesdays, 176 miles on Wednesdays,
181 miles on Thursdays, and 108 miles on Fridays. He
wonders if this evidence contradicts his belief in a uni-
form distribution of miles across the days of the week.
Explain why it is not appropriate to test his hypothesis
using the chi-square goodness-of-fit test.

7. NYPD and race. Census data for New York City indi-
cate that 29.2% of the under-18 population is white, 
28.2% black, 31.5% Latino, 9.1% Asian, and 2% other 

x2

x2

x2

ethnicities. The New York Civil Liberties Union points out
that, of 26,181 police officers, 64.8% are white, 14.5% black,
19.1% Hispanic, and 1.4% Asian. Do the police officers re-
flect the ethnic composition of the city’s youth? Test an
appropriate hypothesis and state your conclusion.

8. Violence against women 2005. In its study When Men
Murder Women, the Violence Policy Center (www.vpc.org)
reported that 1857 women were murdered by men in
2005. Of these victims, a weapon could be identified for
1752 of them. Of those for whom a weapon could be
identified, 966 were killed by guns, 390 by knives or other
cutting instruments, 136 by other weapons, and 260 by
personal attack (battery, strangulation, etc.). The FBI’s
Uniform Crime Report says that, among all murders na-
tionwide, the weapon use rates were as follows: guns
63.4%, knives 13.1%, other weapons 16.8%, personal at-
tack 6.7%. Is there evidence that violence against women
involves different weapons than other violent attacks in
the United States?

9. Fruit flies. Offspring of certain fruit flies may have yel-
low or ebony bodies and normal wings or short wings.
Genetic theory predicts that these traits will appear in the
ratio 9:3:3:1 (9 yellow, normal: 3 yellow, short: 3 ebony,
normal: 1 ebony, short). A researcher checks 100 such flies
and finds the distribution of the traits to be 59, 20, 11, and
10, respectively.
a) Are the results this researcher observed consistent

with the theoretical distribution predicted by the ge-
netic model?

b) If the researcher had examined 200 flies and counted
exactly twice as many in each category—118, 40, 22,
20—what conclusion would he have reached?

c) Why is there a discrepancy between the two 
conclusions?

10. Pi. Many people know the mathe-
matical constant is approximately
3.14. But that’s not exact. To be more
precise, here are 20 decimal places:
3.14159265358979323846. Still not
exact, though. In fact, the actual
value is irrational, a decimal that
goes on forever without any repeat-
ing pattern. But notice that there are
no 0’s and only one 7 in the 20 deci-
mal places above. Does that pattern
persist, or do all the digits show up
with equal frequency? The table
shows the number of times each
digit appears in the first million dig-
its. Test the hypothesis that the dig-
its 0 through 9 are uniformly distrib-
uted in the decimal representation of .

11. Hurricane frequencies. The National Hurricane Cen-
ter provides data that list the numbers of large (category
3, 4, or 5) hurricanes that have struck the United States,
by decade since 1851 (http://www.nhc.noaa.gov/ 
Deadliest_Costliest.shtml). The data are on the next page.

p

p

Exercises 643

T

T

Face Count

1 11
2 7
3 9
4 15
5 12
6 6

The first 
million digits 

of p
Digit Count

0 99,959
1 99,758
2 100,026
3 100,229
4 100,230
5 100,359
6 99,548
7 99,800
8 99,985
9 100,106

BOCK_C26_0321570448 pp3.qxd  11/29/08  6:43 PM  Page 643



Recently, there’s been some concern that perhaps the
number of large hurricanes has been increasing. The nat-
ural null hypothesis would be that the frequency of such
hurricanes has remained constant.
a) With 96 large hurricanes observed over the 16 periods,

what are the expected value(s) for each cell?
b) What kind of chi-square test would be appropriate?
c) State the null and alternative hypotheses.
d) How many degrees of freedom are there?
e) The value of is 12.67. What’s the P-value?
f) State your conclusion.
g) Look again at the definition of the last “decade”. Does

that alter your conclusion at all?

12. Lottery numbers. The fairness of the South African
lottery was recently challenged by one of the country’s
political parties. The lottery publishes historical statistics
at its Website (http://www.nationallottery.co.za/lotto/
statistics.aspx). Here is a table of the number of times
each of the 49 numbers has been drawn in the main lot-
tery and as the “bonus ball” number as of June 2007:

x2

We wonder if all the numbers are equally likely to be the
“bonus ball”.
a) What kind of test should we perform?
b) There are 655 bonus ball observations. What are the

appropriate expected value(s) for the test?
c) State the null and alternative hypotheses.
d) How many degrees of freedom are there?
e) The value of is 34.5. What’s the P-value?
f) State your conclusion.

13. Childbirth, part 1. There is some concern that if a
woman has an epidural to reduce pain during childbirth,
the drug can get into the baby’s bloodstream, making the
baby sleepier and less willing to breastfeed. In December
2006, the International Breastfeeding Journal published re-
sults of a study conducted at Sydney University. Re-
searchers followed up on 1178 births, noting whether the
mother had an epidural and whether the baby was still
nursing after 6 months. Here are their results:

x2

644 CHAPTER 26    Comparing Counts

7 Suzanne S. Switzer and Nicholas J. Horton, “What Your Doc-
tor Should Know about Statistics (but Perhaps Doesn’t)”
Chance, 20:1, 2007.

a) What kind of test would be appropriate?
b) State the null and alternative hypotheses.

14. Does your doctor know? A survey7 of articles from
the New England Journal of Medicine (NEJM) classified
them according to the principal statistics methods used.
The articles recorded were all non-editorial articles ap-
pearing during the indicated years. Let’s just look at
whether these articles used statistics at all.

Has there been a change in the use of Statistics?
a) What kind of test would be appropriate?
b) State the null and alternative hypotheses.

15. Childbirth, part 2. In Exercise 13, the table shows re-
sults of a study investigating whether aftereffects of
epidurals administered during childbirth might interfere
with successful breastfeeding. We’re planning to do a chi-
square test.
a) How many degrees of freedom are there?
b) The smallest expected count will be in the epidural/

no breastfeeding cell. What is it?
c) Check the assumptions and conditions for inference.

T

Decade Count Decade Count

1851–1860 6 1931–1940 8
1861–1870 1 1941–1950 10
1871–1880 7 1951–1960 9
1881–1890 5 1961–1970 6
1891–1900 8 1971–1980 4
1901–1910 4 1981–1990 4
1911–1920 7 1991–2000 5
1921–1930 5 2001–2006 7

Number Count Bonus

1 81 14
2 91 16
3 78 14
4 77 12
5 67 16
6 87 12
7 88 15
8 90 16
9 80 9

10 77 19
11 84 12
12 68 14
13 79 9
14 90 12
15 82 9
16 103 15
17 78 14
18 85 14
19 67 18
20 90 13
21 77 13
22 78 17
23 90 14
24 80 8
25 65 11

Number Count Bonus

26 78 12
27 83 16
28 76 7
29 76 12
30 99 16
31 78 10
32 73 15
33 81 14
34 81 13
35 77 15
36 73 8
37 64 17
38 70 11
39 67 14
40 75 13
41 84 11
42 79 8
43 74 14
44 87 14
45 82 19
46 91 10
47 86 16
48 88 21
49 76 13

Epidural?

Yes No Total
Breastfeeding
@ 6 months?

Yes 206 498 704
No 190 284 474

Total 396 782 1178

Publication Year

1978–79 1989 2004–05 Total
No stats 90 14 40 144
Stats 242 101 271 614
Total 332 115 311 758
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16. Does your doctor know? (part 2). The table in Exer-
cise 14 shows whether NEJM medical articles during vari-
ous time periods included statistics or not. We’re plan-
ning to do a chi-square test.
a) How many degrees of freedom are there?
b) The smallest expected count will be in the 1989/No

cell. What is it?
c) Check the assumptions and conditions for inference.

17. Childbirth, part 3. In Exercises 13 and 15, we’ve be-
gun to examine the possible impact of epidurals on suc-
cessful breastfeeding.
a) Calculate the component of chi-square for the

epidural/no breastfeeding cell.
b) For this test, . What’s the P-value?
c) State your conclusion.

18. Does your doctor know? (part 3). In Exercises 14 and
16, we’ve begun to examine whether the use of statistics
in NEJM medical articles has changed over time.
a) Calculate the component of chi-square for the

1989/No cell.
b) For this test, . What’s the P-value?
c) State your conclusion.

19. Childbirth, part 4. In Exercises 13, 15, and 17, we’ve
tested a hypothesis about the impact of epidurals on suc-
cessful breastfeeding. The table shows the test’s residuals.

x2
= 25.28

x2
= 14.87

chi-square methods on the table with yes/no
columns for each potential factor?

22. Does your doctor know? (part 5). In Exercises 14, 16,
18, and 20, we considered data on articles in the NEJM.
The original study listed 23 different Statistics methods.
(The list read: t-tests, contingency tables, linear regres-
sion, . . . .) Why would it not be appropriate to use a chi-
square test on the table with a row for each
method?

23. Titanic. Here is a table we first saw in Chapter 3 show-
ing who survived the sinking of the Titanic based on
whether they were crew members, or passengers booked
in first-, second-, or third-class staterooms:

23 * 3

2 * 8

Exercises 645

a) Show how the residual for the epidural/no breast-
feeding cell was calculated.

b) What can you conclude from the standardized 
residuals?

20. Does your doctor know? (part 4). In Exercises 14, 16,
and 18, we’ve tested a hypothesis about whether the use
of statistics in NEJM medical articles has changed over
time. The table shows the test’s residuals.

a) Show how the residual for the 1989/No cell was 
calculated.

b) What can you conclude from the patterns in the stan-
dardized residuals?

21. Childbirth, part 5. In Exercises 13, 15, 17, and 19,
we’ve looked at a study examining epidurals as one fac-
tor that might inhibit successful breastfeeding of new-
born babies. Suppose a broader study included several
additional issues, including whether the mother drank al-
cohol, whether this was a first child, and whether the par-
ents occasionally supplemented breastfeeding with bot-
tled formula. Why would it not be appropriate to use

a) If we draw an individual at random, what’s the proba-
bility that we will draw a member of the crew?

b) What’s the probability of randomly selecting a third-
class passenger who survived?

c) What’s the probability of a randomly selected passen-
ger surviving, given that the passenger was a
first-class passenger?

d) If someone’s chances of surviving were the same
regardless of their status on the ship, how many
members of the crew would you expect to have lived?

e) State the null and alternative hypotheses.
f ) Give the degrees of freedom for the test.
g) The chi-square value for the table is 187.8, and the cor-

responding P-value is barely greater than 0. State your
conclusions about the hypotheses.

24. NYPD and sex discrimination. The table below
shows the rank attained by male and female officers in
the New York City Police Department (NYPD). Do these
data indicate that men and women are equitably repre-
sented at all levels of the department?

a) What’s the probability that a person selected at ran-
dom from the NYPD is a female?

b) What’s the probability that a person selected at ran-
dom from the NYPD is a detective?

c) Assuming no bias in promotions, how many female
detectives would you expect the NYPD to have?

T

T

Epidural?

Yes No
Breastfeeding
at 6 months?

Yes -1.99 1.42
No 2.43 -1.73

1978–79 1989 2004–05

No stats 3.39 -1.68 -2.48
Stats -1.64 0.81 1.20

Crew First Second Third Total

Alive 212 202 118 178 710
Dead 673 123 167 528 1491
Total 885 325 285 706 2201

Male Female

R
an

k

Officer 21,900 4,281
Detective 4,058 806
Sergeant 3,898 415
Lieutenant 1,333 89
Captain 359 12
Higher ranks 218 10
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d) To see if there is evidence of differences in ranks 
attained by males and females, will you test goodness-
of-fit, homogeneity, or independence?

e) State the hypotheses.
f ) Test the conditions.
g) How many degrees of freedom are there?
h) The chi-square value for the table is 290.1 and the P-

value is less than 0.0001. State your conclusion about
the hypotheses.

28. Cars. A random survey of autos parked in the student
lot and the staff lot at a large university classified the
brands by country of origin, as seen in the table. Are there
differences in the national origins of cars driven by stu-
dents and staff?
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26. NYPD again. Examine and comment on this table of
the standardized residuals for the chi-square test you
looked at in Exercise 24.

27. Cranberry juice. It’s common folk wisdom that drink-
ing cranberry juice can help prevent urinary tract infec-
tions in women. In 2001 the British Medical Journal re-
ported the results of a Finnish study in which three
groups of 50 women were monitored for these infections
over 6 months. One group drank cranberry juice daily,
another group drank a lactobacillus drink, and the third
drank neither of those beverages, serving as a control
group. In the control group, 18 women developed at least
one infection, compared to 20 of those who consumed the
lactobacillus drink and only 8 of those who drank cran-
berry juice. Does this study provide supporting evidence
for the value of cranberry juice in warding off urinary
tract infections?
a) Is this a survey, a retrospective study, a prospective

study, or an experiment? Explain.
b) Will you test goodness-of-fit, homogeneity, or 

independence?
c) State the hypotheses.
d) Test the conditions.
e) How many degrees of freedom are there?
f) Find and the P-value.
g) State your conclusion.
h) If you concluded that the groups are not the same, an-

alyze the differences using the standardized residuals
of your calculations.

x2

a) Is this a test of independence or homogeneity?
b) Write appropriate hypotheses.
c) Check the necessary assumptions and conditions.
d) Find the P-value of your test.
e) State your conclusion and analysis.

29. Montana. A poll conducted by the University of Mon-
tana classified respondents by whether they were male or
female and political party, as shown in the table. We won-
der if there is evidence of an association between being
male or female and party affiliation.

a) Is this a test of homogeneity or independence?
b) Write an appropriate hypothesis.
c) Are the conditions for inference satisfied?
d) Find the P-value for your test.
e) State a complete conclusion.

30. Fish diet. Medical researchers followed 6272 Swedish
men for 30 years to see if there was any association be-
tween the amount of fish in their diet and prostate cancer.
(“Fatty Fish Consumption and Risk of Prostate Cancer,”
Lancet, June 2001)

a) Is this a survey, a retrospective study, a prospective
study, or an experiment? Explain.

b) Is this a test of homogeneity or independence?
c) Do you see evidence of an association between the

amount of fish in a man’s diet and his risk of develop-
ing prostate cancer?

d) Does this study prove that eating fish does not pre-
vent prostate cancer? Explain.

T

T

T

T

Driver
Student Staff

O
ri

g
in American 107 105

European 33 12
Asian 55 47

Democrat Republican Independent

Male 36 45 24
Female 48 33 16

Fish Consumption
Total 

Subjects
Prostate 
Cancers

Never/seldom 124 14
Small part of diet 2621 201
Moderate part 2978 209
Large part 549 42

Male Female

Officer 22.34 5.57
Detective 21.18 2.80
Sergeant 3.84 29.14
Lieutenant 3.58 28.52
Captain 2.46 25.86
Higher ranks 1.74 24.14

25. Titanic again. Examine and comment on this table of
the standardized residuals for the chi-square test you
looked at in Exercise 23.

Crew First Second Third
Alive 24.35 9.49 2.72 23.30
Dead 3.00 26.55 21.88 2.27
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31. Montana revisited. The poll described in Exercise 29
also investigated the respondents’ party affiliations based
on what area of the state they lived in. Test an appropriate
hypothesis about this table and state your conclusions.

moons and six other randomly selected weeks in the
same year. We wonder if there is evidence of a difference
in the types of illegal activity that take place.

Exercises 647

32. Working parents. In July 1991 and again in April
2001, the Gallup Poll asked random samples of 1015
adults about their opinions on working parents. The
table summarizes responses to the question “Consider-
ing the needs of both parents and children, which of the
following do you see as the ideal family in today’s
society?”

a) Is this a survey, a retrospective study, a prospective
study, or an experiment? Explain.

b) Will you test goodness-of-fit, homogeneity, or 
independence?

c) Based on these results, do you think there was a
change in people’s attitudes during the 10 years
between these polls?

33. Grades. Two different professors teach an introductory
Statistics course. The table shows the distribution of final
grades they reported. We wonder whether one of these
professors is an “easier” grader.

a) Will you test goodness-of-fit, homogeneity, or 
independence?

b) Write appropriate null hypotheses.
c) Find the expected counts for each cell, and explain

why the chi-square procedures are not appropriate.

34. Full moon. Some people believe that a full moon elicits
unusual behavior in people. The table shows the number
of arrests made in a small town during weeks of six full

a) Will you test goodness-of-fit, homogeneity, or 
independence?

b) Write appropriate null hypotheses.
c) Find the expected counts for each cell, and explain

why the chi-square procedures are not appropriate.

35. Grades again. In some situations where the expected
cell counts are too small, as in the case of the grades given
by Professors Alpha and Beta in Exercise 33, we can com-
plete an analysis anyway. We can often proceed after
combining cells in some way that makes sense and also
produces a table in which the conditions are satisfied.
Here we create a new table displaying the same data, but
calling D’s and F’s “Below C”:

a) Find the expected counts for each cell in this new
table, and explain why a chi-square procedure is now
appropriate.

b) With this change in the table, what has happened to
the number of degrees of freedom?

c) Test your hypothesis about the two professors, and
state an appropriate conclusion.

36. Full moon, next phase. In Exercise 34 you found that
the expected cell counts failed to satisfy the conditions for
inference.
a) Find a sensible way to combine some cells that will

make the expected counts acceptable.
b) Test a hypothesis about the full moon and state your

conclusion.

37. Racial steering. A subtle form of racial discrimination
in housing is “racial steering.” Racial steering occurs
when real estate agents show prospective buyers only
homes in neighborhoods already dominated by that
family’s race. This violates the Fair Housing Act of 1968.
According to an article in Chance magazine (Vol. 14, no. 2
[2001]), tenants at a large apartment complex recently
filed a lawsuit alleging racial steering. The complex 
is divided into two parts: Section A and Section B. 

T

T

T

T

T

Democrat Republican Independent

West 39 17 12
Northeast 15 30 12
Southeast 30 31 16

1991 2001

Both work full time 142 131
One works full time, other part time 274 244
One works, other works at home 152 173
One works, other stays home for kids 396 416
No opinion 51 51

Prof. Alpha Prof. Beta

A 3 9
B 11 12
C 14 8
D 9 2
F 3 1

Full Moon Not Full

Violent (murder, assault, rape, etc.) 2 3
Property (burglary, vandalism, etc.) 17 21
Drugs/Alcohol 27 19
Domestic abuse 11 14
Other offenses 9 6

Prof. Alpha Prof. Beta

A 3 9
B 11 12
C 14 8
Below C 12 3
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Age Group
25–34 35–44 45–54 55–64 Ú 65

Not HS grad 27 50 52 71 101
HS 82 19 88 83 59
1–3 years college 43 56 26 20 20

years collegeÚ4 48 75 34 26 20

The plaintiffs claimed that white potential renters were
steered to Section A, while African-Americans were
steered to Section B. The table displays the data that were
presented in court to show the locations of recently
rented apartments. Do you think there is evidence of
racial steering?

42. Education by age. Use the survey results in the table
to investigate differences in education level attained
among different age groups in the United States.

648 CHAPTER 26    Comparing Counts

38. Titanic, redux. Newspaper headlines at the time, and
traditional wisdom in the succeeding decades, have held
that women and children escaped the Titanic in greater
proportions than men. Here’s a table with the relevant
data. Do you think that survival was independent of
whether the person was male or female? Explain.

39. Steering revisited. You could have checked the data 
in Exercise 37 for evidence of racial steering using two-
proportion z procedures.
a) Find the z-value for this approach, and show that

when you square your z-value, you get the value of 
you calculated in Exercise 37.

b) Show that the resulting P-values are the same.

40. Survival on the Titanic, one more time. In Exer-
cise 38 you could have checked for a difference in the
chances of survival for men and women using two-
proportion z procedures.
a) Find the z-value for this approach.
b) Show that the square of your calculated value of z is

the value of you calculated in Exercise 38.
c) Show that the resulting P-values are the same.

41. Pregnancies. Most pregnancies result in live births, but
some end in miscarriages or stillbirths. A June 2001 Na-
tional Vital Statistics Report examined those outcomes in
the United States during 1997, broken down by the age of
the mother. The table shows counts consistent with that
report. Is there evidence that the distribution of outcomes
is not the same for these age groups?

x2

x2

JUST CHECKING
Answers

1. We need to know how well beetles can survive 6 hours
in a Plexiglas® box so that we have a baseline to com-
pare the treatments.

2. There’s no difference in survival rate in the three
groups.

3.

4. 50

5. 2

6. The mean value for a with 2 df is 2, so 10 seems
pretty large. The P-value is probably small.

7. This is a test of homogeneity. The clue is that the
question asks whether the distributions are alike.

8. This is a test of goodness-of-fit. We want to test the
model of equal assignment to all lots against what 
actually happened.

9. This is a test of independence. We have responses on
two variables for the same individuals.

x2

(2 - 1)(3 - 1) = 2 df

T

T

T

T

New Renters
White Black Total

Section A 87 8 95
Section B 83 34 117
Total 170 42 212

Female Male Total

Alive 343 367 710
Dead 127 1364 1491
Total 470 1731 2201

Live Births Fetal Losses

A
ge

 o
f

M
o

th
er

Under 20 49 13
20–29 201 41
30–34 88 21
35 or over 49 21
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FIGURE 27.1
Percent Body Fat vs. Waist size for 250
men of various ages. The scatterplot
shows a strong, positive, linear 
relationship.

Back in Chapter 8 we modeled relationships like this by fitting a least squares
line. The plot is clearly straight, so we can find that line. The equation of the least
squares line for these data is

The slope says that, on average, %Body Fat is greater by 1.7 percent for each
additional inch around the waist.

%Body Fat = -42.7 + 1.7 Waist.

WHO 250 male subjects

WHAT Body fat and waist
size

UNITS % Body fat and inches

WHEN 1990s

WHERE United States

WHY Scientific research

Three percent of a man’s body is essential fat. (For a woman, the percent-
age is closer to 12.5%.) As the name implies, essential fat is necessary for
a normal, healthy body. Fat is stored in small amounts throughout your
body. Too much body fat, however, can be dangerous to your health. For

men between 18 and 39 years old, a healthy percent body fat ranges from 8% to
19%. (For women of the same age, it’s 21% to 32%.)

Measuring body fat can be tedious and expensive. The “standard reference”
measurement is by dual-energy X-ray absorptiometry (DEXA), which involves
two low-dose X-ray generators and takes from 10 to 20 minutes.

How close can we get to a useable prediction of body fat from easily measur-
able variables such as Height, Weight, or Waist size? Here’s a scatterplot of %Body
Fat plotted against Waist size for a sample of 250 males of various ages.
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NOTATION ALERT:

This time we used up only one
Greek letter for two things.
Lower-case Greek (beta) is the
natural choice to correspond to
the b’s in the regression
equation. We used before for
the probability of a Type II error,
but there’s little chance of
confusion here.

b

b

650 CHAPTER 27    Inferences for Regression

How useful is this model? When we fit linear models before, we used them to
describe the relationship between the variables and we interpreted the slope and
intercept as descriptions of the data. Now we’d like to know what the regression
model can tell us beyond the 250 men in this study. To do that, we’ll want to make
confidence intervals and test hypotheses about the slope and intercept of the re-
gression line.

The Population and the Sample
When we found a confidence interval for a mean, we could imagine a single, true
underlying value for the mean. When we tested whether two means or two pro-
portions were equal, we imagined a true underlying difference. But what does it
mean to do inference for regression? We know better than to think that even if we
knew every population value, the data would line up perfectly on a straight line.
After all, even in our sample, not all men who have 38-inch waists have the same
%Body Fat. In fact, there’s a whole distribution of %Body Fat for these men:

20.0 30.0 

1

2

3

4

% Body Fat

# 
of

 M
en

10.0

FIGURE 27.2
The distribution of %Body Fat for men with a Waist size of 
38 inches is unimodal and symmetric.

Waist

%
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y 
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t

FIGURE 27.3
There’s a distribution of %Body Fat for
each value of Waist size. We’d like the
means of these distributions to line up.

This is true at each Waist size. In fact, we could depict the distribution of
%Body Fat at different Waist sizes like this:

But we want to model the relationship between %Body Fat and Waist size for all
men. To do that, we imagine an idealized regression line. The model assumes that
the means of the distributions of %Body Fat for each Waist size fall along the line,
even though the individuals are scattered around it. We know that this model is
not a perfect description of how the variables are associated, but it may be useful
for predicting %Body Fat and for understanding how it’s related to Waist size.

If only we had all the values in the population, we could find the slope and
intercept of this idealized regression line explicitly by using least squares. Following
our usual conventions, we write the idealized line with Greek letters and consider
the coefficients (the slope and intercept) to be parameters: is the intercept and

is the slope. Corresponding to our fitted line of , we write

Why instead of ? Because this is a model. There is a distribution of %Body Fat
for each Waist size. The model places the means of the distributions of %Body Fat
for each Waist size on the same straight line.

yNmy

my = b0 + b1x.

yN = b0 + b1xb1

b0
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Of course, not all the individual y’s are at these means. (In fact, the line will
miss most—and quite possibly all—of the plotted points.) Some individuals lie
above and some below the line, so, like all models, this one makes errors. Lots of
them. In fact, one at each point. These errors are random and, of course, can be
positive or negative. They are model errors, so we use a Greek letter and denote
them by .

When we put the errors into the equation, we can account for each indi-
vidual y:

This equation is now true for each data point (since there is an to soak up the de-
viation), so the model gives a value of y for any value of x.

For the body fat data, an idealized model such as this provides a summary of
the relationship between %Body Fat and Waist size. Like all models, it simplifies
the real situation. We know there is more to predicting body fat than waist size
alone. But the advantage of a model is that the simplification might help us to
think about the situation and assess how well %Body Fat can be predicted from
simpler measurements.

We estimate the ’s by finding a regression line, , as we did in
Chapter 8. The residuals, , are the sample-based versions of the errors, .
We’ll use them to help us assess the regression model.

We know that least squares regression will give reasonable estimates of the
parameters of this model from a random sample of data. Our challenge is to ac-
count for our uncertainty in how well they do. For that, we need to make some 
assumptions about the model and the errors.

Assumptions and Conditions
Back in Chapter 8 when we fit lines to data, we needed to check only the Straight
Enough Condition. Now, when we want to make inferences about the coefficients
of the line, we’ll have to make more assumptions. Fortunately, we can check con-
ditions to help us judge whether these assumptions are reasonable for our data.
And as we’ve done before, we’ll make some checks after we find the regression
equation.

Also, we need to be careful about the order in which we check conditions. If
our initial assumptions are not true, it makes no sense to check the later ones. So
now we number the assumptions to keep them in order.

1. Linearity Assumption
If the true relationship is far from linear and we use a straight line to fit the data,
our entire analysis will be useless, so we always check this first.

The Straight Enough Condition is satisfied if a scatterplot looks straight.
It’s generally not a good idea to draw a line through the scatterplot when
checking. That can fool your eyes into seeing the plot as more straight. Some-
times it’s easier to see violations of the Straight Enough Condition by looking
at a scatterplot of the residuals against x or against the predicted values, . That
plot will have a horizontal direction and should have no pattern if the condi-
tion is satisfied.

If the scatterplot is straight enough, we can go on to some assumptions about
the errors. If not, stop here, or consider re-expressing the data (see Chapter 10) to
make the scatterplot more nearly linear. For the %Body Fat data, the scatterplot is
beautifully linear. Of course, the data must be quantitative for this to make sense.
Check the Quantitative Data Condition.

yN

ee = y - yN
yN = b0 + b1xb

e

y = b0 + b1x + e.

e

Activity: Conditions for
Regression Inference. View an
illustrated discussion of the
conditions for regression
inference.

Check the scatterplot.
The shape must be linear 
or we can’t use linear
regression at all.
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Check the residuals plot (2).
The vertical spread of the
residuals should be roughly
the same everywhere.

Check the residuals plot (1).
The residuals should appear
to be randomly scattered.

652 CHAPTER 27    Inferences for Regression

2. Independence Assumption
Independence Assumption: The errors in the true underlying regression model
(the ’s) must be mutually independent. As usual, there’s no way to be sure that
the Independence Assumption is true.

Usually when we care about inference for the regression parameters, it’s be-
cause we think our regression model might apply to a larger population. In such
cases, we can check a Randomization Condition that the individuals are a repre-
sentative sample from that population.

We can also check displays of the regression residuals for evidence of pat-
terns, trends, or clumping, any of which would suggest a failure of independence.
In the special case when the x-variable is related to time, a common violation of
the Independence Assumption is for the errors to be correlated. (The error our
model makes today may be similar to the one it made for yesterday.) This viola-
tion can be checked by plotting the residuals against the x-variable and looking
for patterns.

The %Body Fat data were collected on a sample of men taken to be represen-
tative. The subjects were not related in any way, so we can be pretty sure that their
measurements are independent. The residuals plot shows no pattern.

3. Equal Variance Assumption
The variability of y should be about the same for all values of x. In Chapter 8 we
looked at the standard deviation of the residuals to measure the size of the
scatter. Now we’ll need this standard deviation to build confidence intervals and
test hypotheses. The standard deviation of the residuals is the building block for
the standard errors of all the regression parameters. But it makes sense only if the
scatter of the residuals is the same everywhere. In effect, the standard deviation
of the residuals “pools” information across all of the individual distributions at
each x-value, and pooled estimates are appropriate only when they combine in-
formation for groups with the same variance.

Practically, what we can check is the Does the Plot Thicken? Condition. A
scatterplot of y against x offers a visual check. Fortunately, we’ve already made
one. Make sure the spread around the line is nearly constant. Be alert for a “fan”
shape or other tendency for the variation to grow or shrink in one part of the
scatterplot. Often it is better to look at the residuals plotted against the pre-
dicted values, . With the slope of the line removed, it’s easier to see patterns
left behind. For the body fat data, the spread of %Body Fat around the line is re-
markably constant across Waist sizes from 30 inches to about 45 inches.

If the plot is straight enough, the data are independent, and the plot doesn’t
thicken, you can now move on to the final assumption.

4. Normal Population Assumption
We assume the errors around the idealized regression line at each value of x fol-
low a Normal model. We need this assumption so that we can use a Student’s 
t-model for inference.

As we have at other times when we’ve used Student’s t, we’ll settle for the
residuals satisfying the Nearly Normal Condition and the Outlier Condition.
Look at a histogram or Normal probability plot of the residuals.1
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FIGURE 27.5
A scatterplot of residuals against pre-
dicted values can help check for plot
thickening. Note that this plot looks
identical to the plot of residuals
against Waist size. For a regression of
one response variable on one predic-
tor, these plots differ only in the labels
on the x-axis.

1 This is why we have to check the conditions in order. We have to check that the residuals
are independent and that the variation is the same for all x’s so that we can lump all the
residuals together for a single check of the Nearly Normal Condition.
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FIGURE 27.4
The residuals show only random scat-
ter when plotted against Waist size.
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FIGURE 27.6
A histogram of the residuals is one 
way to check whether they are nearly
Normal. Alternatively, we can look 
at a Normal probability plot.

Check a histogram of the
residuals.
The distribution of the
residuals should be
unimodal and symmetric.

Assumptions and Conditions 653

The histogram of residuals in the %Body Fat regression certainly looks nearly
Normal. As we have noted before, the Normality Assumption becomes less 
important as the sample size grows, because the model is about means and the
Central Limit Theorem takes over.

If all four assumptions were true, the idealized regression model would look
like this:

FIGURE 27.7
The regression model has a distribution of 
y-values for each x-value. These distributions
follow a normal model with means lined up
along the line and with the same standard
deviations.

At each value of x there is a distribution of y-values that follows a Normal
model, and each of these Normal models is centered on the line and has the same
standard deviation. Of course, we don’t expect the assumptions to be exactly true,
and we know that all models are wrong, but the linear model is often close
enough to be very useful.

Checking assumptions and conditionsFOR EXAMPLE

Look at the moon with binoculars or a telescope, and you’ll see craters formed by thousands of impacts. The earth, being larger, has been hit even more
often. Meteor Crater in Arizona was the first recognized impact crater and was identified as such only in the 1920s. With the help of satellite images,
more and more craters have been identified; now more than 180 are known. These, of course, are only a small sample of all the impacts the earth has
experienced: Only 29% of earth’s surface is land, and many craters have been covered or eroded away. Astronomers have recognized a roughly 35 million-
year cycle in the frequency of cratering, although the cause of this cycle is not fully understood. Here’s a scatterplot of the known impact craters from
the most recent 35 million years.2 We’ve taken logs of both age (in millions of years ago) and diameter (km) to make the relationship simpler. (See
Chapter 10.)

2 Data, pictures, and much more information at the Earth Impact Database found at 
http://www.unb.ca.
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WHO 39 impact craters

WHAT Diameter and age

UNITS km and millions of
years ago

WHEN Past 35 million years

WHERE Worldwide

WHY Scientific research

Question: Are the assumptions and conditions satisfied for fitting a linear regression model to these data?

Ç Linearity Assumption: The scatterplot satisfies the Straight Enough Condition.
Ç Independence Assumption: Sizes of impact craters are likely to be generally independent.

(continued)
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Ç Randomization Condition: These are the only known craters, and may differ from others that have disappeared or
not yet been found. I’ll need to be careful not to generalize my conclusions too broadly.

Ç Does the Plot Thicken? Condition: After fitting a linear model,
I find the residuals shown.

Two points seem to give the impression that the residuals
may be more variable for higher predicted values than for lower
ones, but this doesn’t seem to be a serious violation of the
Equal Variance Assumption.

Ç Nearly Normal Condition: A Normal
probability plot suggests a bit of
skewness in the distribution of
residuals, and the histogram 
confirms that.

There are no violations severe enough
to stop my regression analysis, but
I’ll be cautious about my conclusions.

654 CHAPTER 27    Inferences for Regression

Which Come First: the Conditions 
or the Residuals?

In regression, there’s a little catch. The best way to check many of the conditions
is with the residuals, but we get the residuals only after we compute the regres-
sion. Before we compute the regression, however, we should check at least one of
the conditions.

So we work in this order:

1. Make a scatterplot of the data to check the Straight Enough Condition. (If the
relationship is curved, try re-expressing the data. Or stop.)

2. If the data are straight enough, fit a regression and find the residuals, e, and
predicted values, .

3. Make a scatterplot of the residuals against x or the predicted values. This
plot should have no pattern. Check in particular for any bend (which
would suggest that the data weren’t all that straight after all), for any thick-
ening (or thinning), and, of course, for any outliers. (If there are outliers,
and you can correct them or justify removing them, do so and go back to
step 1, or consider performing two regressions—one with and one without
the outliers.)

4. If the data are measured over time, plot the residuals against time to check for
evidence of patterns that might suggest they are not independent.

5. If the scatterplots look OK, then make a histogram and Normal probability
plot of the residuals to check the Nearly Normal Condition.

6. If all the conditions seem to be reasonably satisfied, go ahead with inference.

yN

For Example (continued)

0.75

0.00

–0.75

–1.50

–1.50 –0.75 0.00 0.75

R
es

id
ua

ls

Predicted

−2.0

5

Residuals

# 
of

 Y
ea

rs 10

15

−0.5 1.0

“Truth will emerge more
readily from error than from
confusion.”

—Francis Bacon
(1561–1626)
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If our data can jump through all these hoops, we’re ready to do regression inference. Let’s see how
much more we can learn about body fat and waist size from a regression model.

Questions: What is the relationship between %Body Fat and Waist size in men? 
What model best predicts body fat from waist size, and how well does it do the job?

Regression InferenceSTEP–BY–STEP EXAMPLE

I have quantitative body measurements on 250
adult males from the BYU Human Performance
Research Center. I want to understand the re-
lationship between %Body Fat and Waist size.

Plan Specify the question of interest.

Name the variables and report the W’s.

Identify the parameters you want to
estimate.

Model Think about the assumptions and
check the conditions.

Make pictures. For regression inference,
you’ll need a scatterplot, a residuals plot,
and either a histogram or a Normal prob-
ability plot of the residuals.

Ç Straight Enough Condition: There’s no 
obvious bend in the original scatterplot of
the data or in the plot of residuals against
predicted values.

Ç Independence Assumption: These data
are not collected over time, and there’s no
reason to think that the %Body Fat of one
man influences the %Body Fat of another.

Ç Does the Plot Thicken? Condition: Neither
the original scatterplot nor the residual
scatterplot shows any changes in the
spread about the line.

Ç Nearly Normal Condition, Outlier Condi-
tion: A histogram of the residuals is
unimodal and symmetric. The Normal 
probability plot of the residuals is quite
straight, indicating that the Normal model
is reasonable for the errors.

(We’ve seen plots of the residuals already.
See Figures 27.5 and 27.6.)
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Under these conditions a regression model is
appropriate.

Choose your method.

Here’s the computer output for this regression:

Dependent variable is: %BF

R-squared = 67.8%

s 5 4.713 with 250 2 2 5 248 degrees of freedom

Variable Coeff SE(Coeff) t-ratio P-value
Intercept 242.734 2.717 215.7 ,0.0001

Waist 1.70 0.0743 22.9 ,0.0001

The estimated regression equation is

%Body Fat =  -42.73 + 1.70  Waist.

Mechanics Let’s just “push the button”
and see what the regression looks like.

The formula for the regression equation
can be found in Chapter 8, and the stan-
dard error formulas will be shown a bit
later, but regressions are almost always
computed with a computer program or
calculator.

Write the regression equation.

The for the regression is 67.8%. Waist size
seems to account for about 2/3 of the %Body
Fat variation in men. The slope of the regres-
sion says that %Body Fat increases by about
1.7 percentage points per inch of Waist size, on
average.

The standard error of 0.07 for the slope is
much smaller than the slope itself, so it looks
like the estimate is reasonably precise. And
there are a couple of t-ratios and P-values
given. Because the P-values are small, it ap-
pears that some null hypotheses can be
rejected.

R2Conclusion Interpret your results in
context.

More Interpretation We haven’t
worked it out in detail yet, but the output
gives us numbers labeled as t-statistics
and corresponding P-values, and we have
a general idea of what those mean.

(Now it’s time to learn more about regres-
sion inference so we can figure out what
the rest of the output means.)

Intuition About Regression Inference
Wait a minute! We’ve just pulled a fast one. We’ve pushed the “regression
button” on our computer or calculator but haven’t discussed where the
standard errors for the slope or intercept come from. We know that if we
had collected similar data on a different random sample of men, the slope
and intercept would be different. Each sample would have produced its
own regression line, with slightly different ’s and ’s. This sample-
to-sample variation is what generates the sampling distributions for the
coefficients.

There’s only one regression model; each sample regression is trying to
estimate the same parameters, and . We expect any sample to pro-
duce a whose expected value is the true slope, . What about its stan-
dard deviation? What aspects of the data affect how much the slope (and
intercept) vary from sample to sample?

b1b1

b1b0

b1b0

Simulation: Simulate the
Sampling Distribution of a
Regression Slope. Draw samples
repeatedly to see for yourself how
slope can vary from sample to
sample. This simulation
experiment lets you build up a
histogram to see the sampling
distribution.
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u Spread around the line. Here are two situations in which we might do regres-
sion. Which situation would yield the more consistent slope? That is, if we
were to sample over and over from the two underlying populations that these
samples come from and compute all the slopes, which group of slopes would
vary less?

y

x

y

x

FIGURE 27.8
Which of these scatterplots shows a
situation that would give the more con-
sistent regression slope estimate if we
were to sample repeatedly from its un-
derlying population?

y

x

y

x

FIGURE 27.9
Which of these scatterplots shows a
situation that would give the more con-
sistent regression slope estimate if we
were to sample repeatedly from the
underlying population?

A plot like the one on the right has a broader range of x-values, so it gives a more
stable base for the slope. We’d expect the slopes of samples from situations like
that to vary less from sample to sample. A large standard deviation of x, , pro-
vides a more stable regression.

sx

n 2 2?
For standard deviation (in
Chapter 4), we divided by

because we didn’t
know the true mean and had
to estimate it. Now it’s later
in the course and there’s
even more we don’t know.
Here we don’t know two
things: the slope and the
intercept. If we knew them
both, we’d divide by n and
have n degrees of freedom.
When we estimate both,
however, we adjust by
subtracting 2, so we divide
by and (as we will see
soon) have 2 fewer degrees
of freedom.

n - 2

n - 1

Clearly, data like those in the left plot give more consistent slopes.

Less scatter around the line means the slope will be more consistent from sample
to sample. The spread around the line is measured with the residual standard de-
viation, . You can always find in the regression output, often just labeled s.
You’re probably not going to calculate the residual standard deviation by hand.
As we noted when we first saw this formula in Chapter 8, it looks a lot like the
standard deviation of y, only now subtracting the predicted values rather than the
mean and dividing by instead of :

The less scatter around the line, the smaller the residual standard deviation and
the stronger the relationship between x and y.

Some people prefer to assess the strength of a regression by looking at rather 
than . After all, has the same units as y, and because it’s the standard devia-
tion of the errors around the line, it tells you how close the data are to our model.
By contrast, is the proportion of the variation of y accounted for by x. We say,
why not look at both?

u Spread of the x ’s: Here are two more situations. Which of these would yield
more consistent slopes?

R2

seR2
se

se = Ca
(y - yN)2

n - 2
.

n - 1n - 2

sese
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u Sample size. Here we go again. What about these two?

y

x

y

x

FIGURE 27.10
Which of these scatterplots shows a
situation that would give the more con-
sistent regression slope estimate if we
were to sample repeatedly from the
underlying population?

It shouldn’t be a surprise that having a larger sample size, n, gives more consis-
tent estimates from sample to sample.

Standard Error for the Slope
Three aspects of the scatterplot, then, affect the standard error of the regression
slope:

u Spread around the line: 

u Spread of x values: 

u Sample size: n

These are in fact the only things that affect the standard error of the slope. 
Although you’ll probably never have to calculate it by hand, the formula for the
standard error is

The error standard deviation, , is in the numerator, since spread around the
line increases the slope’s standard error. The denominator has both a sample size
term and , because increasing either of these decreases the slope’s stan-
dard error.

We know the ’s vary from sample to sample. As you’d expect, their sam-
pling distribution model is centered at , the slope of the idealized regression
line. Now we can estimate its standard deviation with . What about its
shape? Here the Central Limit Theorem and “Wild Bill” Gosset come to the rescue
again. When we standardize the slopes by subtracting the model mean and divid-
ing by their standard error, we get a Student’s t-model, this time with de-
grees of freedom:

b1 - b1

SE(b1)
' tn-2.

n - 2

SE(b1)
b1

b1

sx1n - 1

se

SE(b1) =

se

2n - 1 sx

.

sx

se

Activity: Regression Slope
Standard Error. See how 
is constructed and where the
values used in the formula are
found in the regression output
table.

SE(b1)

Simulation: x-Variance
and Slope Variance. You don’t
have to just imagine how the
variability of the slope depends
on the spread of the x’s.

NOTATION ALERT:

Don’t confuse the standard
deviation of the residuals,
with the standard error of the
slope, .The first measures
the scatter around the line, and
the second tells us how reliably
we can estimate the slope.

SE(b1)

se,
A SAMPLING DISTRIBUTION FOR REGRESSION SLOPES
When the conditions are met, the standardized estimated regression slope,

follows a Student’s t-model with degrees of freedom. We estimate the
standard error with

n - 2

t =

b1 - b1

SE(b1)
,
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n is the number of data values, and is the ordinary standard deviation of
the x-values.

sx

SE(b1) =

se

2n - 1 sx

, where se = Ca
(y - yN)2

n - 2
,

Regression Inference 659

Finding standard errorsFOR EXAMPLE

Recap: Recent terrestrial impact craters seem to show 
a relationship between age and size that is linear when 
re-expressed using logarithms (see Chapter 10).

Here are summary statistics and regression output.

Variable Count Mean StdDev
LogAge 39 20.656310 1.57682

LogDiam 39 0.012600 1.04104

Dependent variable is: LogDiam

R-squared = 63.6%

s = 0.6362 with 39 2 2 = 37 degrees of freedom

Variable Coefficient Se(coeff) t-ratio P-value
Intercept 0.358262 0.1106 3.24 0.0025

LogAge 0.526674 0.0655 8.05 < 0.0001

Questions: How are the standard error of the slope and the t-ratio for the slope calculated? (And aren’t you glad the software does this for you?)

Assuming no linear association (b1 = 0), t37 =

b1 - b1

SE(b1)
=

0.526674 - 0
0.0655

= 8.05

SE(b1) =

se

2n - 1 * sx
=

0.6362

239 - 1 * 1.57682
= 0.0655

What About the Intercept?
The same reasoning applies for the intercept. We could write

and use it to construct confidence intervals and test hypotheses, but often the
value of the intercept isn’t something we care about. The intercept usually isn’t
interesting. Most hypothesis tests and confidence intervals for regression are
about the slope.

Regression Inference
Now that we have the standard error of the slope and its sampling distribution,
we can test a hypothesis about it and make confidence intervals. The usual null
hypothesis about the slope is that it’s equal to 0. Why? Well, a slope of zero would
say that y doesn’t tend to change linearly when x changes—in other words, that
there is no linear association between the two variables. If the slope were zero,
there wouldn’t be much left of our regression equation.

So a null hypothesis of a zero slope questions the entire claim of a linear rela-
tionship between the two variables—and often that’s just what we want to know.
In fact, every software package or calculator that does regression simply assumes
that you want to test the null hypothesis that the slope is really zero.

b0 - b0

SE(b0)
' tn-2

Regression Inference. How big
must a slope be in order to be
considered statistically significant?
See for yourself by exploring
the natural sample-to-sample
variability in slopes.
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To test we find

This is just like every t-test we’ve seen: a difference between the statistic and
its hypothesized value, divided by its standard error.

For our body fat data, the computer found the slope (1.7), its standard error 

(0.0743), and the ratio of the two: (see p. 656). Nearly 23 standard 

errors from the hypothesized value certainly seems big. The P-value 
confirms that a t-ratio this large would be very unlikely to occur if the true slope
were zero.

Maybe the standard null hypothesis isn’t all that interesting here. Did you
have any doubts that %Body Fat is related to Waist size? A more sensible use of
these same values might be to make a confidence interval for the slope instead.

We can build a confidence interval in the usual way, as an estimate plus or mi-
nus a margin of error. As always, the margin of error is just the product of the stan-
dard error and a critical value. Here the critical value comes from the t-distribution
with degrees of freedom, so a 95% confidence interval for is

For the body fat data, , so that comes to , or an in-
terval from 1.55 to 1.85 %Body Fat per inch of Waist size.

1.7 ; 1.97 * 0.074t*248 = 1.970

b1 ; t *n-2 * SE(b1).

Bn - 2

(60.0001)

1.7 - 0
0.0743

= 22.9

tn-2 =

b1 - 0
SE(b1)

.

H0: b1 = 0,
What if the Slope Were 0?
If our prediction is

The equation
collapses to just Now
x is nowhere in sight, so y
doesn’t depend on x at all.

And would turn out to
be . Why? We know that

, but when
that becomes simply

. It turns out, then, that
when the slope is 0, the
equation is just ; at
every value of x, we always
predict the mean value for y.

yN = y

b0 = y
b1 = 0,
b0 = y - b1x

y
b0

yN = b0.
yN = b0 + 0x.

b1 = 0,

Interpreting a regression modelFOR EXAMPLE

Recap: On a log scale, there seems to be a
linear relationship between the diameter and
the age of recent terrestrial impact craters. We
have regression output from statistics software:

Dependent variable is: LogDiam

R-squared = 63.6%

s = 0.6362 with 39 2 2 = 37 degrees of freedom

Variable Coefficient Se(coeff) t-ratio P-value
Intercept 0.358262 0.1106 3.24 0.0025

LogAge 0.526674 0.0655 8.05 <0.0001
Questions: What’s the regression model, and what
can it tell us?

For terrestrial impact craters younger than 35 million years, the logarithm of Diameter grows linearly with the logarithm
of Age: log logAge. The P-value for each coefficient’s t-statistic is very small, so I’m quite
confident that neither coefficient is zero. Based on my model, I conclude that, on average, the older a crater is, the
larger it tends to be. This model accounts for 63.6% of the variation in logDiam.
Although it is possible that impacts (and their craters) are getting smaller, it is more likely that i’m seeing the ef-
fects of age on craters. Small craters are probably more likely to erode or become buried or otherwise be difficult to
find as they age. Larger craters may survive the huge expanses of geologic time more successfully.

Diam = 0.358 + 0.527

JUST CHECKING
Researchers in Food Science studied how big people’s mouths tend to be. They measured mouth volume by

pouring water into the mouths of subjects who lay on their backs. Unless this is your idea of a good time, it would be
helpful to have a model to estimate mouth volume more simply. Fortunately, mouth volume is related to height.
(Mouth volume is measured in cubic centimeters and height in meters.)
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Another Example
Every spring, Nenana, Alaska, hosts a contest in which participants try to guess
the exact minute that a wooden tripod placed on the frozen Tanana River will fall
through the breaking ice. The contest started in 1917 as a diversion for railroad en-
gineers, with a jackpot of $800 for the closest guess. It has grown into an event in
which hundreds of thousands of entrants enter their guesses on the Internet3 and
vie for as much as $300,000.

Because so much money and interest depends on the time of breakup, it has
been recorded to the nearest minute with great accuracy ever since 1917. And be-
cause a standard measure of breakup has been used throughout this time, the data
are consistent. An article in Science4 used the data to investigate global warming—
whether greenhouse gasses and other human actions have been making the
planet warmer. Others might just want to make a good prediction of next year’s
breakup time.

Of course, we can’t use regression to tell the causes of any change. But we can
estimate the rate of change (if any) and use it to make better predictions.

Here are some of the data:

The data were checked and deemed suitable for
regression. Take a look at the computer output.

1. What does the t-ratio of 3.27 tell us about this 
relationship? How does the P-value help our 
understanding?

2. Would you say that measuring a person’s height
could reliably be used as a substitute for the wet-
ter method of determining how big a person’s
mouth is? What numbers in the output helped
you reach that conclusion?

3. What does the value of add to this discussion?se

Summar y of Mouth V olume
Mean 60.2704
StdDev 16.8777
Dependent variable is: Mouth V olume
R-squared = 15.3%
s 5 15.66 with 61 2 2 5 59 degrees of freedom

Variable Coefficient SE(coeff) t-ratio P-value
Intercept 244.7113 32.16 21.39 0.1697
Height 61.3787 18.77 3.27 0.0018

3 http://www.nenanaakiceclassic.com
4 “Climate Change in Nontraditional Data Sets.” Science 294 [26 October 2001]: 811.

WHO Years

WHAT Year, day, and hour of
ice breakup

UNITS x is in years since 
1900.

y is in days after 
midnight Dec. 31.

WHEN 1917–present

WHERE Nenana, Alaska

WHY Wagering, but pro-
posed to look at 
global warming

Activity: A Hypothesis
Test for the Regression Slope.
View an animated discussion 
of testing the standard null
hypothesis for slope.

Year 
(since 1900)

Breakup Date 
(days after Jan. 1)

17 119.4792
18 130.3979
19 122.6063
20 131.4479
21 130.2792
22 131.5556
23 128.0833
24 131.6319
25 126.7722
26 115.6688
27 131.2375
28 126.6840
29 124.6535

Year 
(since 1900)

Breakup Date 
(days after Jan. 1)

30 127.7938
31 129.3910
32 121.4271
33 127.8125
34 119.5882
35 134.5639
36 120.5403
37 131.8361
38 125.8431
39 118.5597
40 110.6437
41 122.0764
A A
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The slope of the regression gives the change in Nenana ice breakup date per year.

Questions: Is there sufficient evidence to claim that ice breakup times are changing? 
If so, how rapid is the change?

A Regression Slope t-TestSTEP–BY–STEP EXAMPLE

I wonder whether the date of ice breakup in Ne-
nana has changed over time. The slope of that
change might indicate climate change. I have
the date of ice breakup annually since 1917,
recorded as the number of days and fractions
of a day until the ice breakup.

: There is no change in the date of ice
breakup: 

: Yes, there is: 

Ç Straight Enough Condition: I have quanti-
tative data with no obvious bend in the
scatterplot.

b1 Z OHA

b1 = O
HO

Plan State what you want to know.

Identify the parameter you wish to esti-
mate. Here our parameter is the slope.

Identify the variables and review the W’s.

Hypotheses Write your null and alter-
native hypotheses.

Ç Independence Assumption: These data
are a time series, which raises my suspi-
cions that they may not be independent. To
check, here’s a plot of the residuals against
time, the x-variable of the regression:

Model Think about the assumptions and
check the conditions.

Make pictures. Because the scatterplot
seems straight enough, we can find and
plot the residuals.

I see a hint that the data oscillate up and
down, which suggests some failure of inde-
pendence, but not so strongly that I can’t

Usually, we check for suggestions that the
Independence Assumption fails by plot-
ting the residuals against the predicted
values. Patterns and clusters in that plot
raise our suspicions. But when the data
are measured over time, it is always a
good idea to plot residuals against time to
look for trends and oscillations.
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proceed with the analysis. These data are not a
random sample, so I’m reluctant to extend my
conclusions beyond this river and these years.

Ç Does the Plot Thicken? Condition: The
residuals plot shows no obvious trends in
the spread.

Ç Nearly Normal Condition, Outlier Condi-
tion: A histogram of the residuals is
unimodal and symmetric.

State the sampling distribution model.

Here’s the computer output for this regression:

Dependent variable is: Breakup Date

R-squared 5 11.3%

s 5 5.673 with 91 2 2 5 89 degrees of freedom

Variable Coeff SE(Coeff) t-ratio P-value
Intercept 128.950 1.525 84.6 ,0.0001

Year Since

1900 20.07606 0.0226 23.36 0.0012

The estimated regression equation is

Date = 128.95 - 0.076 YearSince1900.

Mechanics The regression equation can
be found from the formulas in Chapter 8,
but regressions are almost always found
from a computer program or calculator.

The P-values given in the regression 
output table are from the Student’s 
t-distribution on degrees of
freedom. They are appropriate for two-
sided alternatives.

(n - 2) = 89

−17.5

5

Residuals (days)

# 
of

 Y
ea

rs

10

15

20

−5.0 7.5

Under these conditions, the sampling distribu-
tion of the regression slope can be modeled by
a Student’s t-model with de-
grees of freedom.

I’ll do a regression slope t-test.

(n - 2) = 89

Choose your method.

The P-value of 0.0012 means that the associa-
tion we see in the data is unlikely to have
occurred by chance. I reject the null hypothesis,
and conclude that there is strong evidence
that, on average, the ice breakup is occurring
earlier each year. But the oscillation pattern in
the residuals raises concerns.

Conclusion Link the P-value to your de-
cision and state your conclusion in the
proper context.
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I am 95% confident that the ice has been
breaking up, on average, between 0.03 days
(about 40 minutes) and 0.12 days (about 
3 hours) earlier each year since 1900.

Interpret the interval Simply reject-
ing the standard null hypothesis doesn’t
guarantee that the size of the effect is
large enough to be important. Whether
we want to know the breakup time to the
nearest minute or are interested in global
warming, a change measured in hours
each year is big enough to be interesting.

MORE

A 95% confidence interval for is

or (-0.12,-0.03) days per year.
-0.076 ; (1.987)(0.0226)

b1 ; t *89 * SE(b1)

b1Create a confidence interval for the 
true slope

MORE

But is it global warming? So the ice is breaking up earlier. Temperatures are
higher. Must be global warming, right?

Maybe.
An article challenging the original analysis of the Nenana data proposed a possi-

ble confounding variable. It noted that the city of Fairbanks is upstream from Ne-
nana and suggested that the growth of Fairbanks could have warmed the river. So
maybe it’s not global warming.

Or maybe global warming is a lurking variable, leading more people to move to a
now balmier Fairbanks and also leading to generally earlier ice breakup in Nenana.

Or maybe there’s some other variable or combination of variables at work. We
can’t set up an experiment, so we may never really know.

Only one thing is for sure. When you try to explain an association by claiming
cause and effect, you’re bound to be on thin ice.5

5 How do scientists sort out such messy situations? Even though they can’t conduct an ex-
periment, they can look for replications elsewhere. A number of studies of ice on other bod-
ies of water have also shown earlier ice breakup times in recent years. That suggests they
need an explanation that’s more comprehensive than just Fairbanks and Nenana.

TI Tips Doing regression inference

The TI will easily do almost everything you need for inference for regression:
scatterplots, residual plots, histograms of residuals, and t-tests and confi-
dence intervals for the slope of the regression line. OK, it won’t tell you SE(b),
but it will give you enough information to easily figure it out for yourself.
Not bad.

As an example we’ll use data from Chance magazine (Vol. 12, No. 4, 1999), giving
times and temperatures for 11 of the top performances in women’s marathons
during the 1990s. Let’s examine the influence of temperature on the perfor-
mance of elite runners in marathons.

°F Min
44 142.7
46 142.1
47 143.4
50 143.6
51 144.0
52 143.4
54 142.4
55 143.1
57 143.7
60 143.4
65 143.4
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*Standard Errors for Predicted Values
Once we have a useful regression, how can we indulge our natural desire to pre-
dict, without being irresponsible? We know how to compute predicted values of y
for any value of x. We first did that in Chapter 8. This predicted value would be
our best estimate, but it’s still just an informed guess.

Test a Hypothesis About the Association
• Enter the temperatures (nearest degree Fahrenheit) in and the runners’ times

(nearest tenth of a minute) in .
• Check the scatterplot. It’s not obviously nonlinear, so go ahead.
• Under choose .
• Specify the two data lists (with ).
• Choose the two-tailed option. (We are interested in whether higher tempera-

tures enhance or interfere with a runner’s performance.)
• Tell it to store the regression equation in (

. . . remember?), then .

The TI creates so much information you have to scroll down to see it all! Look
what’s there.

• The calculated value of and the -value.
• The coefficients of the regression equation, and .
• The value of , our sample estimate of the common standard deviation of 

errors around the true line.
• The values of and .

Wait, where’s SE(b)? It’s not there. No problem—if you need it, you can figure
it out. Remember that the t-value is b divided by SE(b). So SE(b) must be b di-
vided by t. Here 

Create a Confidence Interval for the Slope
• Back to ; this time you want .
• The specifications for the data lists and the regression equation remain what

you entered for the hypothesis test.
• Choose a confidence level, say 95%, and .

Checking Conditions
Beware!!! Before you try to interpret any of this, you must check the conditions
to see if inference for regression is allowed.

• We already looked at the scatterplot; it was reasonably linear.
• To create the residuals plot, set up another scatterplot with (from

) as your . OK, it looks fairly random.
• The residuals plot may show a slight hint of diminishing scatter, but with so

few data values it’s not very clear.
• The histogram of the residuals is unimodal and roughly symmetric.

What Does It All Mean?
Because the conditions check out okay, we can try to summarize what we have
learned. With a P-value over 28%, it’s quite possible that any perceived rela-
tionship could be just sampling error. The confidence interval suggests the
slope could be positive or negative, so it’s possible that as temperatures in-
crease, women marathoners may run faster—or slower. Based on these 11 races
there appears to be little evidence of a linear association between temperature
and women’s performances in the marathon.

SE(b) = 0.0325 , 1.1358 = 0.0286.
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Now, however, we have standard errors. We can use those to construct a con-
fidence interval for the predictions and to report our uncertainty honestly.

From our model of %Body Fat and Waist size, we might want to use Waist size
to get a reasonable estimate of %Body Fat. A confidence interval can tell us how
precise that prediction will be. The precision depends on the question we ask,
however, and there are two questions: Do we want to know the mean %Body Fat
for all men with a Waist size of, say, 38 inches? Or do we want to estimate the
%Body Fat for a particular man with a 38-inch Waist without making him climb
onto the X-ray table?

What’s the difference between the two questions? The predicted %Body Fat is
the same, but one question leads to an answer much more precise than the other.
We can predict the mean %Body Fat for all men whose Waist size is 38 inches with
a lot more precision than we can predict the %Body Fat of a particular individual
whose Waist size happens to be 38 inches. Both are interesting questions.

We start with the same prediction in both cases. We are predicting the value
for a new individual, one that was not part of the original data set. To emphasize
this, we’ll call his x-value “x sub new” and write it .6 Here, is 38 inches. The
regression equation predicts %Body Fat as .

Now that we have the predicted value, we construct both intervals around
this same number. Both intervals take the form

Even the value is the same for both. It’s the critical value (from Table T or
technology) for degrees of freedom and the specified confidence level. The
intervals differ because they have different standard errors. Our choice of ruler
depends on which interval we want.

The standard errors for prediction depend on the same kinds of things as the
coefficients’ standard errors. If there is more spread around the line, we’ll be less
certain when we try to predict the response. Of course, if we’re less certain of the
slope, we’ll be less certain of our prediction. If we have more data, our estimate
will be more precise. And there’s one more piece: If we’re farther from the center
of our data, our prediction will be less precise. This last factor is new but makes
intuitive sense: It’s a lot easier to predict a data point near the middle of the data
set than far from the center.

Each of these factors contributes uncertainty—that is, variability—to the esti-
mate. Because the factors are independent of each other, we can add their vari-
ances to find the total variability. The resulting formula for the standard error of
the predicted mean value explicitly takes into account each of the factors:

Individual values vary more than means, so the standard error for a single
predicted value has to be larger than the standard error for the mean. In fact, the
standard error of a single predicted value has an extra source of variability: the
variation of individuals around the predicted mean. That appears as the extra
variance term, , at the end under the square root:

SE(yNn) = BSE2(b1) # (xn - x)2
+

s2
e

n
+ s2

e .

s2
e

SE(mN n) = BSE2(b1) # (xn - x)2
+

s2
e

n
.

n - 2
t*

yNn ; t*n-2 * SE.

yNn = b0 + b1xn

xnxn
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6 Yes, this is a bilingual pun. The Greek letter is called “nu.” Don’t blame me; my co-author
suggested this.

n

For the Nenana Ice Classic,
someone who planned to
place a bet would want to
predict this year’s breakup
time. By contrast, scientists
studying global warming are
likely to be more interested
in the mean breakup time.
Unfortunately if you want to
gamble, the variability is
greater for predicting for a
single year.
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Standard Errors for Predicted Values 667

Keep in mind this distinction between the two kinds of confidence intervals:
The narrower interval is a confidence interval for the predicted mean value at

and the wider interval is a prediction interval for an individual with that 
x-value.
xn,

*Finding confidence intervals for predicted valuesFOR EXAMPLE

Let’s use our analysis to create confidence intervals for predictions about %Body Fat. From the data and the regression output we know:

Question 1: What’s a 95% confidence interval for the mean %Body Fat for all men with 38-inch waists?

For the regression model predicts

The standard error is

Putting it all together, the 95% confidence interval is:

I’m 95% confidence that the mean body fat level for all men with 38-inch waists is between 21.3% and 22.5% body fat.

Question 2: What’s a 95% prediction interval for the %Body Fat of an individual
man with a 38-inch waist?

The standard error is

The prediction interval is: 

I’m 95% confident that a randomly selected man with a 38-inch
waist will have between 12.6% and 31.2% body fat.

Notice how much wider this interval is than the first one. As we’ve known since Chap-
ter 18, the mean is such less variable than a randomly selected individual value.

21.9% ; 1.97(4.72)
21.9% ; 9.3%, or (12.6, 31.2)

SE(yNn) = B0.0742(38 - 36.3)2
+

4.7132

250
+ 4.7132

= 4.72%.

21.9% ; 1.97(0.32)
21.9% ; 0.63%, or (21.27, 22.53)

With 250 - 2 = 248 df, for 95% confidence t* = 1.97.

SE(mN n) = B0.0742(38 - 36.3)2
+

4.7132

250
= 0.32%.

yNn = -42.7 + 1.7(38) = 21.9%.

xn = 38

n = 250 x = 36.3 se = 4.713 SE(b1) = 0.074

Waist (in.)
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FIGURE 27.11
A scatterplot of %Body Fat vs. Waist size with a least
squares regression line. The solid green lines near the
regression line show the extent of the 95% confidence
intervals for mean %Body Fat at each Waist size. The
dashed red lines show the prediction intervals. Most of
the points are contained within the prediction intervals,
but not within the confidence intervals.
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*MATH BOX

So where do those messy formulas for standard errors of predicted values come from? They’re
based on many of the ideas we’ve studied so far. Start with regression, add random variables, then
throw in the Pythagorean Theorem, the Central Limit Theorem, and a dose of algebra. Mix well. . . .

We begin our quest with an equation of the regression line. Usually we write the line in the
form Mathematicians call that the “slope-intercept” form; in your algebra class you
wrote it as . In that algebra class you also learned another way to write equations of
lines. When you know that a line with slope m passes through the point , the “point-
slope” form of its equation is .

We know the regression line passes through the mean-mean point with slope , so
we can write its equation in point-slope form as Solving for yields

This equation predicts the mean y-value for a specific :

To create a confidence interval for the mean value we need to measure the variability in this 
prediction:

We now call on the Pythagorean Theorem of Statistics once more: the slope, , and mean, ,
should be independent, so their variances add:

The horizontal distance from our specific x-value to the mean, , is a constant:

Let’s write that equation in terms of standard deviations:

Because we’ll need to estimate these standard deviations using samples statistics, we’re really
dealing with standard errors:

The Central Limit Theorem tells us that the standard deviation of is . Here we’ll estimate

σ using , which describes the variability in how far the line we drew through our sample mean
may lie above or below the true mean:

And there it is—the standard error we need to create a confidence interval for a predicted mean
value.

When we try to predict an individual value of y, we must also worry about how far the true
point may lie above or below the regression line. We represent that uncertainty by adding an-
other term, e, to the original equation:

To make a long story short (and the equation a wee bit longer), that additional term simply adds
one more standard error to the sum of the variances:

SE1yN2 = B1SE21b1221xn - x2 +

s2
e

n
+ s2

e .

y = b1(xn - x) + y + e.

 = B1SE21b1221xn - x22 +

s2
e

n
.

 SE1mN y2 = B1SE21b1221xn - x22 + a
se

2n
b

2

se

s

1n
y

SE1mN y2 = 21SE21b1221xn - x22 + SE21y2.

SD1mN y2 = 21SD21b1221xn - x22 + SD21y2.

Var1mN y) = 1Var1b1))(xn - x22 + Var(y2.

xn - x

Var1mN y2 = Var1b11xn - x22 + Var1y2.

yb1

Var(mN y) = Var1b11xn - x2 + y2.

mN y = b11xn - x2 + y.

xnyN = b1(x - x) + y.
yNyN - y = b1(x - x).

b11x, y2
y - y1 = m1x - x12

1x1, y12
y = mx + b

yN = b0 + b1x.
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WHAT CAN GO WRONG?
In this chapter we’ve added inference to the regression explorations that we did in
Chapters 8 and 9. Everything covered in those chapters that could go wrong with re-
gression can still go wrong. It’s probably a good time to review Chapter 9. Take your
time; we’ll wait.

With inference, we’ve put numbers on our estimates and predictions, but these num-
bers are only as good as the model. Here are the main things to watch out for:

u Don’t fit a linear regression to data that aren’t straight. This is the most fundamental as-
sumption. If the relationship between x and y isn’t approximately linear, there’s no
sense in fitting a straight line to it.

u Watch out for the plot thickening. The common part of confidence and prediction inter-
vals is the estimate of the error standard deviation, the spread around the line. If it
changes with x, the estimate won’t make sense. Imagine making a prediction inter-
val for these data.

When x is small, we can predict y precisely, but as x gets larger, it’s much harder
to pin y down. Unfortunately, if the spread changes, the single value of se won’t pick
that up. The prediction interval will use the average spread around the line, with the
result that we’ll be too pessimistic about our precision for low x-values and too opti-
mistic for high x-values. A re-expression of y is often a good fix for changing spread.

u Make sure the errors are Normal. When we make a prediction interval for an individ-
ual, the Central Limit Theorem can’t come to our rescue. For us to believe the predic-
tion interval, the errors must be from the Normal model. Check the histogram and
Normal probability plot of the residuals to see if this assumption looks reasonable.

u Watch out for extrapolation. It’s tempting to think that because we have prediction
intervals, they’ll take care of all our uncertainty so we don’t have to worry about ex-
trapolating. Wrong. The interval is only as good as the model. The uncertainty our
intervals predict is correct only if our model is true. There’s no way to adjust for
wrong models. That’s why it’s always dangerous to predict for x-values that lie far
from the center of the data.

u Watch out for influential points and outliers. We always have to be on the lookout for a
few points that have undue influence on our estimated model—and regression is
certainly no exception.

u Watch out for one-tailed tests. Because tests of hypotheses about regression coefficients
are usually two-tailed, software packages report two-tailed P-values. If you are us-
ing software to conduct a one-tailed test about slope, you’ll need to divide the re-
ported P-value in half.

CONNECTIONS
Regression inference is connected to almost everything we’ve done so far. Scatterplots are essential
for checking linearity and whether the plot thickens. Histograms and normal probability plots
come into play to check the Nearly Normal condition. And we’re still thinking about the same at-
tributes of the data in these plots as we were back in the first part of the book.

Regression inference is also connected to just about every inference method we have seen for
measured data. The assumption that the spread of data about the line is constant is essentially the
same as the assumption of equal variances required for the pooled-t methods. Our use of all the
residuals together to estimate their standard deviation is a form of pooling.
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WHAT HAVE WE LEARNED?

In Chapters 7, 8, and 9, we learned to examine the relationship between two quantitative variables
in a scatterplot, to summarize its strength with correlation, and to fit linear relationships by least
squares regression. And we saw that these methods are particularly powerful and effective for mod-
eling, predicting, and understanding these relationships.

Now we have completed our study of inference methods by applying them to these regression
models. We’ve found that the same methods we used for means—Student’s t-models—work for re-
gression in much the same way as they did for means. And we’ve seen that although this makes
the mechanics familiar, there are new conditions to check and a need for care in describing the hy-
potheses we test and the confidence intervals we construct.

u We’ve learned that under certain assumptions, the sampling distribution for the slope of a re-
gression line can be modeled by a Student’s t-model with degrees of freedom.

u We’ve learned to check four conditions to verify those assumptions before we proceed with infer-
ence. We’ve learned the importance of checking these conditions in order, and we’ve seen that
most of the checks can be made by graphing the data and the residuals with the methods we
learned in Chapters 4, 5, and 8.

u We’ve learned to use the appropriate t-model to test a hypothesis about the slope. If the slope of
our regression line is significantly different from zero, we have strong evidence that there is an
association between the two variables.

u We’ve also learned to create and interpret a confidence interval for the true slope.
u And we’ve been reminded yet again never to mistake the presence of an association for proof of

causation.

Terms
Conditions for inference u 651. Straight Enough Condition for linearity. (Check that the scatterplot of y against x has linear

in regression (and checks form and that the scatterplot of residuals against predicted values has no obvious pattern.)
for some of them) u 652. Independence Assumption. (Think about the nature of the data. Check a residuals plot.)

u 652. Does the Plot Thicken? Condition for constant variance. (Check that the scatterplot shows
consistent spread across the range of the x-variable, and that the residuals plot has constant vari-
ance, too. A common problem is increasing spread with increasing predicted values—the plot
thickens!)

n - 2

Means Regression Slope

Parameter m b1

Statistic y b1

Population spread estimate sy 5 Å
g (y 2 y)2

n 2 1
se 5 B

g1y - yN22

n - 2

Standard error of the statistic SE(y) 5
sy

!n
SE(b1) 5

se

sx"n 2 1

Test statistic , tn 2 1

y 2 m0

SE(y)
, tn 2 2

b1 2 b1

SE(b1)

Margin of error ME = t*n -  1 * SE(y ) ME = t*n -  2 * SE(b1)

Inference for regression is closely related to inference for means, so your understanding of means
transfers directly to your understanding of regression. Here’s a table that displays the similarities:

BOCK_C27_0321570448 pp3.qxd  11/29/08  6:54 PM  Page 670



What Have We Learned? 671

u 652. Nearly Normal Condition for Normality of the residuals. (Check a histogram of the 
residuals.)

Residual standard deviation 657. The spread of the data around the regression line is measured with the residual standard 
deviation, :

t-test for the regression slope 658, 662. When the assumptions are satisfied, we can perform a test for the slope coefficient. We
usually test the null hypothesis that the true value of the slope is zero against the alternative that it
is not. A zero slope would indicate a complete absence of linear relationship between y and x.

To test we find

where

n is the number of cases, and is the standard deviation of the x-values. We find the P-value from
the Student’s t-model with degrees of freedom.

Confidence interval for the 660. When the assumptions are satisfied, we can find a confidence interval for the slope parameter
regression slope ( ) from . The critical value, , depends on the confidence level specified and

on Student’s t-model with degrees of freedom.

Skills
u Understand that the “true” regression line does not fit the population data perfectly, but rather is

an idealized summary of that data.

u Know how to examine your data and a scatterplot of y vs. x for violations of assumptions that
would make inference for regression unwise or invalid.

u Know how to examine displays of the residuals from a regression to double-check that the
conditions required for regression have been met. In particular, know how to judge linearity and
constant variance from a scatterplot of residuals against predicted values. Know how to judge
Normality from a histogram and Normal probability plot.

u Remember to be especially careful to check for failures of the Independence Assumption when
working with data recorded over time. To search for patterns, examine scatterplots both of x
against time and of the residuals against time.

u Know how to test the standard hypothesis that the true regression slope is zero. Be able to state
the null and alternative hypotheses. Know where to find the relevant numbers in standard com-
puter regression output.

u Be able to find a confidence interval for the slope of a regression based on the values reported in
a standard regression output table.

u Be able to summarize a regression in words. In particular, be able to state the meaning of the
true regression slope, the standard error of the estimated slope, and the standard deviation of
the errors.

u Be able to interpret the P-value of the t-statistic for the slope to test the standard null hypothesis.

u Be able to interpret a confidence interval for the slope of a regression.

n - 2
t *n - 2b1 ; t*n - 2 * SE(b1)b

n - 2
sx

SE(b1) =

se

2n - 1 sx

, se = Ba
(y - yN)2

n - 2
,

t =

b1 - 0

SE(b1)

H0: b1 = 0,

se = Ba
(y - yN)2

n - 2
= B a

e2

n - 2
.

se
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y-variable

x-variable

may be
called

"Intercept"

R2

se

P-values
(two-tailed)

Dependent variable is %BF

R squared = 67.8%
s = 4.713 with 250 – 2 = 248 degrees of freedom

Variable Coefficient

b0 SE(b0)

df = n - 2

SE(Coeff) t-ratio Prob
Constant
waist

–42.7341
 1.69997

2.717
0.0743

– 15.7
 22.9

≤ 0.0001
≤ 0.0001

b1 SE(b1)
t =

b1
SE(b1)

t =
b0

SE(b0)

EXERCISES

1. Hurricane predictions. In Chapter 7 we looked at data
from the National Oceanic and Atmospheric Administra-
tion about their success in predicting hurricane tracks.

Here is a scatterplot of the error (in nautical miles) for pre-
dicting hurricane locations 72 hours in the future vs. the
year in which the prediction (and the hurricane) occurred:

REGRESSION ANALYSIS ON THE COMPUTER

All statistics packages make a table of results for a regression. These tables differ slightly from one package to
another, but all are essentially the same. We’ve seen two examples of such tables already.
All packages offer analyses of the residuals. With some, you must request plots of the residuals as you request
the regression. Others let you find the regression first and then analyze the residuals afterward. Either way, your
analysis is not complete if you don’t check the residuals with a histogram or Normal probability plot and a
scatterplot of the residuals against x or the predicted values.
You should, of course, always look at the scatterplot of your two variables before computing a regression.
Regressions are almost always found with a computer or calculator. The calculations are too long to do
conveniently by hand for data sets of any reasonable size. No matter how the regression is computed, the
results are usually presented in a table that has a standard form. Here’s a portion of a typical regression
results table, along with annotations showing where the numbers come from:

The regression table gives the coefficients (once you find them in the middle of all this other information), so we
can see that the regression equation is

and that the for the regression is 67.8%. (Is accounting for 68% of the variation in %Body Fat good enough
to be useful? Is a prediction ME of more than 9% good enough? Health professionals might not be satisfied.)
The column of t-ratios gives the test statistics for the respective null hypotheses that the true values of the
coefficients are zero. The corresponding P-values are also usually reported.

R2

%BF = -42.73 + 1.7 Waist

Activity: Regression on
the Computer. How fast is the
universe expanding? And how old
is it? A prominent astronomer
used regression to astound the
scientific community. Read the
story, analyze the data, and
interactively learn about each 
of the numbers in a typical
computer regression output table.

T
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EXERCISES

1. Hurricane predictions. In Chapter 7 we looked at data
from the National Oceanic and Atmospheric Administra-
tion about their success in predicting hurricane tracks.

Here is a scatterplot of the error (in nautical miles) for pre-
dicting hurricane locations 72 hours in the future vs. the
year in which the prediction (and the hurricane) occurred:

REGRESSION ANALYSIS ON THE COMPUTER

All statistics packages make a table of results for a regression. These tables differ slightly from one package to
another, but all are essentially the same. We’ve seen two examples of such tables already.
All packages offer analyses of the residuals. With some, you must request plots of the residuals as you request
the regression. Others let you find the regression first and then analyze the residuals afterward. Either way, your
analysis is not complete if you don’t check the residuals with a histogram or Normal probability plot and a
scatterplot of the residuals against x or the predicted values.
You should, of course, always look at the scatterplot of your two variables before computing a regression.
Regressions are almost always found with a computer or calculator. The calculations are too long to do
conveniently by hand for data sets of any reasonable size. No matter how the regression is computed, the
results are usually presented in a table that has a standard form. Here’s a portion of a typical regression
results table, along with annotations showing where the numbers come from:

The regression table gives the coefficients (once you find them in the middle of all this other information), so we
can see that the regression equation is

and that the for the regression is 67.8%. (Is accounting for 68% of the variation in %Body Fat good enough
to be useful? Is a prediction ME of more than 9% good enough? Health professionals might not be satisfied.)
The column of t-ratios gives the test statistics for the respective null hypotheses that the true values of the
coefficients are zero. The corresponding P-values are also usually reported.

R2

%BF = -42.73 + 1.7 Waist

Activity: Regression on
the Computer. How fast is the
universe expanding? And how old
is it? A prominent astronomer
used regression to astound the
scientific community. Read the
story, analyze the data, and
interactively learn about each 
of the numbers in a typical
computer regression output table.

T
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In Chapter 7 we could describe this relationship only in
general terms. Now we can learn more. Here is the re-
gression analysis:

Dependent variable is: 72Error
R squared 5 58.5%
s 5 75.38 with 36 2 2 5 34 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 453.223 24.61 18.4 #0.0001
Year since 1970 28.37084 1.209 26.92 #0.0001

a) Explain in context what the regression says.
b) State the hypothesis about the slope (both numerically

and in words) that describes how hurricane prediction
quality has changed.

c) Assuming that the assumptions for inference are satis-
fied, perform the hypothesis test and state your
conclusion in context.

d) Explain what R-squared means in context.

2. Drug use. The European School Study Project on Alcohol
and Other Drugs, published in 1995, investigated the use
of marijuana and other drugs. Data from 11 countries are
summarized in the following scatterplot and regression
analysis. They show the association between the percent-
age of a country’s ninth graders who report having
smoked marijuana and who have used other drugs such
as LSD, amphetamines, and cocaine.

Dependent variable is: Other
R-squared 5 87.3%
s 5 3.853 with 11 2 2 5 9 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 23.06780 2.204 21.39 0.1974
Marijuana 0.615003 0.0784 7.85 ,0.0001
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a) Explain in context what the regression says.
b) State the hypothesis about the slope (both numerically

and in words) that describes how use of marijuana is
associated with other drugs.

c) Assuming that the assumptions for inference are satis-
fied, perform the hypothesis test and state your
conclusion in context.

d) Explain what R-squared means in context.
e) Do these results indicate that marijuana use leads to

the use of harder drugs? Explain.

3. Movie budgets. How does the cost of a movie depend
on its length? Data on the cost (millions of dollars) and
the running time (minutes) for major release films of 2005
are summarized in these plots and computer output:

Dependent variable is: Budget($M)
R squared 5 15.4%
s 5 32.95 with 120 2 2 5 118 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 231.3869 17.12 21.83 0.0693
Run T ime 0.714400 0.1541 4.64 #0.0001
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a) Explain in context what the regression says.
b) The intercept is negative. Discuss its value, taking

note of the P-value.
c) The output reports . Explain what that

means in this context.
d) What’s the value of the standard error of the slope of

the regression line?
e) Explain what that means in this context.

4. House prices. How does the price of a house depend
on its size? Data from Saratoga, New York, on 1064 ran-
domly selected houses that had been sold include data on
price ($1000’s) and size (1000’s ft2), producing the follow-
ing graphs and computer output:

Dependent variable is: Price
R squared 5 59.5%
s 5 53.79 with 1064 2 2 5 1062 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 23.11686 4.688 20.665 0.5063
Size 94.4539 2.393 39.5 #0.0001

a) Explain in context what the regression says.
b) The intercept is negative. Discuss its value, taking

note of its P-value.
c) The output reports s 53.79. Explain what that

means in this context.
d) What’s the value of the standard error of the slope of

the regression line?
e) Explain what that means in this context.
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5. Movie budgets: the sequel. Exercise 3 shows com-
puter output examining the association between the
length of a movie and its cost.
a) Check the assumptions and conditions for inference.
b) Find a 95% confidence interval for the slope and inter-

pret it in context.

6. Second home. Exercise 4 shows computer output ex-
amining the association between the sizes of houses and
their sale prices.
a) Check the assumptions and conditions for inference.
b) Find a 95% confidence interval for the slope and inter-

pret it in context.

7. Hot dogs. Healthy eating probably doesn’t include hot
dogs, but if you are going to have one, you’d probably
hope it’s low in both calories and sodium. In its July 2007
issue, Consumer Reports listed the number of calories and
sodium content (in milligrams) for 13 brands of all-beef
hot dogs it tested. Examine the association, assuming that
the data satisfy the conditions for inference.

Dependent variable is: Sodium
R squared 5 60.5%
s 5 59.66 with 13 2 2 5 11 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Constant 90.9783 77.69 1.17 0.2663
Calories 2.29959 0.5607 4.10 0.0018

a) State the appropriate hypotheses about the slope.
b) Test your hypotheses and state your conclusion in the

proper context.

8. Cholesterol 2007. Does a person’s cholesterol level
tend to change with age? Data collected from 1406 adults
aged 45 to 62 produced the regression analysis shown.
Assuming that the data satisfy the conditions for infer-
ence, examine the association between age and choles-
terol level.

Dependent variable is: Chol
s 5 46.16

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 194.232 13.55 14.3 #0.0001
Age 0.771639 0.2574 3.00 0.0056

a) State the appropriate hypothesis for the slope.
b) Test your hypothesis and state your conclusion in the

proper context.

9. Second frank. Look again at Exercise 7’s regression
output for the calorie and sodium content of hot dogs.
a) The output reports s = 59.66. Explain what that means

in this context.
b) What’s the value of the standard error of the slope of

the regression line?
c) Explain what that means in this context.

10. More cholesterol. Look again at Exercise 8’s regres-
sion output for age and cholesterol level.
a) The output reports s = 46.16. Explain what that means

in this context.
b) What’s the value of the standard error of the slope of

the regression line?
c) Explain what that means in this context.
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11. Last dog. Based on the regression output seen in Exer-
cise 7, create a 95% confidence interval for the slope of the
regression line and interpret your interval in context.

12. Cholesterol, finis. Based on the regression output seen
in Exercise 8, create a 95% confidence interval for the
slope of the regression line and interpret it in context.

13. Marriage age 2003. The scatterplot suggests a de-
crease in the difference in ages at first marriage for men
and women since 1975. We want to examine the regres-
sion to see if this decrease is significant.

Dependent variable is: Men 2 Women
R squared 5 65.6%
s 5 0.1869 with 28 2 2 5 26 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 61.8067 8.468 7.30 #0.0001
Year 20.02996 0.0043 27.04 #0.0001

a) Write appropriate hypotheses.
b) Here are the residuals plot and a histogram of the

residuals. Do you think the conditions for inference
are satisfied? Explain.

c) Test the hypothesis and state your conclusion about
the trend in age at first marriage.
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14. Used cars 2007. Classified ads in a newspaper offered
several used Toyota Corollas for sale. Listed below are the
ages of the cars and the advertised prices.

Exercises 675

a) Make a scatterplot for these data.
b) Do you think a linear model is appropriate? Explain.
c) Find the equation of the regression line.
d) Check the residuals to see if the conditions for infer-

ence are met.

15. Marriage age 2003, again. Based on the analysis of
marriage ages since 1975 given in Exercise 13, give a 95%
confidence interval for the rate at which the age gap is
closing. Explain what your confidence interval means.

16. Used cars 2007, again. Based on the analysis of used
car prices you did for Exercise 14, create a 95% confidence
interval for the slope of the regression line and explain
what your interval means in context.

17. Fuel economy. A consumer organization has reported
test data for 50 car models. We will examine the associa-
tion between the weight of the car (in thousands of
pounds) and the fuel efficiency (in miles per gallon). 
Here are the scatterplot, summary statistics, and regres-
sion analysis:

Variable Count Mean StdDev
MPG 50 25.0200 4.83394
wt/1000 50 2.88780 0.511656

Dependent variable is: MPG
R-squared 5 75.6%
s 5 2.413 with 50 2 2 5 48 df

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 48.7393 1.976 24.7 #0.0001
Weight 28.21362 0.6738 212.2 #0.0001
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a) Is there strong evidence of an association between the
weight of a car and its gas mileage? Write an appro-
priate hypothesis.

b) Are the assumptions for regression satisfied?
c) Test your hypothesis and state your conclusion.

18. SAT scores. How strong was the association between
student scores on the Math and Verbal sections of the old
SAT? Scores on each ranged from 200 to 800 and were
widely used by college admissions offices. Here are
summaries and plots of the scores for a graduating
class at Ithaca High School:

Variable Count Mean Median StdDev Range IntQRange

Verbal 162 596.296 610 99.5199 490 140

Math 162 612.099 630 98.1343 440 150

Dependent variable is: Math
R-squared 5 46.9%
s 5 71.75 with 162 2 2 5 160 df

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 209.554 34.35 6.10 #0.0001
Verbal 0.675075 0.0568 11.9 #0.0001
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a) Is there evidence of an association between Math and
Verbal scores? Write an appropriate hypothesis.

b) Discuss the assumptions for inference.
c) Test your hypothesis and state an appropriate 

conclusion.

19. Fuel economy, part II. Consider again the data in 
Exercise 17 about the gas mileage and weights of cars.
a) Create a 95% confidence interval for the slope of the

regression line.
b) Explain in this context what your confidence interval

means.

20. SATs, part II. Consider the high school SAT scores
data from Exercise 18.
a) Find a 90% confidence interval for the slope of the

true line describing the association between Math and
Verbal scores.

b) Explain in this context what your confidence interval
means.

21. *Fuel economy, part III. Consider again the data in
Exercise 17 about the gas mileage and weights of cars.
a) Create a 95% confidence interval for the average fuel

efficiency among cars weighing 2500 pounds, and ex-
plain what your interval means.

b) Create a 95% prediction interval for the gas mileage
you might get driving your new 3450-pound SUV, and
explain what that interval means.

22. *SATs again. Consider the high school SAT scores data
from Exercise 18 once more.
a) Find a 90% confidence interval for the mean SAT-

Math score for all students with an SAT-Verbal score
of 500.

b) Find a 90% prediction interval for the Math score of
the senior class president if you know she scored 710
on the Verbal section.

10

15

20

5

Residuals

# 
of

 S
tu

de
nt

s

–80 20 120–180 220

100

0

200

–100

R
es

id
ua

ls

525 600450 675
Predicted

676 CHAPTER 27    Inferences for Regression

T

T

T

T

T

BOCK_C27_0321570448 pp3.qxd  11/29/08  6:55 PM  Page 676



23. Cereal. A healthy cereal should be low in both calories
and sodium. Data for 77 cereals were examined and judged
acceptable for inference. The 77 cereals had between 50 and
160 calories per serving and between 0 and 320 mg of
sodium per serving. Here’s the regression analysis:

Dependent variable is: Sodium
R-squared 5 9.0%
s 5 80.49 with 77 2 2 5 75 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 21.4143 51.47 0.416 0.6786
Calories 1.29357 0.4738 2.73 0.0079

a) Is there an association between the number of calories
and the sodium content of cereals? Explain.

b) Do you think this association is strong enough to be
useful? Explain.

24. Brain size. Does your IQ depend on the size of your
brain? A group of female college students took a test that
measured their verbal IQs and also underwent an MRI
scan to measure the size of their brains (in 1000s of pix-
els). The scatterplot and regression analysis are shown,
and the assumptions for inference were satisfied.

Dependent variable is: IQ_V erbal
R-squared 5 6.5%

Variable Coefficient SE(Coeff)
Intercept 24.1835 76.38
Size 0.098842 0.0884

a) Test an appropriate hypothesis about the association
between brain size and IQ.

b) State your conclusion about the strength of this 
association.

25. Another bowl. Further analysis of the data for the
breakfast cereals in Exercise 23 looked for an association
between Fiber content and Calories by attempting to con-
struct a linear model. Here are several graphs. Which of
the assumptions for inference are violated? Explain.
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26. Winter. The output shows an attempt to model the as-
sociation between average January Temperature (in degrees
Fahrenheit) and Latitude (in degrees north of the equator)
for 59 U.S. cities. Which of the assumptions for inference
do you think are violated? Explain.
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27. Acid rain. Biologists studying the effects of acid rain on
wildlife collected data from 163 streams in the Adiron-
dack Mountains. They recorded the pH (acidity) of the
water and the BCI, a measure of biological diversity.
Here’s a scatterplot of BCI against pH:

And here is part of the regression analysis:

Dependent variable is: BCI
R-squared 5 27.1%
s 5 140.4 with 163 2 2 5 161 degrees of freedom

Variable Coefficient SE(Coeff)
Intercept 2733.37 187.9
pH 2197.694 25.57

a) State the null and alternative hypotheses under 
investigation.

b) Assuming that the assumptions for regression infer-
ence are reasonable, find the t- and P-values.

c) State your conclusion.

28. El Niño. Concern over the weather associated with El
Niño has increased interest in the possibility that the cli-
mate on earth is getting warmer. The most common the-
ory relates an increase in atmospheric levels of carbon
dioxide (CO2), a greenhouse gas, to increases in tempera-
ture. Here is part of a regression analysis of the mean 
annual CO2 concentration in the atmosphere, measured
in parts per million (ppm), at the top of Mauna Loa in
Hawaii and the mean annual air temperature over both
land and sea across the globe, in degrees Celsius. The
scatterplots and residuals plots indicated that the data
were appropriate for inference.

Dependent variable is: T emp
R-squared 5 33.4%
s 5 0.0809 with 37 2 2 5 35 degrees of freedom

Variable Coefficient SE(Coeff)
Intercept 15.3066 0.3139
CO2 0.004 0.0009

a) Write the equation of the regression line.
b) Is there evidence of an association between CO2 level

and global temperature?
c) Do you think predictions made by this regression will

be very accurate? Explain.

29. Ozone. The Environmental Protection Agency is exam-
ining the relationship between the ozone level (in parts
per million) and the population (in millions) of U.S. cities.
Part of the regression analysis is shown.
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Dependent variable is: Ozone
R-squared 5 84.4%
s 5 5.454 with 16 2 2 5 14 df

Variable Coefficient SE(Coeff)
Intercept 18.892 2.395
Pop 6.650 1.910

a) We suspect that the greater the population of a city,
the higher its ozone level. Is the relationship signifi-
cant? Assuming the conditions for inference are
satisfied, test an appropriate hypothesis and state
your conclusion in context.

b) Do you think that the population of a city is a useful
predictor of ozone level? Use the values of both 
and s in your explanation.

30. Sales and profits. A business analyst was interested in
the relationship between a company’s sales and its prof-
its. She collected data (in millions of dollars) from a ran-
dom sample of Fortune 500 companies and created the 
regression analysis and summary statistics shown. The
assumptions for regression inference appeared to be 
satisfied.

Profits Sales Dependent variable is: Profits
Count 79 79 R-squared 5 66.2% s 5 466.2

Mean 209.839 4178.29 Variable Coefficient SE(Coeff)
Variance 635,172 49,163,000 Intercept 2176.644 61.16

Std Dev 796.977 7011.63 Sales 0.092498 0.0075

a) Is there a significant association between sales and
profits? Test an appropriate hypothesis and state your
conclusion in context.

b) Do you think that a company’s sales serve as a useful
predictor of its profits? Use the values of both R2 and s
in your explanation.

31. Ozone, again. Consider again the relationship between
the population and ozone level of U.S. cities that you ana-
lyzed in Exercise 29.
a) Give a 90% confidence interval for the approximate in-

crease in ozone level associated with each additional
million city inhabitants.

*b) For the cities studied, the mean population was 1.7
million people. The population of Boston is approxi-
mately 0.6 million people. Predict the mean ozone
level for cities of that size with an interval in which
you have 90% confidence.

32. More sales and profits. Consider again the relation-
ship between the sales and profits of Fortune 500 compa-
nies that you analyzed in Exercise 30.
a) Find a 95% confidence interval for the slope of the 

regression line. Interpret your interval in context.
*b) Last year the drug manufacturer Eli Lilly, Inc., re-

ported gross sales of $9 billion (that’s $9,000 million).
Create a 95% prediction interval for the company’s
profits, and interpret your interval in context.

33. Start the car! In October 2002, Consumer Reports listed
the price (in dollars) and power (in cold cranking amps)
of auto batteries. We want to know if more expensive bat-
teries are generally better in terms of starting power. Here
are several software displays:

R2
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Dependent variable is: Power
R-squared 5 25.2%
s 5 116.0 with 33 2 2 5 31 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 384.594 93.55 4.11 0.0003
Cost 4.14649 1.282 3.23 0.0029

a) How many batteries were tested?
b) Are the conditions for inference satisfied? Explain.
c) Is there evidence of an association between the cost

and cranking power of auto batteries? Test an appro-
priate hypothesis and state your conclusion.

d) Is the association strong? Explain.
e) What is the equation of the regression line?
f) Create a 90% confidence interval for the slope of the

true line.
g) Interpret your interval in this context.

34. Crawling. Researchers at the University of Denver In-
fant Study Center wondered whether temperature might
influence the age at which babies learn to crawl. Perhaps
the extra clothing that babies wear in cold weather
would restrict movement and delay the age at which
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they started crawling. Data were collected on 208 boys
and 206 girls. Parents reported the month of the baby’s
birth and the age (in weeks) at which their child first
crawled. The table gives the average Temperature (°F)
when the babies were 6 months old and average Crawling
Age (in weeks) for each month of the year. Make the plots
and compute the analyses necessary to answer the fol-
lowing questions.

Exercises 679

a) Would this association appear to be weaker, stronger,
or the same if data had been plotted for individual
babies instead of using monthly averages? Explain.

b) Is there evidence of an association between Temperature
and Crawling Age? Test an appropriate hypothesis 
and state your conclusion. Don’t forget to check the
assumptions.

c) Create and interpret a 95% confidence interval for the
slope of the true relationship.

35. Body fat. Do the data shown in the table below indicate
an association between Waist size and %Body Fat?
a) Test an appropriate hypothesis and state your 

conclusion.
*b) Give a 95% confidence interval for the mean %Body

Fat found in people with 40-inch Waists.

Birth Month
6-Month

Temperature
Average 

Crawling Age

Jan. 66 29.84
Feb. 73 30.52
Mar. 72 29.70
April 63 31.84
May 52 28.58
June 39 31.44
July 33 33.64
Aug. 30 32.82
Sept. 33 33.83
Oct. 37 33.35
Nov. 48 33.38
Dec. 57 32.32

Waist 
(in.)

Weight 
(lb)

Body Fat 
(%)

Waist 
(in.)

Weight 
(lb)

Body Fat 
(%)

32 175 6 33 188 10
36 181 21 40 240 20
38 200 15 36 175 22
33 159 6 32 168 9
39 196 22 44 246 38
40 192 31 33 160 10
41 205 32 41 215 27
35 173 21 34 159 12
38 187 25 34 146 10
38 188 30 44 219 28
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36. Body fat, again. Use the data from Exercise 35 to ex-
amine the association between Weight and %Body Fat.
a) Find a 90% confidence interval for the slope of the re-

gression line of %Body Fat on Weight.
b) Interpret your interval in context.
*c) Give a 95% prediction interval for the %Body Fat of an

individual who weighs 165 pounds.

37. Grades. The data set below shows midterm scores
from an Introductory Statistics course.

a) Fit a model predicting the second midterm score from
the first.

b) Comment on the model you found, including a dis-
cussion of the assumptions and conditions for
regression. Is the coefficient for the slope statistically
significant?

c) A student comments that because the P-value for the
slope is very small, Midterm 2 is very well predicted
from Midterm 1. So, he reasons, next term the profes-
sor can give just one midterm. What do you think?

38. Grades? The professor teaching the Introductory Statis-
tics class discussed in Exercise 37 wonders whether per-
formance on homework can accurately predict midterm
scores.
a) To investigate it, she fits a regression of the sum of the

two midterms scores on homework scores. Fit the re-
gression model.

b) Comment on the model including a discussion of the
assumptions and conditions for regression. Is the coef-
ficient for the slope “statistically significant”?

c) Do you think she can accurately judge a student’s per-
formance without giving the midterms? Explain.

39. Strike two. Remember the Little League instructional
video discussed in Chapter 25? Ads claimed it would
improve the performances of Little League pitchers. To
test this claim, 20 Little Leaguers threw 50 pitches each,

680 CHAPTER 27    Inferences for Regression

First Name Midterm 1 Midterm 2 Homework

Timothy 82 30 61
Karen 96 68 72
Verena 57 82 69
Jonathan 89 92 84
Elizabeth 88 86 84
Patrick 93 81 71
Julia 90 83 79
Thomas 83 21 51
Marshall 59 62 58
Justin 89 57 79
Alexandra 83 86 78
Christopher 95 75 77
Justin 81 66 66
Miguel 86 63 74
Brian 81 86 76
Gregory 81 87 75
Kristina 98 96 84
Timothy 50 27 20
Jason 91 83 71
Whitney 87 89 85
Alexis 90 91 68
Nicholas 95 82 68
Amandeep 91 37 54
Irena 93 81 82
Yvon 88 66 82
Sara 99 90 77
Annie 89 92 68
Benjamin 87 62 72
David 92 66 78
Josef 62 43 56
Rebecca 93 87 80
Joshua 95 93 87
Ian 93 65 66
Katharine 92 98 77
Emily 91 95 83
Brian 92 80 82
Shad 61 58 65
Michael 55 65 51
Israel 76 88 67
Iris 63 62 67

Mark 89 66 72
Peter 91 42 66
Catherine 90 85 78
Christina 75 62 72
Enrique 75 46 72
Sarah 91 65 77
Thomas 84 70 70
Sonya 94 92 81
Michael 93 78 72
Wesley 91 58 66
Mark 91 61 79
Adam 89 86 62
Jared 98 92 83
Michael 96 51 83
Kathryn 95 95 87
Nicole 98 89 77
Wayne 89 79 44
Elizabeth 93 89 73
John 74 64 72
Valentin 97 96 80
David 94 90 88
Marc 81 89 62
Samuel 94 85 76
Brooke 92 90 86

First Name Midterm 1 Midterm 2 Homework
T
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and we recorded the number of strikes. After the players
participated in the training program, we repeated the
test. The table shows the number of strikes each player
threw before and after the training. A test of paired differ-
ences failed to show that this training improves ability to
throw strikes. Is there any evidence that the effectiveness
of the video (After – Before) depends on the player’s initial
ability to throw strikes (Before)? Test an appropriate hy-
pothesis and state your conclusion. Propose an explana-
tion for what you find.

a) State what you want to know, identify the variables,
and give the appropriate hypotheses.

b) Check the assumptions and conditions.
c) If the conditions are met, complete the analysis.

41. Education and mortality. The software output below
is based on the mortality rate (deaths per 100,000 people)
and the education level (average number of years in
school) for 58 U.S. cities.

Variable Count Mean StdDev
Mor tality 58 942.501 61.8490
Education 58 11.0328 0.793480

Dependent variable is: Mor tality
R-squared 5 41.0%
s 5 47.92 with 58 2 2 5 56 degrees of freedom

Variable Coefficient SE(Coeff)
Intercept 1493.26 88.48
Education 249.9202 8.000

a) Comment on the assumptions for inference.
b) Is there evidence of a strong association between the

level of Education in a city and the Mortality rate? Test
an appropriate hypothesis and state your conclusion.
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Exercises 681

40. All the efficiency money can buy. A sample of 84
model-2004 cars from an online information service was
examined to see how fuel efficiency (as highway mpg) re-
lates to the cost (Manufacturer’s Suggested Retail Price in
dollars) of cars. Here are displays and computer output:

Dependent variable is: Highway MPG
R squared 5 30.1%
s 5 5.298 with 84 2 2 5 82 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Constant 33.0581 1.299 25.5 #0.0001
MSRP 22.16543e-4 0.0000 25.95 #0.0001
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28 35 33 33
29 36 33 35
30 32 34 32
32 28 34 30
32 30 34 33
32 31 35 34
32 32 36 37
32 34 36 33
32 35 37 35
33 36 37 32

T

T

BOCK_C27_0321570448 pp3.qxd  11/29/08  6:55 PM  Page 681



c) Can we conclude that getting more education is likely
(on average) to prolong your life? Why or why not?

d) Find a 95% confidence interval for the slope of the
true relationship.

e) Explain what your interval means.
*f) Find a 95% confidence interval for the average

Mortality rate in cities where the adult population
completed an average of 12 years of school.

42. Property assessments. The software outputs below
provide information about the Size (in square feet) of 
18 homes in Ithaca, New York, and the city’s assessed
Value of those homes.

Variable Count Mean StdDev Range
Size 18 2003.39 264.727 890
Value 18 60946.7 5527.62 19710

Dependent variable is: V alue
R-squared 5 32.5%
s 5 4682 with 18 2 2 5 16 degrees of freedom

Variable Coefficient SE(Coeff)
Intercept 37108.8 8664
Size 11.8987 4.290
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a) Explain why inference for linear regression is appro-
priate with these data.

b) Is there a significant association between the Size of a
home and its assessed Value? Test an appropriate hy-
pothesis and state your conclusion.

c) What percentage of the variability in assessed Value is
explained by this regression?

d) Give a 90% confidence interval for the slope of the
true regression line, and explain its meaning in the
proper context.

e) From this analysis, can we conclude that adding a
room to your house will increase its assessed Value?
Why or why not?

*f) The owner of a home measuring 2100 square feet files
an appeal, claiming that the $70,200 assessed Value is
too high. Do you agree? Explain your reasoning.
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JUST CHECKING
Answers

1. A high t-ratio of 3.27 indicates that the slope is differ-
ent from zero—that is, that there is a linear relation-
ship between height and mouth size. The small 
P-value says that a slope this large would be very 
unlikely to occur by chance if, in fact, there was no
linear relationship between the variables.

2. Not really. The for this regression is only 15.3%, so
height doesn’t account for very much of the variabil-
ity in mouth size.

3. The value of s tells the standard deviation of the
residuals. Mouth sizes have a mean of 60.3 cubic cen-
timeters. A standard deviation of 15.7 in the residuals
indicates that the errors made by this regression
model can be quite large relative to what we are esti-
mating. Errors of 15 to 30 cubic centimeters would be
common.

R2

T
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Review of Part VII 683

Quick Review
With these last two chapters, you have added important ana-
lytical tools to your ways of looking at data. Here’s a brief
summary of those key concepts and skills, as well as an
overview of statistical inference:

u Inferences about distributions of counts use chi-square
models.
• To see if an observed distribution is consistent with a

proposed model, use a goodness-of-fit test.
• To see if two or more observed distributions could have

arisen from populations with the same model, use a test
of homogeneity.

u Inference about association between two variables tests
the hypothesis that it is plausible to consider the variables
independent.
• If the variables are categorical, display the data in a

contingency table and use a chi-square test of
independence.

• If the variables are quantitative, display them with a
scatterplot. You may use a linear regression t-test if
there appears to be a linear association for which the
residuals are random, consistent in terms of spread, and
approximately Normal.

u You can now use statistical inference to answer questions
about means, proportions, distributions, and associations.
• No inference procedure is valid unless the underlying

assumptions are true. Always check the conditions be-
fore proceeding. Many of those checks should be made
by examining a graph.

• You can make inferences about a single proportion or
the difference of two proportions using Normal models.

• You can make inferences about one mean, the difference
of two independent means, or the mean of paired differ-
ences using t-models.

• You can make inferences about distributions using chi-
square models.

• You can make inferences about associations between
categorical variables using chi-square models.

• You can make inferences about linear associations be-
tween quantitative variables using t-models.

If you look back at where we’ve been in this book, you’ll see
that statistical inference relies on almost everything we’ve
seen. In Chapters 12 and 13 we learned techniques of collect-
ing data using randomization—that’s what makes inference
possible at all. In Chapters 3, 4, and 7 we learned to plot our
data and to look for the patterns and relationships we use to
check the conditions that allow inference. In Chapters 3, 5,
and 8 we learned about the summary statistics we use to do
the mechanics of inference. We use our knowledge of random-
ness and probability from Chapters 11, 14, and 15 to help us
think clearly about uncertainty, and the probability models of
Chapters 6, 16, and 17 to measure our uncertainty precisely.
Ultimately, the Central Limit Theorem of Chapter 18 makes all
of inference possible.

Remember (have we said this often enough yet?): Never use
any inference procedure without first checking the assump-
tions and conditions. On the next page we summarize the
new types of inference procedures, the corresponding formu-
las, and the assumptions and conditions. You’ll find complete
summaries of all our inference procedures inside the back
cover of the book. Have a look. Then you’ll be ready for more
opportunities to practice using these concepts and skills. . . .

VII
PA R T

REVIEW OF PART VII

Inference When Variables Are Related
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Assumptions for Inference And the Conditions That Support or Override Them

Distributions/Association (x2)
• Goodness-of-fit (df 5 # of cells 2 1; one variable, one sample compared with population model)

1. Data are counts. 1. (Are they?)
2. Data in sample are independent. 2. SRS and  n , 10%  of the population.
3. Sample is sufficiently large. 3. All expected counts $ 5.

• Homogeneity [df 5 (r 2 1)(c 2 1); samples from many populations compared on one variable]
1. Data are counts. 1. (Are they?)
2. Data in groups are independent. 2. SRSs and  n , 10%  OR random allocation.
3. Groups are sufficiently large. 3. All expected counts $5.

• Independence [df 5 (r 2 1)(c 2 1); sample from one population classified on two variables]
1. Data are counts. 1. (Are they?)
2. Data are independent. 2. SRSs and  n , 10%  of the population.
3. Sample is sufficiently large. 3. All expected counts $ 5.

Regression (t, df 5 n 2 2)
• Association between two quantitative variables (b 5 0?)

1. Form of relationship is linear. 1. Scatterplot looks approximately linear.
2. Errors are independent. 2. No apparent pattern in residuals plot.
3. Variability of errors is constant. 3. Residuals plot has consistent spread.
4. Errors have a Normal model. 4. Histogram of residuals is approximately unimodal and

symmetric or Normal probability plot reasonably
straight.*

(*less critical as n increases) 

Quick Guide to Inference

Think Show Tell?

One 
Inference group 

about? or two? Procedure Model Parameter Estimate SE Chapter

Distributions

One Goodness- x2

(one categorical
sample of-Fit df 5 cells 2 1

variable)
Homogeneity

x2 Test

Independence
(two One Independence

categorical sample x2 Test
variables)

Linear Regression 
t-Test or Confidence b1 b1

Interval for b

Interval for m
n

m
n

ŷ
n
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n

y
n
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n

Many
independent
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x2
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(two 

quantitative
variables)

One
sample Confidence
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t
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Review Exercises 685

REVIEW EXERCISES

1. Genetics. Two human traits controlled by a single gene
are the ability to roll one’s tongue and whether one’s ear
lobes are free or attached to the neck. Genetic theory says
that people will have neither, one, or both of these traits
in the ratio 1:3:3:9 (1 attached, noncurling; 3 attached,
curling; 3 free, noncurling; 9 free, curling). An Introduc-
tory Biology class of 122 students collected the data
shown. Are they consistent with the genetic theory? Test
an appropriate hypothesis and state your conclusion.

a) Is there an association between the hardness of the
water and the mortality rate? Write the appropriate
hypothesis.

b) Assuming the assumptions for regression inference
are met, what do you conclude?

c) Create a 95% confidence interval for the slope of the
true line relating calcium concentration and mortality.

d) Interpret your interval in context.

4. Mutual funds. In March 2002, Consumer Reports listed
the rate of return for several large-cap mutual funds over
the previous 3-year and 5-year periods. (“Large cap”
refers to companies worth over $10 billion.)
a) Create a 95% confidence interval for the difference in

rate of return for the 3- and 5-year periods covered
by these data. Clearly explain what your interval
means.

b) It’s common for advertisements to carry the dis-
claimer “Past returns may not be indicative of future
performance,” but do these data indicate that there
was an association between 3-year and 5-year rates 
of return?
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2. Tableware. Nambe Mills manufactures plates, bowls,
and other tableware made from an alloy of several met-
als. Each item must go through several steps, including
polishing. To better understand the production process
and its impact on pricing, the company checked the pol-
ishing time (in minutes) and the retail price (in US$) of
these items. The regression analysis is shown below. The
scatterplot showed a linear pattern, and residuals were
deemed suitable for inference.

Dependent variable is: Price
R-squared 5 84.5%
s 5 20.50 with 59 2 2 5 57 degrees of freedom

Variable Coefficient SE(Coeff)
Intercept 22.89054 5.730
Time 2.49244 0.1416

a) How many different products were included in this
analysis?

b) What fraction of the variation in retail price is ex-
plained by the polishing time?

c) Create a 95% confidence interval for the slope of this
relationship.

d) Interpret your interval in this context.

3. Hard water. In an investigation of environmental
causes of disease, data were collected on the annual mor-
tality rate (deaths per 100,000) for males in 61 large towns
in England and Wales. In addition, the water hardness
was recorded as the calcium concentration (parts per mil-
lion, or ppm) in the drinking water. Here are the scatter-
plot and regression analysis of the relationship between
mortality and calcium concentration.

Dependent variable is: mor tality
R-squared 5 43%
s 5 143.0 with 61 2 2 5 59 degrees of freedom

Variable Coefficient SE(Coeff)
Intercept 1676 29.30
calcium 23.23 0.48

Trait

Attached, 
noncurling

Attached,
curling

Free, 
noncurling

Free, 
curling

Count 10 22 31 59

Annualized Returns (%)

Fund Name 3-year 5-year

Ameristock 7.9 17.1
Clipper 14.1 18.2
Credit Suisse Strategic Value 5.5 11.5
Dodge & Cox Stock 15.2 15.7
Excelsior Value 13.1 16.4
Harbor Large Cap Value 6.3 11.5
ICAP Discretionary Equity 6.6 11.4
ICAP Equity 7.6 12.4
Neuberger Berman Focus 9.8 13.2
PBHG Large Cap Value 10.7 18.1
Pelican 7.7 12.1
Price Equity Income 6.1 10.9
USAA Cornerstone Strategy 2.5 4.9
Vanguard Equity Income 3.5 11.3
Vanguard Windsor 11.0 11.0

T

T

T
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5. Resume fraud. In 2002 the Veritas Software company
found out that its chief financial officer did not actually
have the MBA he had listed on his resume. They fired
him, and the value of the company’s stock dropped 19%.
Kroll, Inc., a firm that specializes in investigating such
matters, said that they believe as many as 25% of back-
ground checks might reveal false information. How many
such random checks would they have to do to estimate
the true percentage of people who misrepresent their
backgrounds to within with 98% confidence?

6. Paper airplanes. In preparation for a regional paper
airplane competition, a student tried out her latest de-
sign. The distances her plane traveled (in feet) in 11 trial
flights are given here. (The world record is an astounding
193.01 feet!) The data were 62, 52, 68, 23, 34, 45, 27, 42, 83,
56, and 40 feet. Here are some summaries:

Count 11
Mean 48.3636
Median 45
StdDev 18.0846
StdErr 5.45273
IntQRange 25
25th %tile 35.5000
75th %tile 60.5000

a) Construct a 95% confidence interval for the true 
distance.

b) Based on your confidence interval, is it plausible that
the mean distance is 40 ft? Explain.

c) How would a 99% confidence interval for the true dis-
tance differ from your answer in part a? Explain
briefly, without actually calculating a new interval.

d) How large a sample size would the student need to
get a confidence interval half as wide as the one you
got in part a, at the same confidence level?

7. Back to Montana. The respondents to the Montana
poll described in Exercise 29 in Chapter 26 were also 
classified by income level: low (under $20,000), middle
($20,000–$35,000), or high (over $35,000). Is there any evi-
dence that party enrollment there is associated with in-
come? Test an appropriate hypothesis about this table,
and state your conclusions.

20 60

2

4

6

Distance (ft)

;5%

8. Wild horses. Large herds of wild horses can become a
problem on some federal lands in the West. Researchers
hoping to improve the management of these herds col-
lected data to see if they could predict the number of
foals that would be born based on the size of the current
herd. Their attempt to model this herd growth is summa-
rized in the output shown.

Variable Count Mean StdDev
Adults 38 110.237 71.1809
Foals 38 15.3947 11.9945

Dependent variable is: Foals
R-squared 5 83.5%
s 5 4.941 with 38 2 2 5 36 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 21.57835 1.492 21.06 0.2970
Adults 0.153969 0.0114 13.5 # 0.0001

a) How many herds of wild horses were studied?
b) Are the conditions necessary for inference satisfied?

Explain.
c) Create a 95% confidence interval for the slope of this

relationship.
d) Explain in this context what that slope means.
e) Suppose that a new herd with 80 adult horses is lo-

cated. Estimate, with a 90% prediction interval, the
number of foals that may be born.
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Democrat Republican Independent

Low 30 16 12

Middle 28 24 22

High 26 38 6

T

T

T
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9. Lefties and music. In an experiment to see if left- and
right-handed people have different abilities in music,
subjects heard a tone and were then asked to identify
which of several other tones matched the first. Of 76
right-handed subjects, 38 were successful in completing
this test, compared with 33 of 53 lefties. Is this strong 
evidence of a difference in musical abilities based on
handedness?

10. AP Statistics scores. In 2001, more than 41,000 Statis-
tics students nationwide took the Advanced Placement
Examination in Statistics. The national distribution of
scores and the results at Ithaca High School are shown in
the table.

b) Is there a strong association between the pollsters’
predictions and the outcomes of the elections? Test an
appropriate hypothesis and state your conclusions.

12. Twins. In 2000 The Journal of the American Medical Associ-
ation published a study that examined a sample of preg-
nancies that resulted in the birth of twins. Births were clas-
sified as preterm with intervention (induced labor or
cesarean), preterm without such procedures, or term or
postterm. Researchers also classified the pregnancies by
the level of prenatal medical care the mother received (in-
adequate, adequate, or intensive). The data, from the years
1995–1997, are summarized in the table below. Figures are
in thousands of births. (JAMA 284 [2000]: 335–341)

Review Exercises 687

a) Is the distribution of scores at this high school signifi-
cantly different from the national results?

b) Was there a significant different between the perform-
ances of boys and girls at this school?

11. Polling. How accurate are pollsters in predicting the
outcomes of congressional elections? The table shows the
actual number of Democratic party seats in the House of
Representatives and the number predicted by the Gallup
organization for nonpresidential election years between
World War II and 1998.
a) Is there a significant difference between the number of

seats predicted for the Democrats and the number
they actually held? Test an appropriate hypothesis
and state your conclusions.

Is there evidence of an association between the duration
of the pregnancy and the level of care received by the
mother?

13. Twins, again. After
reading of the JAMA
study in Exercise 12, a
large city hospital exam-
ined their records of twin
births for several years
and found the data sum-
marized in the table below. Is there evidence that the way
the hospital deals with pregnancies involving twins may
have changed?

14. Preemies. Do the effects of being born prematurely
linger into adulthood? Researchers examined 242 
Cleveland-area children born prematurely between 1977
and 1979, and compared them with 233 children of nor-
mal birth weight; 24 of the “preemies” and 12 of the other
children were described as being of “subnormal height”
as adults. Is this evidence that babies born with a very low
birth weight are more likely to be smaller than normal

Ithaca High School

Score
National 

Distribution Number of boys Number of girls

5 11.5% 13 13
4 23.4% 21 15
3 24.9% 6 13
2 19.1% 7 3
1 21.1% 4 2

Democratic Party Congressmen

Year Predicted Actual

1946 190 188
1950 235 234
1954 232 232
1958 272 283
1962 259 258
1966 247 248
1970 260 255
1974 292 291
1978 277 277
1982 275 269
1986 264 258
1990 260 267
1994 201 204
1998 211 211

TWIN BIRTHS, 1995–1997 (IN THOUSANDS)
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Preterm 
(induced or 
Cesarean)

Preterm
(without

procedures)
Term or

postterm Total

Intensive 18 15 28 61
Adequate 46 43 65 154
Inadequate 12 13 38 63

Total 76 71 131 278

1990 1995 2000
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Preterm 
(induced or cesarean) 11 13 19

Preterm 
(without procedures) 13 14 18
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adults? (“Outcomes in Young Adulthood for Very-Low-
Birth-Weight Infants,” New England Journal of Medicine,
346, no. 3 [January 2002])

15. LA rainfall. The Los Angeles Almanac Web site reports
recent annual rainfall (in inches), as shown in the table.
a) Create a 90% confidence interval for the mean annual

rainfall in LA.
b) If you wanted to estimate the mean annual rainfall

with a margin of error of only 2 inches, how many
years’ data would you need?

c) Do these data suggest any change in annual rainfall as
time passes? Check for an association between rainfall
and year.

The Statistics students analyzing the data were asked to
study the relationship between eye and hair color.
a) One group of students produced the output shown

below. What kind of analysis is this? What are the null
and alternative hypotheses? Is the analysis appropri-
ate? If so, summarize the findings, being sure to
include any assumptions you’ve made and/or limita-
tions to the analysis. If it’s not an appropriate analysis,
state explicitly why not.

Dependent variable is: Eyes
R-squared 5 3.7%
s 5 1.112 with 1021 2 2 5 1019 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 1.99541 0.08346 23.9 # 0.0001
Hair 0.211809 0.03372 0.28 # 0.0001

b) A second group of students used the same data to pro-
duce the output shown below. The table displays counts
and standardized residuals in each cell. What kind of
analysis is this? What are the null and alternative hy-
potheses? Is the analysis appropriate? If so, summarize
the findings, being sure to include any assumptions
you’ve made and/or limitations to the analysis. If it’s
not an appropriate analysis, state explicitly why not.

5

4

3

2

1

1 2 3 4 5
Hair (color)

Ey
es

 (c
ol

or
)
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16. Age and party. The Gallup Poll conducted a represen-
tative telephone survey during the first quarter of 1999.
Among the reported results was the following table con-
cerning the preferred political party affiliation of respon-
dents and their ages. Is there evidence of age-based dif-
ferences in party affiliation in the United States?

a) Will you conduct a test of homogeneity or independ-
ence? Why?

b) Test an appropriate hypothesis.
c) State your conclusion, including an analysis of differ-

ences you find (if any).

17. Eye and hair color. A survey of 1021 school-age chil-
dren was conducted by randomly selecting children from
several large urban elementary schools. Two of the ques-
tions concerned eye and hair color. In the survey, the fol-
lowing codes were used:

a
(Observed - Expected)2

Expected
= 223.6 P-value 60.00001

Year Rain (in.) Year Rain (in.)

1980 8.96 1991 21.00
1981 10.71 1992 27.36
1982 31.28 1993 8.14
1983 10.43 1994 24.35
1984 12.82 1995 12.46
1985 17.86 1996 12.40
1986 7.66 1997 31.01
1987 12.48 1998 9.09
1988 8.08 1999 11.57
1989 7.35 2000 17.94
1990 11.99 2001 4.42

Repub-
lican

Demo-
cratic

Inde-
pendent Total

A
ge

18–29 241 351 409 1001
30–49 299 330 370 999
50–64 282 341 375 998
651 279 382 343 1004

Total 1101 1404 1497 4002

Hair Color Eye Color

1 5 Blond 1 5 Blue
2 5 Brown 2 5 Green
3 5 Black 3 5 Brown
4 5 Red 4 5 Grey
5 5 Other 5 5 Other

H
ai

r 
C

o
lo

r

Eye Color

1 2 3 4 5

1 143 30 58 15 12
7.67540 0.41799 25.88169 20.63925 20.31451

2 90 45 215 30 20
22.57141 0.29019 1.72235 0.49189 20.08246

3 28 15 190 10 10
25.39425 22.34780 6.28154 21.76376 20.80382

4 30 15 10 10 5
2.06116 2.71589 24.05540 2.37402 0.75993

5 10 5 15 5 5
20.52195 0.33262 20.94192 1.36326 2.07578

T

T

T
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18. Depression and the Internet. The September 1998 
issue of the American Psychologist published an article re-
porting on an experiment examining “the social and 
psychological impact of the Internet on 169 people in 
73 households during their first 1 to 2 years online.” In the
experiment, a sample of households was offered free In-
ternet access for one or two years in return for allowing
their time and activity online to be tracked. The members
of the households who participated in the study were also
given a battery of tests at the beginning and again at the
end of the study. One of the tests measured the subjects’
levels of depression on a 4-point scale, with higher num-
bers meaning the person was more depressed. Internet us-
age was measured in average number of hours per week.
The regression analysis examines the association between
the subjects’ depression levels and the amounts of Internet
use. The conditions for inference were satisfied.

Dependent variable is: Depression After
R-squared 5 4.6%
s 5 0.4563 with 162 2 2 5 160 degrees of freedom

Variable Coefficient SE(coeff) t-ratio Prob
Constant 0.565485 0.0399 14.2 # 0.0001
Intr_use 0.019948 0.0072 2.76 0.0064

a) Do these data indicate that there is an association be-
tween Internet use and depression? Test an appropriate
hypothesis and state your conclusion clearly.

b) One conclusion of the study was that those who spent
more time online tended to be more depressed at the
end of the experiment. News headlines said that too
much time on the Internet can lead to depression.
Does the study support this conclusion? Explain.

c) As noted, the subjects’ depression levels were tested at
both the beginning and the end of this study; higher
scores indicated the person was more depressed. Re-
sults are summarized in the table. Is there evidence
that the depression level of the subjects changed dur-
ing this study?

Depression Level
162 subjects

Variable Mean StdDev
DeprBfore 0.730370 0.487817
DeprAfter 0.611914 0.461932
Dif ference 20.118457 0.552417

19. Pregnancy. In 1998 a San Diego reproductive clinic re-
ported 42 live births to 157 women under the age of 38,
but only 7 successes for 89 clients aged 38 and older. Is
this evidence of a difference in the effectiveness of the
clinic’s methods for older women?
a) Test the appropriate hypotheses, using the two-

proportion z-procedure.
b) Repeat the analysis, using an appropriate chi-square

procedure.
c) Explain how the two results are equivalent.

20. Eating in front of the TV. Roper Reports asked a 
random sample of people in 30 countries whether they
agreed with the statement “I like to nibble while reading
or watching TV.” Allowable responses were “Agree com-
pletely”, “Agree somewhat”, “Neither disagree nor

agree”, “Disagree somewhat”, “Disagree completely”,
and “I Don’t Know/No Response”. Does a person’s age
influence their response? Here are data from 3792 respon-
dents in the 2006 sample of five countries (China, India,
France, United Kingdom, and United States) for three age
groups (Teens, 30’s (30–39) and Over 60):

Review Exercises 689

a) Make an appropriate display of these data.
b) Does a person’s age seem to affect their response to

the question about nibbling?

21. Old Faithful. As you saw in an earlier chapter, Old
Faithful isn’t all that faithful. Eruptions do not occur at
uniform intervals and may vary greatly. Can we improve
our chances of predicting the time of the next eruption if
we know how long the previous eruption lasted?
a) Describe what you see in this scatterplot.

b) Write an appropriate hypothesis.
c) Here are a histogram of the residuals and the residuals

plot. Do you think the assumptions for inference are
met? Explain.
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Teen 369 540 299 175 106
30’s 272 522 325 229 170
60 + 93 207 153 154 178
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d) State a conclusion based on this regression analysis:

Dependent variable is: Inter val
R-squared 5 77.0%
s 5 6.159 with 222 2 2 5 220 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 33.9668 1.428 23.8 # 0.0001
Duration 10.3582 0.3822 27.1 # 0.0001

Variable Mean StdDev
Duration 3.57613 1.08395
Inter val 71.0090 12.7992

e) The second table shows the summary statistics for the
two variables. Create a 95% confidence interval for 
the mean length of time that will elapse following a 
2-minute eruption.

f ) You arrive at Old Faithful just as an eruption ends.
Witnesses say it lasted 4 minutes. Create a 95% predic-
tion interval for the length of time you will wait to see
the next eruption.

22. Togetherness. Are good grades in high school associ-
ated with family togetherness? A simple random sample
of 142 high-school students was asked how many meals
per week their families ate together. Their responses pro-
duced a mean of 3.78 meals per week, with a standard
deviation of 2.2. Researchers then matched these re-
sponses against the students’ grade point averages. The
scatterplot appeared to be reasonably linear, so they went
ahead with the regression analysis, seen below. No appar-
ent pattern emerged in the residuals plot.

Dependent variable: GP A
R-squared 5 11.0%
s 5 0.6682 with 142 2 2 5 140 df

Variable Coefficient SE(Coeff)
Intercept 2.7288 0.1148
Meals/wk 0.1093 0.0263

a) Is there evidence of an association? Test an appropri-
ate hypothesis and state your conclusion.

b) Do you think this association would be useful in pre-
dicting a student’s grade point average? Explain.

c) Are your answers to parts a and b contradictory? 
Explain.

23. Learning math. Developers of a new math curriculum
called “Accelerated Math” compared performances of
students taught by their system with control groups of
students in the same schools who were taught using tra-
ditional instructional methods and materials. Statistics
about pretest and posttest scores are shown in the table.
(J. Ysseldyke and S. Tardrew, Differentiating Math Instruc-
tion, Renaissance Learning, 2002)
a) Did the groups differ in average math score at the

start of this study?
b) Did the group taught using the Accelerated Math pro-

gram show a significant improvement in test scores?
c) Did the control group show a significant improvement

in test scores?
d) Were gains significantly higher for the Accelerated

Math group than for the control group?

24. Pesticides. A study published in 2002 in the journal
Environmental Health Perspectives examined the gender 
ratios of children born to workers exposed to dioxin in
Russian pesticide factories. The data covered the years
from 1961 to 1988 in the city of Ufa, Bashkortostan, Rus-
sia. Of 227 children born to workers exposed to dioxin,
only 40% were male. Overall in the city of Ufa, the pro-
portion of males was 51.2%. Is this evidence that human
exposure to dioxin may result in the birth of more girls?
(An interesting note: It appeared that paternal exposure
was most critical; 51% of babies born to mothers exposed
to the chemical were boys.)

25. Dairy sales. Peninsula Creameries sells both cottage
cheese and ice cream. The CEO recently noticed that in
months when the company sells more cottage cheese, it
seems to sell more ice cream as well. Two of his aides
were assigned to test whether this is true or not. The first
aide’s plot and analysis of sales data for the past 12
months (in millions of pounds for cottage cheese and for
ice cream) appear below.

Dependent variable is: Ice cream
R-squared 5 36.9%
s 5 8.320 with 12 2 2 5 10 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Constant 226.5306 37.68 20.704 0.4975
Cottage C ... 1.19334 0.4936 2.42 0.0362

The other aide looked at the differences in sales of ice
cream and cottage cheese for each month and created the
following output:

67.5
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72 76 80 84
Cottage Cheese (million lb)
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Instructional Method

Acc. math Control

Number of students 231 245

Pretest Mean 560.01 549.65
St. Dev 84.29 74.68

Post-test Mean 637.55 588.76
St. Dev 82.9 83.24

Individual gain Mean 77.53 39.11
St. Dev. 78.01 66.25

T
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Cottage Cheese 2 Ice Cream
Count 12
Mean 11.8000
Median 15.3500
StdDev 7.99386
IntQRange 14.3000
25th %tile 3.20000
75th %tile 17.5000

Test H0: m(CC 2 IC) 5 0 vs Ha: m(CC 2 IC) 2 0
Sample Mean 5 11.800000 t-Statistic 5 5.113 w/11 df
Prob 5 0.0003
Lower 95% bound 5 6.7209429
Upper 95% bound 5 16.879057

a) Which analysis would you use to answer the CEO’s
question? Why?

b) What would you tell the CEO?
c) Which analysis would you use to test whether the

company sells more cottage cheese or ice cream in a
typical year? Why?

d) What would you tell the CEO about this other result?
e) What assumptions are you making in the analysis you

chose in part a? What assumptions are you making in
the analysis in part c?

f ) Next month’s cottage cheese sales are 82 million
pounds. Ice cream sales are not yet available. How
much ice cream do you predict Peninsula Creameries
will sell?

g) Give a 95% confidence interval for the true slope of
the regression equation of ice cream sales by cottage
cheese sales.

h) Explain what your interval means.

26. Infliximab. In an article appearing in the journal The
Lancet in 2002, medical researchers reported on the exper-
imental use of the arthritis drug infliximab in treating
Crohn’s disease. In a trial, 573 patients were given initial
5-mg injections of the drug. Two weeks later, 335 had re-
sponded positively. These patients were then randomly
assigned to three groups. Group I received continued in-
jections of a placebo, Group II continued with 5 mg of in-
fliximab, and Group III received 10 mg of the drug. After
30 weeks, 23 of 110 Group I patients were in remission,
compared with 44 of 113 Group II and 50 of 112 Group III
patients. Do these data indicate that continued treatment
with infliximab is of value for Crohn’s disease patients
who exhibit a positive initial response to the drug?

6
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27. Weight loss. A weight loss clinic ad-
vertises that its program of diet and ex-
ercise will allow clients to lose 10
pounds in one month. A local reporter
investigating weight reduction gets per-
mission to interview a randomly se-
lected sample of clients who report the
given weight losses during their first
month in this program. Create a con-
fidence interval to test the clinic’s 
claim that the typical weight loss is 
10 pounds.

28. Education vs. income. The information below exam-
ines the median income and education level (years in
school) for several U.S. cities.

Variable Count Mean StdDev
Education 57 10.9509 0.848344
Income 57 32742.6 3618.01

Dependent variable is: Income
R-squared 5 32.9%
s 5 2991 with 57 2 2 5 55 degrees of freedom
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Pounds Lost

9.5 9.5
13 9
9 8

10 7.5
11 10
9 7
5 8
9 10.5

12.5 10.5
6 9
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Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 5970.05 5175 1.15 0.2537
Education 2444.79 471.2 5.19 # 0.0001

a) Do you think the assumptions for inference are met?
Explain.

b) Does there appear to be an association between educa-
tion and income levels in these cities?

c) Would this association appear to be weaker, stronger,
or the same if data were plotted for individual people
rather than for cities in aggregate? Explain.

d) Create and interpret a 95% confidence interval for the
slope of the true line that describes the association be-
tween income and education.

e) Predict the median income for cities where residents
spent an average of 11 years in school. Describe your
estimate with a 90% confidence interval, and interpret
that result.

29. Diet. Thirteen overweight women volunteered for a
study to determine whether eating specially prepared
crackers before a meal could help them lose weight. The
subjects were randomly assigned to eat crackers with dif-
ferent types of fiber (bran fiber, gum fiber, both, and a
control cracker). Unfortunately, some of the women de-
veloped uncomfortable bloating and upset stomachs. Re-
searchers suspected that some of the crackers might be at
fault. The contingency table of “Cracker” versus “Bloat”
shows the relationship between the four different types of
crackers and the reported bloating. The study was paid
for by the manufacturers of the gum fiber. What would
you recommend to them about the prospects for market-
ing their new diet cracker?

did not get the vocabulary list until Thursday. They also
took the quiz on Friday, after “cramming” Thursday
night. Then, when they returned to class the following
Monday, they were retested—without advance warning.
Both sets of test scores for these students are shown.
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a) On Friday, did the week-long study group have a
mean score significantly higher than that of the
overnight crammers?

b) Was there a significant difference in the percentages of
students who passed the quiz on Friday?

c) Is there any evidence that when students cram for a
test, their “learning” does not last for 3 days?

d) Use a 95% confidence interval to estimate the mean
number of words that might be forgotten by 
crammers.

e) Is there any evidence that how much students forget
depends on how much they “learned” to begin with?

30. Cramming. Students in two basic Spanish classes were
required to learn 50 new vocabulary words. One group of
45 students received the list on Monday and studied the
words all week. Statistics summarizing this group’s scores
on Friday’s quiz are given. The other group of 25 students

C
ra

ck
er

Bloat

Little/None Moderate/Severe

Bran 11 2
Gum 4 9
Combo 7 6
Control 8 4

Group 1

Fri.
Number of students 5 45
Mean 5 43.2 (of 50)
StDev 5 3.4
Students passing (score $ 40) 5 33%

Group 2

Fri. Mon. Fri. Mon.

42 36 50 47
44 44 34 34
45 46 38 31
48 38 43 40
44 40 39 41
43 38 46 32
41 37 37 36
35 31 40 31
43 32 41 32
48 37 48 39
43 41 37 31
45 32 36 41
47 44

T

T
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Selected Formulas

APPENDIX

A

Outlier Rule-of-Thumb: or

If A and B are independent, 

if X and Y are independent

Geometric:

Binomial:

SD(pN) = A
pq

n
m(pN) = ppN =

x
n

s = 1npqm = npP(x) = ¢n
x
≤  pxqn-x

s = A
q

p2m =

1
p

P(x) = qx-1p

Var(X ; Y) = Var(X) + Var(Y),E(X ; Y) = E(X) ; E(Y)
Var(aX) = a2Var(X)E(aX) = aE(X)
Var(X ; c) = Var(X)E(X ; c) = E(X) ; c
Var(X) = s2

= g (x - m)2P(x)E(X) = m = gx # P(x)

P(B ƒ A) = P(B)

P(B ƒ A) =

P(A x  B)
P(A)

P(A x  B) = P(A) * P(B ƒ A)

P(A h  B) = P(A) + P(B) - P(A x  B)

P(A) = 1 - P(AC)

where b1 =

rsy

sx
  and b0 = y - b1xyN = b0 + b1x

r =

gzxzy

n - 1

z =

y - y

s
 (data based)

z =

y - m

s
 (model based)

s = B
g (y - y)2

n - 1

y =

gy

n

y 7 Q3 + 1.5 * IQRy 6 Q1 - 1.5 * IQR
IQR = Q3 - Q1
Range = Max - Min

A-1
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Sampling distribution of :
(CLT) As n grows, the sampling distribution approaches the Normal model with

Inference:

Confidence interval for parameter statistic critical value SD(statistic)

Parameter Statistic SD(statistic) SE(statistic)

p

Pooling: For testing difference between proportions: 

For testing difference between means: 

Substitute these pooled estimates in the respective SE formulas for both
groups when assumptions and conditions are met.

Chi-square: x2
= a

(obs - exp)2

exp

sp = B
(n1 - 1)s1

2
+ (n2 - 1)s2

2

n1 + n2 - 2

pNpooled =

y1 + y2

n1 + n2

BSE2(b1) # (xn - x)2
+

s2
e

n
+ s2

eyNn*yn

BSE2(b1) # (xn - x)2
+

s2
e

n
yNn*mn

se

sx1n - 1
b1b1

se = B
©(y - yN)2

n - 2
se

sd

1n

sd

1n
dmd

B
s2

1

n1
+

s2
2

n2B
s2

1

n1
+

s2
2

n2
y1 - y2m1 - m2

s

1n

s

1n
ym

B
pN1qN1

n1
+

pN2qN2

n2B
p1q1

n1
+

p2q2

n2
pN1 - pN2p1 - p2

B
pNqN

nA
pq

n
pN

Test statistic =

Statistic - Parameter
SD(statistic)

:_=

m(y) = my  SD(y) =

s

1n

y
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Guide to Statistical Software

APPENDIX

B

Chapter 3. Displaying and Describing Categorical Data

To make a bar chart or pie chart, select the variable.
In the Plot menu, choose Bar Chart or Pie Chart.
To make a frequency table, in the Calc menu choose 
Frequency Table.

COMMENTS
These commands treat the data as categorical even if they are
numerals. If you select a quantitative variable by mistake, you’ll
see an error message warning of too many categories.

DATA DESK

First make a pivot table (Excel’s name for a frequency table).
From the Data menu, choose Pivot Table and Pivot Chart 
Report.
When you reach the Layout window, drag your variable to the
row area and drag your variable again to the data area. This
tells Excel to count the occurrences of each category.
Once you have an Excel pivot table, you can construct bar
charts and pie charts.
Click inside the Pivot Table.

Click the Pivot Table Chart Wizard button. Excel creates a bar
chart.
A longer path leads to a pie chart; see your Excel documentation.

COMMENTS
Excel uses the pivot table to specify the category names and
find counts within each category. If you already have that infor-
mation, you can proceed directly to the Chart Wizard.

EXCEL

To make a bar chart:

u Select the variable in Excel you want to work with.
u Choose the Column command from the Insert tab in the Ribbon.
u Select the appropriate chart from the drop-down dialog.

To change the bar chart into a pie chart:

u Right-click the chart and select Change Chart Type...from the
menu. The Chart type dialog opens.

u Select a pie chart type.
u Click the OK button. Excel changes your bar chart into a pie

chart.

EXCEL 2007

JMP makes a bar chart and frequency table together.
From the Analyze menu, choose Distribution.
In the Distribution dialog, drag the name of the variable into the
empty variable window beside the label “Y, Columns”; click OK.
To make a pie chart, choose Chart from the Graph menu.
In the Chart dialog, select the variable name from the Columns

list, click on the button labeled “Statistics,” and select “N” from
the drop-down menu.
Click the “Categories, X, Levels” button to assign the same vari-
able name to the X-axis.
Under Options, click on the second button—labeled “Bar
Chart”—and select “Pie” from the drop-down menu.

JMP

To make a bar chart, choose Bar Chart from the Graph menu.
Select “Counts of unique values” in the first menu, and select
“Simple” for the type of graph. Click OK.

In the Chart dialog, enter the name of the variable that you wish
to display in the box labeled “Categorical variables.” Click OK.

MINITAB

A-3
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To make a bar chart, open the Chart Builder from the Graphs
menu.
Click the Gallery tab.
Choose Bar Chart from the list of chart types.
Drag the appropriate bar chart onto the canvas.

Drag a categorical variable onto the x-axis drop zone.
Click OK.

COMMENTS
A similar path makes a pie chart by choosing Pie chart from the
list of chart types.

SPSS

The TI-Nspire Handheld does not display plots for categorical variables.

TI-NSPIRE

The TI-89 won’t do displays for categorical variables.

TI-89

To make a histogram:
u Select the variable to display.
u In the Plot menu, choose Histogram.

Chapter 4. Displaying and Summarizing Quantitative Data

To calculate summaries:
u In the Calc menu, open the summaries submenu. Options offer

separate tables, a single unified table, and other formats.

DATA DESK

Excel cannot make histograms or dotplots without a third-party
add-in.
To calculate summaries.
Click on an empty cell. Type an equal sign and choose
“Average” from the popup list of functions that appears to the
left of the text-editing box. Enter the data range in the box that
says “Number 1.” Click the OK button.
To compute the standard deviation of a column of data directly,
use the STDEV from the popup list of functions in the same
way.

COMMENTS
Excel’s Data Analysis add-in does offer something called a his-
togram, but it just makes a crude frequency table, and the Chart
Wizard cannot then create a statistically appropriate histogram.
The DDXL add-in provided on our DVD adds these and other 
capabilities to Excel.
Excel’s STDEV function should not be used for data values
larger in magnitude than 100,000 or for lists of more than a
few thousand values. It is programmed with an unstable for-
mula that can generate rounding errors when these limits are
exceeded.

EXCEL

In Excel 2007 there is another way to find some of the standard
summary statistics. For example, to compute the mean:
u Click on an empty cell.
u Go to the Formulas tab in the Ribbon. Click on the drop down

arrow next to “AutoSum” and choose “Average”.
u Enter the data range in the formula displayed in the empty box

you selected earlier.
u Press Enter. This computes the mean for the values in that range.

To compute the standard deviation:
u Click on an empty cell.
u Go to the Formulas tab in the Ribbon and click the drop down

arrow next to “AutoSum” and select “More functions...”
u In the dialog window that opens, select “STDEV” from the list of

functions and click OK. A new dialog window opens. Enter a
range of fields into the text fields and click OK.

Excel 2007 computes the standard deviation for the values in
that range and places it in the specified cell of the spreadsheet.

EXCEL 2007

To make a histogram and find summary statistics:
u Choose Distribution from the Analyze menu.
u In the Distribution dialog, drag the name of the variable that 

you wish to analyze into the empty window beside the label 
“Y, Columns.”

u Click OK. JMP computes standard summary statistics along with
displays of the variables.

JMP
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To make a histogram:
u Choose Histogram from the Graph menu.
u Select “Simple” for the type of graph and click OK.
u Enter the name of the quantitative variable you wish to display in

the box labeled “Graph variables.” Click OK.

To calculate summary statistics:
u Choose Basic statistics from the Stat menu. From the Basic

Statistics submenu, choose Display Descriptive Statistics.
u Assign variables from the variable list box to the Variables box.

MINITAB makes a Descriptive Statistics table.

MINITAB

To make a histogram in SPSS open the Chart Builder from the
Graphs menu.
u Click the Gallery tab.
u Choose Histogram from the ist of chart types.
u Drag the histogram onto the canvas.
u Drag a scale variable to the y-axis drop zone.
u Click OK.

To calculate summary statistics:
u Choose Explore from the Descriptive Statistics submenu of the

Analyze menu. In the Explore dialog, assign one or more vari-
ables from the source list to the Dependent List and click the 
OK button.

SPSS

To plot a histogram using a named list, press ` several times so
that the entire list is highlighted. Press b, 3 for Data, and
4 for Quick Graph. Then press b, 1 for Plot Type, and 3
for Histogram.

To create the plot on a full page, press c, and then 5 for
Data & Statistics. Move the cursor to “Click to add variable,”
and then press a and select the list name. Then press b, 1
for Plot Type, and 3 for Histogram.

TI-NSPIRE

To make a histogram:
u Select Ñ (Plots), then 1: Plot Setup. Select a plot and press É

to define it.
u Select plot type 4: Histogram. Use VAR-LINK to select the data list.
u Enter a number for the histogram bucket (bar) width.
u Press ∏ to complete the plot definition. Press á to display

the histogram.
u Press •Ñ to adjust the window appropriately, then press •Ö

(Graph).
To calculate summary statistics:
u To compute summary statistics, press Ü (Calc). Input the name

of the list using VAR-LINK. Press ∏.
u Use the down arrow to scroll through the output.
u To create a boxplot, press Ñ (Plots) then ∏. Select a plot

to define and press É. Select either 3: Box Plot or 4: Mod Box

Plot (to identify outliers). Select the mark type of your choice (for
outliers). Press ∏ to finish.

u Press á to display the graph.

COMMENTS
If the data are stored as a frequency table (say, with data values
in list1 and frequencies in list2), change Use Freq and Cate-
gories to YES and use VAR-LINK to select list2 as the frequency
variable on the plot definition screen.
If the data are stored as a frequency table (say, with data values
in list1 and frequencies in list2), use VAR-LINK to select list2 as
the frequency variable in 1-Var Stats.
For the plot, change Use Freq and Categories to YES and use
VAR-LINK to select list2 as the frequency variable on the plot
definition screen.

TI-89

Chapter 5. Understanding and Comparing Distributions

There are two ways to organize data when we want to compare groups. Each group can be in its own variable (or list, on
a calculator). In this form, the experiment comparing coffee cups would have four lists, one for each type of cup:

CUPPS SIGG Nissan Starbucks
6 2 12 13

6 1.5 16 7

6 2 9 7

18.5 3 23 17.5

10 0 11 10

17.5 7 20.5 15.5

11 0.5 12.5 6

6.5 6 24.5 6
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But there’s another way to think about and organize the data. What is the variable of interest (the What) in this experi-
ment? It’s the number of degrees lost by the water in each cup. And the Who is each time she tested a cup. We could gather
all the temperature values into one variable and put the names of the cups in a second variable listing the individual results,
one on each row. Now the Who is clearer—it’s an experimental run, one row of the table. Most statistics packages prefer
data on groups organized in this way.

That’s actually the way we’ve thought about the wind speed data in this chapter, treating wind speeds as one variable and
the groups (whether seasons, months, or days) as a second variable.

A-6 APPENDIX B    Guide to Statistical Software

Temperature
Container Difference

CUPPS 6
CUPPS 6
CUPPS 6

.

.

.
Nissan 2
Nissan 1.5
Nissan 2

.

.

.

Temperature 
Container Difference

SIGG 12
SIGG 16
SIGG 9

.

.

.
Starbucks 13
Starbucks 7
Starbucks 7

.

.

.

If the data are in separate variables, select the variables and
choose Boxplot side by side from the Plot menu. The boxes
will appear in the order in which the variables were selected.
If the data are a single quantitative variable and a second vari-
able holding group names, select the quantitative variable as 

Y and the group variable as X. Then choose Boxplot y by x from
the Plot menu. The boxes will appear in alphabetical order by
group name.
Data Desk offers options for assessing whether any pair of medi-
ans differ.

DATA DESK

Excel cannot make boxplots.
COMMENT
The DDXL add-on provided on the DVD adds the ability to make
boxplots to Excel.

EXCEL

Choose Fit y by x. Assign a continuous response variable to Y,
Response and a nominal group variable holding the group
names to X, Factor, and click OK. JMP will offer (among other

things) dotplots of the data. Click the red triangle and, under
Display Options, select Boxplots. Note: If the variables are of
the wrong type, the display options might not offer boxplots.

JMP

Choose Boxplot...from the Graph menu. If your data are in the
form of one quantitative variable and one group variable, choose

One Y and with Groups. If your data are in separate columns of
the worksheet, choose Multiple Y’s.

MINITAB

To make a boxplot in SPSS, open the Chart Builder from the
Graphs menu.
Click the Gallery tab.
Choose Boxplot from the list of chart types.
Drag a single or 2-D (side-by-side) boxplot onto the canvas.

Drag a scale variable to the y-axis drop zone.
To make side-by-side boxplots, drag a categorical variable to the
x-axis drop zone. 
Click OK.

SPSS

To compute summary statistics using a named list, press c, 1
for Calculator, b, 6 for Statistics, 1 for Stat Calculations, and
1 for One-Variable Statistics. Complete the dialog boxes.
To create a box plot using a named list, press ` several times so
that the entire list is highlighted. Press b, 3 for Data, and

4 for Quick Graph. Then press b, 1 for Plot Type, and 2
for Box Plot.
To create the plot on a full page, press c, and then press 5
for Data & Statistics. Move the cursor to “Click to add variable,”
and then press a and select the list name. Then press b, 1
for Plot Type, and 2 for Box Plot.

TI-NSPIRE
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For the plot, change Use Freq and Categories to YES and use
VAR-LINK to select list2 as the frequency variable on the plot
definition screen.
To create a boxplot, press Ñ (Plots), then ∏. Select a plot
to define and press É. Select either 3: Box Plot or 4: Mod Box

Plot (to identify outliers). Select the mark type of your choice
(for outliers). Press ∏ to finish.
Press á to display the graph.

TI-89

To make a “Normal Probability Plot” in Data Desk,
u Select the Variable.
u Choose Normal Prob Plot from the Plot menu.

Chapter 6. The Standard Deviation as a Ruler and the Normal Model
COMMENTS
Data Desk places the ordered data values on the vertical axis
and the Normal scores on the horizontal axis.

DATA DESK

Excel offers a “Normal probability plot” as part of the Regression
command in the Data Analysis extension, but (as of this writing)

EXCEL

To make a “Normal Quantile Plot” in JMP,
u Make a histogram using Distributions from the Analyze menu.
u Click on the drop-down menu next to the variable name.
u Choose Normal Quantile Plot from the drop-down menu.
u JMP opens the plot next to the histogram.

COMMENTS
JMP places the ordered data on the vertical axis and the Normal
scores on the horizontal axis. The vertical axis aligns with the
histogram’s axis, a useful feature.

JMP

To make a “Normal Probability Plot” in MINITAB,
u Choose Probability Plot from the Graph menu.
u Select “Single” for the type of plot. Click OK.
u Enter the name of the variable in the “Graph variables” box. 

Click OK.

COMMENTS
MINITAB places the ordered data on the horizontal axis and the
Normal scores on the vertical axis.

MINITAB

To make a Normal “P-P plot” in SPSS,
u Choose P-P from the Graphs menu.
u Select the variable to be displayed in the source list.
u Click the arrow button to move the variable into the target list.
u Click the OK button.

COMMENTS
SPSS places the ordered data on the horizontal axis and the
Normal scores on the vertical axis. You may safely ignore the
options in the P-P dialog.

SPSS

To create a normal probability plot using a named list, press `
several times so that the entire list is highlighted. Press b, 3
for Data, and 4 for Quick Graph. Then press b, 1 for Plot
Type, and 4 for Normal Probability Plot.
To create the plot on a full page, press c, and then 5 for
Data & Statistics. Move the cursor to “Click to add variable,”
and then press a and select the list name. Then press b, 1
for Plot Type, and 4 for Normal Probability Plot.

To compute the area under a normal curve, press b, 1 for
Calculator, b, 5 for Probability, 5 for Distributions, and 2
for Normal Cdf. Complete the dialog box.
To compute the value for a given percentile, press b, 1 for
Calculator, b, 5 for Probability, 5 for Distributions, 3 for
Inverse Normal. Complete the dialog box.

TI-NSPIRE

it is not a correct Normal probability plot and should not be
used.
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u To create a “Normal Prob Plot”, press Ñ and select choice 2:
Norm Prob Plot. Select a plot number and use VAR-LINK to enter
the data list. Select X or Y for the data axis. Press ∏ to calcu-
late the z-scores.

u Press Ñ and select choice 1: Plot Setup. Turn off any undesired
plots (either Ö (Clear) or Ü ( )). Press á to display the 
plot.

u To find what percent of a Normal model lies between two 
z-scores, press á (Distr). Then select 4: Normal Cdf. Enter the
lower and upper z-scores, specify mean 0 and standard deviation
1, and press ∏.

u To find the z-score for a given percentile, press á (Distr). Then
arrow down to 2: Inverse press the right arrow to see the sub

"

menu and select 1: Inverse Normal. Enter the area to the left of
the desired point, mean 0 and standard deviation 1, and press
∏.

COMMENTS
Normal models strictly go to infinity on either end, which is
1EE99 on the calculator. In practice, any “large” number will
work. For example, the percentage of the Normal model over
two standard deviations above the mean can use Lower Value
2 and Upper Value 99. To find area more than 2 standard de-
viations below the mean, use Lower Value , and Upper
value .-2

-99

TI-89

To make a scatterplot of two variables, select one variable as Y
and the other as X and choose Scatterplot from the Plot menu.
Then find the correlation by choosing Correlation from the scat-
terplot’s HyperView menu.
Alternatively, select the two variables and choose Pearson Product-
Moment from the Correlations submenu of the Calc menu.

Chapter 7. Scatterplots, Association, and Correlation
COMMENTS
We prefer that you look at the scatterplot first and then find the
correlation. But if you’ve found the correlation first, click on the
correlation value to drop down a menu that offers to make the
scatterplot.

DATA DESK

To make a Scatterplot with the Excel Chart Wizard:
u Click on the Chart Wizard Button in the menu bar. Excel opens

the Chart Wizard’s Chart Type Dialog window.
u Make sure the Standard Types tab is selected, and select XY

(Scatter) from the choices offered.
u Specify the scatterplot without lines from the choices offered in

the Chart subtype selections. The Next button takes you to the
Chart Source Data dialog.

u If it is not already frontmost, click on the Data Range tab, and
enter the data range in the space provided.

u By convention, we always represent variables in columns. The
Chart Wizard refers to variables as Series. Be sure the Column
option is selected.

u Excel places the leftmost column of those you select on the x-axis
of the scatterplot. If the column you wish to see on the x-axis is
not the leftmost column in your spreadsheet, click on the Series
tab and edit the specification of the individual axis series.

u Click the Next button. The Chart Options dialog appears.
u Select the Titles tab. Here you specify the title of the chart and

names of the variables displayed on each axis.
u Type the chart title in the Chart title: edit box.
u Type the x-axis variable name in the Value (X) Axis: edit box.

Note that you must name the columns correctly here. Naming an-
other variable will not alter the plot, only mislabel it.

u Type the y-axis variable name in the Value (Y) Axis: edit box.
u Click the Next button to open the chart location dialog.
u Select the As new sheet: option button.
u Click the Finish button.
Often, the resulting scatterplot will not be useful. By default, Ex-
cel includes the origin in the plot even when the data are far
from zero. You can adjust the axis scales.
To change the scale of a plot axis in Excel:
u Double-click on the axis. The Format Axis Dialog appears.
u If the scale tab is not the frontmost, select it.
u Enter new minimum or new maximum values in the spaces pro-

vided. You can drag the dialog box over the scatterplot as a
straightedge to help you read the maximum and minimum values
on the axes.

u Click the OK button to view the rescaled scatterplot.
u Follow the same steps for the x-axis scale.
Compute a correlation in Excel with the CORREL function from
the drop-down menu of functions. If CORREL is not on the
menu, choose More Functions and find it among the statistical
functions in the browser.
In the dialog that pops up, enter the range of cells holding one
of the variables in the space provided.
Enter the range of cells for the other variable in the space 
provided.

EXCEL
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To make a scatterplot in Excel 2007:
u Select the columns of data to use in the scatterplot. You can

select more than one column by holding down the control key
while clicking.

u In the Insert tab, click on the Scatter button and select the
Scatter with only Markers chart from the menu.

Unfortunately, the plot this creates is often statistically useless.
To make the plot useful, we need to change the display:
u With the chart selected click on the Gridlines button in the Lay-

out tab to cause the Chart Tools tab to appear.
u Within Primary Horizontal Gridlines, select None. This will re-

move the gridlines from the scatterplot.
u To change the axis scaling, click on the numbers of each axis of the

chart, and click on the Format Selection button in the Layout tab.
u Select the Fixed option instead of the Auto option, and type a value

more suited for the scatterplot. You can use the popup dialog win-
dow as a straightedge to approximate the appropriate values.

Excel 2007 automatically places the leftmost of the two columns
you select on the x-axis, and the rightmost one on the y-axis. If
that’s not what you’d prefer for your plot, you’ll want to switch
them.
To switch the X and Y-variables:
u Click the chart to access the Chart Tools tabs.
u Click on the Select Data button in the Design tab.
u In the popup window’s Legend Entries box, click on Edit.
u Highlight and delete everything in the Series X Values line, and

select new data from the spreadsheet. (Note that selecting the
column would inadvertently select the title of the column, which
would not work well here.)

u Do the same with the Series Y Values line.
u Press OK, then press OK again.

EXCEL 2007

To make a scatterplot and compute correlation, choose Fit Y 
by X from the Analyze menu.
In the Fit Y by X dialog, drag the Y variable into the “Y,
Response” box, and drag the X variable into the “X, Factor”
box. Click the OK button.

Once JMP has made the scatterplot, click on the red triangle
next to the plot title to reveal a menu of options. Select Density
Ellipse and select .95. JMP draws an ellipse around the data
and reveals the Correlation tab. Click the blue triangle next to
Correlation to reveal a table containing the correlation coefficient.

JMP

To make a scatterplot, choose Scatterplot from the Graph
menu. Choose “Simple” for the type of graph. Click OK. Enter
variable names for the Y-variable and X-variable into the table.
Click OK.

To compute a correlation coefficient, choose Basic Statistics
from the Stat menu. From the Basic Statistics submenu,
choose Correlation. Specify the names of at least two quantita-
tive variables in the “Variables” box. Click OK to compute the
correlation table.

MINITAB

To make a scatterplot in SPSS, open the Chart Builder from the
Graphs menu. Then:
u Click the Gallery tab.
u Choose Scatterplot from the list of chart types.
u Drag the scatterplot onto the canvas.
u Drag a scale variable you want as the response variable to the 

y-axis drop zone.
u Drag a scale variable you want as the factor or predictor to the 

x-axis drop zone.
u Click OK.

To compute a correlation coefficient, choose Correlate from the
Analyze menu. From the Correlate submenu, choose Bivariate.
In the Bivariate Correlations dialog, use the arrow button to
move variables between the source and target lists.
Make sure the Pearson option is selected in the Correlation 
Coefficients field.

SPSS

To create a scatterplot using named lists, press £ several times
so that the first list is highlighted. Then press g ¢ so that the
second list is highlighted. Press b, 3 for Data, and 4 for
Quick Graph.
To create the plot on a full page, press c, then 5 for Data 
& Statistics. Move the cursor to “Click to add variable,” and

then press a and select the list name. Repeat for the other
axis.
To find the correlation, press c, 1 for Calculator, b, 6 for
Statistics, 1 for Stat Calculations, and 4 for Linear Regres-
sion. Complete the dialog boxes.

TI-NSPIRE
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To create a scatterplot, press Ñ (Plots). Select choice 1: Plot
Setup. Select a plot to define and press É. Select Plot Type 1:
Scatter. Select a mark type. Specify the lists where the data are
stored as Xlist and Ylist, using VAR-LINK. Press ∏ to finish.
Press á to display the plot.
To find the correlation, press Ü (CALC), then arrow to 3: Re-
gressions, press the right arrow, and select 1:LinReg(a+bx).

Then specify the lists where the data are stored. You can also
select a y-function to store the equation of the line.

COMMENTS
Notice that if you TRACE (press Ö) the scatterplot, the calcula-
tor will tell you the x- and y-value at each point.

TI-89

Select the y-variable and the x-variable. In the Plot menu
choose Scatterplot. from the scatterplot HyperView menu,
choose Add Regression Line to display the line. from the Hyper-
View menu, choose Regression to compute the regression.

Chapter 8. Linear Regression
COMMENTS
Alternatively, find the regression first with the Regression com-
mand in the Calc menu. Click on the x-variable’s name to open
a menu that offers the scatterplot.

DATA DESK

Make a scatterplot of the data. With the scatterplot front-most,
select Add Trendline...from the Chart menu. Click the Options
tab and select Display Equation on Chart. Click OK.

COMMENTS
The computer section for Chapter 7 shows how to make a
scatterplot. We don’t repeat those steps here.

EXCEL

u Click on a blank cell in the spreadsheet.
u Go to the Formulas tab in the Ribbon and click More Functions

➞ Statistical.
u Choose the CORREL function from the drop-down menu of

functions.
u In the dialog that pops up, enter the range of one of the variables

in the space provided.
u Enter the range of the other variable in the space provided.
u Click OK.

COMMENTS
The correlation is computed in the selected cell. Correlations com-
puted this way will update if any of the data values are changed.
Before you interpret a correlation coefficient, always make a
scatterplot to check for nonlinearity and outliers. If the variables
are not linearly related, the correlation coefficient cannot be 
interpreted.

EXCEL 2007

Choose Fit Y by X from the Analyze menu. Specify the 
y-variable in the Select Columns box and click the “Y, 
Response” button. Specify the x-variable and click the 
“X, Factor” button. Click OK to make a scatterplot. In the 

scatterplot window, click on the red triangle beside the heading
labeled “Bivariate Fit . . .” and choose “Fit Line.” JMP draws
the least squares regression line on the scatterplot and displays
the results of the regression in tables below the plot.

JMP

Choose Regression from the Stat menu. From the Regression
submenu, choose Fitted Line Plot. In the Fitted Line Plot dialog,
click in the Response Y box, and assign the y-variable from the

Variable list. Click in the Predictor X box, and assign the 
x-variable from the Variable list. Make sure that the Type 
of Regression Model is set to Linear. Click the OK button.

MINITAB

Choose Interactive from the Graphs menu. From the interactive
Graphs submenu, choose Scatterplot. In the Create Scatterplot
dialog, drag the y-variable into the y-axis target, and the 

x-variable into the x-axis target. Click on the Fit tab. Choose
Regression from the Method popup menu. Click the OK button.

SPSS
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To plot and find the equation of the regression line, first create a
scatterplot. Using named lists, press £ several times so that the
first list is highlighted. Then press g ¢ so that the second list is
highlighted. Press b, 3 for Data, and 4 for Quick Graph.
Then press b, 3 for Actions, 5 for Regression, and 2 for
Show Linear.
To find the equation of the regression line on a full page, press 
c, 1 for Calculator, b, 6 for Statistics, 1 for Stat Calcu-

lations, and 4 for Linear Regression. Complete the dialog 
boxes.
To see the plot on a full page, press c, and then 5 for Data
& Statistics. Move the cursor to “Click to add variable,” and
then press a and select the list name. Repeat for the other
axis. Then press b, 3 for Actions, 5 for Regression, and 2
for Show Linear.

TI-NSPIRE

To find the equation of the regression line (and add the line to a
scatterplot), choose LinReg (a+bx) from the Calc Regressions
menu and tell it the list names and a function to store the equa-
tion. To make a residuals plot, define a PLOT as a scatterplot.
Specify your explanatory datalist as Xlist. For Ylist, find the list
name resid from VAR-LINK by arrowing to the STATVARS por-
tion. then press © (r) and locate the list. press ∏ to finish
the plot definition and á to display the plot.

COMMENTS
Each time you execute a LinReg command, the calculator auto-
matically computes the residuals and stores them in a data
list named RESID. If you don’t want to see this (or any other
calculator-generated list) anymore, press É (Tools) and select
choice 3: Setup Editor. Leaving the box for lists to display blank
will reset the calculator to show only lists 1 through 6.

TI-89

Click on the HyperView menu on the Regression output table. 
A menu drops down to offer scatterplots of residuals against
predicted values, Normal probability plots of residuals, or just
the ability to save the residuals and predicted values.
Click on the name of a predictor in the regression table to be
offered a scatterplot of the residuals against that predictor.

Chapter 9. Regression Wisdom
COMMENTS
If you change any of the variables in the regression analysis,
Data Desk will offer to update the plots of residuals.

DATA DESK

The Data Analysis add-in for Excel includes a Regression com-
mand. The dialog box it shows offers to make plots of residuals.

COMMENTS
Do not use the Normal probability plot offered in the regression
dialog. It is not what it claims to be and is wrong.

EXCEL

From the Analyze menu, choose Fit Y by X. Select Fit Line.
Under Linear Fit, Select Plot Residuals. You can also choose

to Save Residuals. Subsequently, from the Distribution menu,
choose Normal quantile plot or histogram for the residuals.

JMP

From the Stat menu, choose Regression. From the Regression
submenu, select Regression again. In the Regression dialog, en-
ter the response variable name in the “Response” box and the
predictor variable name in the “Predictor” box. To specify saved
results, in the Regression dialog, click Storage. Check “Residu-

als” and “Fits.” Click OK. To specify displays, in the Regression
dialog, click Graphs. Under “Residual Plots,” select “Individual
plots” and check “Residuals versus fits.” Click OK. Now back in
the Regression dialog, click OK. Minitab computes the regres-
sion and the requested saved values and graphs.

MINITAB

From the Analyze menu, choose Regression. From the Regres-
sion submenu, choose Linear. After assigning variables to their
roles in the regression, click the “Plots...” button.
In the Plots dialog, you can specify a Normal probability plot of
residuals and scatterplots of various versions of standardized
residuals and predicted values.

COMMENTS
A plot of *ZRESID against *PRED will look most like the resid-
ual plots we’ve discussed. SPSS standardizes the residuals by
dividing by their standard deviation. (There’s no need to sub-
tract their mean; it must be zero.) The standardization doesn’t
affect the scatterplot.

SPSS

To create a residual plot, press c, then 5 for Data & Statistics.
Move the cursor to “Click to add variable,” and then press a

and select the list name. For the other axis, select the variable
name stat.resid.

TI-NSPIRE
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To make a residuals plot, define a Plot as a scatterplot. Specify
your explanatory datalist as Xlist. For Ylist, find the list name
resid from VAR-LINK by arrowing to the STATVARS portion.
Then press © (r) and locate the list. Press ∏ to finish the
plot definition and á to display the plot.

COMMENTS
Each time you execute a LinReg command, the calculator
automatically computes the residuals and stores them in a data
list named RESID. If you don’t want to see this (or any other
calculator-generated list) anymore, press É (Tools) and select
choice 3: Setup Editor. Leaving the box for lists to display blank
will reset the calculator to show only lists 1 through 6.

TI-89

To re-express a variable in Data Desk, select the variable 
and Choose the function to re-express it from the Manip >
Transform menu. Square root, log, reciprocal, and reciprocal
root are immediately available. For others, make a derived vari-
able and type the function. Data Desk makes a new derived
variable that holds the re-expressed values. Any value changed
in the original variable will immediately be re-expressed in the
derived variable.

Chapter 10. Re-expressing Data: Get It Straight!
COMMENTS
Or choose Manip > Transform > Dynamic > Box-Cox to
generate a continuously changeable variable and a slider that
specifies the power. Set plots to Automatic Update in their
HyperView menus and watch them change dynamically as you
drag the slider.

DATA DESK

To re-express a variable in Excel, use Excel’s built-in functions
as you would for any calculation. Changing a value in the origi-
nal column will change the re-expressed value.

EXCEL

To re-express a variable in JMP, double-click to the right of the
last column of data to create a new column. Name the new col-
umn and select it. Choose Formula from the Cols menu. In the
Formula dialog, choose the transformation and variable that you
wish to assign to the new column. Click the OK button. JMP
places the re-expressed data in the new column.

COMMENTS
The log and square root re-expressions are found in the
Transcendental menu of functions in the formula dialog.

JMP

To re-express a variable in MINITAB, choose Calculator from the
Calc menu. In the Calculator dialog, specify a name for the new
re-expressed variable. Use the Functions List, the calculator

buttons, and the Variables list box to build the expression.
Click OK.

MINITAB

To re-express a variable in SPSS, Choose Compute from the
Transform menu. Enter a name in the Target Variable field. Use
the calculator and Function List to build the expression. Move a

variable to be re-expressed from the source list to the Numeric
Expression field. Click the OK button.

SPSS

To re-express data, create a new list and enter the formula in
the cell in the second row. For example, if one column has a list

TI-NSPIRE

To re-express data stored in a list, perform the re-expression on
the whole list and store it in another list. For example, to use
the common (base 10) logarithms of the data in list1, on the
home screen, enter the command log(list1) ß list2.

COMMENTS

u To find the log command, press Ω then y (L) arrow to log,
and press ∏.

u Natural logs are LN (press 2Ÿ).
u For square roots, press 2p.

TI-89

named time, another list can be created using the formula
log(time).
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Generate random numbers in Data Desk with the Generate
Random Numbers . . . command in the Manip menu. A dialog
guides you in specifying the number of variables to fill, the num-
ber of cases, and details about the values. For most simulations,
generate random uniform values.

Chapter 11. Understanding Randomness
COMMENTS
Bernoulli Trials generate random values that are 0 or 1, with a
specified chance of a 1.
Binomial Experiments automatically generate a specified
number of Bernoulli trials and count the number of 1’s.

DATA DESK

The RAND function generates a random value between 0 and 1.
You can multiply to scale it up to any range you like and use the
INT function to turn the result into an integer.

COMMENTS
Published tests of Excel’s random-number generation have de-
clared it to be inadequate. However, for simple simulations, it
should be OK. Don’t trust it for important large simulations.

EXCEL

In a new column, in the Cols menu choose Column Info...
In the dialog, click the New Property button, and choose
Formula from the drop-down menu.

Click the Edit Formula button, and in the Functions(grouped)
window click on Random. Random Integer (10), for example,
will generate a random integer between 1 and 10.

JMP

In the Calc menu, choose Random Data . . . 
In the Random Data submenu, choose Uniform . . . 

A dialog guides you in specifying details of range and number of
columns to generate.

MINITAB

The RV.UNIFORM(min, max) function returns a random value
that is equally likely between the min and max limits.

SPSS

To generate random integers, press c, 1 for Calculator, b,
5 for Probability, 4 for Random, and 2 for Integer. Then
type the range for the random integers, such as randInt(1,6). 

To create a list of random integers, type the length of the list as
the third value, such as randInt(1,6,10).

TI-NSPIRE

To generate random numbers, move the cursor to highlight the
name of a blank list. Use 5:RandInt from the Ü (Calc) Proba-
bility menu. This command will produce any number of random
integers in the specified range.

COMMENTS
Some examples:
RandInt(0,10) randomly chooses a 0 or a 1. This is an effective
simulation of 10 coin tosses.
RandInt(1,6,2) randomly returns two integers between 1 and 6.
This is a good way to simulate rolling two dice.
RandInt(0,56,3) produces three random integers between 0
and 56, a nice way to simulate the chapter’s dorm room lottery.

TI-89

To compute the mean and standard deviation for a discrete ran-
dom variable, enter the values in one named list and the proba-
bilities in another. Then press c, 1 for Calculator, b, 6 for

Chapter 16. Random Variables

Statistics, 1 for Stat Calculations, and 1 for One-Variable
Statistics. Enter 2 for the prompt for the number of lists, e to
OK, ·, and complete the dialog box.

TI-NSPIRE

To calculate the mean and standard deviation of a discrete ran-
dom variable, enter the probability model in two lists:
u In one list (say, list1) enter the x-values of the variable.
u In a second list (say, list2) enter the associated probabilities

.
u From the STAT CALC (Ü) menu select 1-VarStats. Use 

VAR-LINK to enter the list name list1 in the List box and list2 in
the Freq box.

P(X = x)

COMMENTS
You can enter the probabilities as fractions; the calculator will
change them to decimals for you.
Notice that the calculator knows enough to compute only the
standard deviation , but mistakenly uses when it should say

. Make sure you don’t make that mistake!m

xs

TI-89
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BinomDistr(x, n, prob) (pdf)
CumBinomDistr(x, n, prob) (cdf)

Chapter 17. Probability Models

The only important differences among these functions are in what they are named and the order of their arguments. In these functions, pdf
stands for “probability density function”—what we’ve been calling a probability model. The letters cdf stand for “cumulative distribution
function,” the technical term when we want to accumulate probabilities over a range of values. These technical terms show up in many of
the function names. The term “cumulative” in a function name says that it corresponds to a cdf.

Generically, the four functions are as follows:

Geometric pdf (prob, x) Finds the individual geometric For example, the probability of 
probability of getting the first finding the first Tiger Woods 
success on trial x when the picture in the fifth cereal box is 
probability of success is prob. Geometric pdf(0.2, 5)

Geometric cdf (prob, x) Finds the cumulative probability of For example, the total probability 
getting the first success on or before of finding Tiger’s picture in one of 
trial x, when the probability of success the first 4 boxes is Geometric 
is prob. cdf(0.2, 4)

Binomial pdf (n, prob, x) Finds the probability of getting x successes For example, Binomial pdf(5, 0.2, 2) 
in n trials when the probability of success is the probability of finding Tiger’s picture 
is prob. exactly twice among 5 boxes of cereal.

COMMENTS
Data Desk does not compute Geometric probabilities.
These functions work in derived variables or in scratchpads.

DATA DESK

Binomdist(x, n, prob, cumulative)

COMMENTS
Set cumultive = true or for cdf, false for pdf.
Excel’s function fails when x or n is large.
Possibly, it does not use the Normal approximation.
Excel does not compute Geometric probabilities.

EXCEL

Binomial Probability (prob, n, x) (pdf)
Binomial Distribution (prob, n, x) (cdf)

COMMENTS
JMP does not compute Geometric probabilities.

JMP

Choose Probability Distributions from the Calc menu.
Choose Binomial from the Probability Distributions submenu.
To calculate the probability of getting x successes in n trials,
choose Probability.

To calculate the probability of getting x or fewer successes
among n trials, choose Cumulative Probability.
For Geometric, choose Geometric from the Probability Distribu-
tion submenu.

MINITAB

PDF.GEOM(x, prob)
CDF.GEOM(x, prob)

PDF.BINOM(x, n, prob)
CDF.BINOM(x, n, prob)

SPSS

To compute geometric and binomial probabilities, press b, 5
for Probability, and 5 for Distributions. Select the menu item.

Pdf is for the probability distribution function; Cdf will display
cumulative probabilities. Complete the dialog box.

TI-NSPIRE

Find the commands under the á (Distributions) menu.
u F: Geometric Pdf will ask for p and x. It returns the probability of

the first success occurring on the xth trial.
u G: Geometric Cdf will ask for p and the upper and lower values

of interest, say a and b. It returns P(a X b), the probability
the first success occurs between the ath and bth trials, inclusive.

u A: Binomial Pdf asks for n, p, and x.
u B: Binomial Cdf asks for n, p, and the lower and upper values of

interest.

##

COMMENTS
For Geometric variables, when finding P(X a) specify an
upper value of infinity, 1^99, or a very large number.
For Binomial variables, when finding P(X a), the upper 
value is n.

$

$

TI-89
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Data Desk does not offer built-in methods for inference with 
proportions.

Chapter 19. Confidence Intervals for Proportions
COMMENTS
For summarized data, open a Scratchpad to compute the stan-
dard deviation and margin of error by typing the calculation.
Then use z-interval for individual s.M

DATA DESK

Inference methods for proportions are not part of the standard
Excel tool set.

COMMENTS
For summarized data, type the calculation into any cell and
evaluate it.

EXCEL

For a categorical variable that holds category labels, the
Distribution platform includes tests and intervals for proportions.
For summarized data, put the category names in one variable
and the frequencies in an adjacent variable. Designate the fre-
quency column to have the role of frequency. Then use the
Distribution platform.

COMMENTS
JMP uses slightly different methods for proportion inferences
than those discussed in this text. Your answers are likely to be
slightly different, especially for small samples.

JMP

Choose Basic Statistics from the Stat menu.
u Choose 1Proportion from the Basic Statistics submenu.
u If the data are category names in a variable, assign the variable

from the variable list box to the Samples in columns box. If you
have summarized data, click the Summarized Data button and
fill in the number of trials and the number of successes.

u Click the Options button and specify the remaining details.

u If you have a large sample, check Use test and interval based on
normal distribution. Click the OK button.

COMMENTS
When working from a variable that names categories, MINITAB
treats the last category as the “success” category. You can spec-
ify how the categories should be ordered.

MINITAB

SPSS does not find confidence intervals for proportions.

SPSS

To compute a confidence interval for a population proportion,
press c, 1 for Calculator, b, 6 for Statistics, 6 for Confi-
dence Intervals, and 5 for 1-Prop z-interval. Complete the 

dialog box. Be sure to enter the number of successes, x, as a
whole number, and the C level as a decimal, such as .99.

TI-NSPIRE

To calculate a confidence interval for a population proportion:
u Go to the Ints menu (2Ñ) and select 5:1-PropZInt.
u Enter the number of successes observed and the sample size.
u Specify a confidence level.
u Calculate the interval.

COMMENTS
Beware: When you enter the value of x, you need the count, not
the percentage. The count must be a whole number. If the num-
ber of successes are given as a percentage, you must first multi-
ply np and round the result.

TI-89

Data Desk does not offer built-in methods for inference with
proportions. The Replicate Y by X command in the Manip menu
will “reconstruct” summarized count data so that you can
display it.

Chapter 20. Testing Hypotheses About Proportions
COMMENTS
For summarized data, open a Scratchpad to compute the stan-
dard deviation and margin of error by typing the calculation.
Then perform the test with the z-test for individual s found in
the Test command.

M

DATA DESK

Inference methods for proportions are not part of the standard
Excel tool set.

COMMENTS
For summarized data, type the calculation into any cell and
evaluate it.

EXCEL
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For a categorical variable that holds category labels, the
Distribution platform includes tests and intervals of proportions.
For summarized data, put the category names in one variable
and the frequencies in an adjacent variable. Designate the
frequency column to have the role of frequency. Then use the
Distribution platform.

COMMENTS
JMP uses slightly different methods for proportion inferences
than those discussed in this text. Your answers are likely to be
slightly different.

JMP

Choose Basic Statistics from the Stat menu.
u Choose 1Proportion from the Basic Statistics submenu.
u If the data are category names in a variable, assign the variable

from the variable list box to the Samples in columns box.
u If you have summarized data, click the Summarized Data button

and fill in the number of trials and the number of successes.
u Click the Options button and specify the remaining details.

u If you have a large sample, check Use test and interval based on
Normal distribution.

u Click the OK button.

COMMENTS
When working from a variable that names categories, MINITAB
treats the last category as the “success” category. You can spec-
ify how the categories should be ordered.

MINITAB

SPSS does not find hypothesis tests for proportions.

SPSS

To compute a hypothesis test for a population proportion, press
c, 1 for Calculator, b, 6 for Statistics, 7 for Stat Tests,

and 5 for 1-Prop z-test. Complete the dialog box. Be sure to
enter the number of successes, x, as a whole number.

TI-NSPIRE

To do the mechanics of a hypothesis test for a proportion,
u Select 5:1-PropZTest from the STAT TESTS 2É menu.
u Specify the hypothesized proportion.
u Enter the observed value of x.
u Specify the sample size.
u Indicate what kind of test you want: one-tail lower tail, two-tail,

or one-tail upper tail.

u Specify whether to calculate the result or draw the result (a
normal curve with p-value area shaded.)

COMMENTS
Beware: When you enter the value of x, you need the count, not
the percentage. The count must be a whole number. If the num-
ber of successes is given as a percent, you must first multiply
np and round the result to obtain x.

TI-89

Data Desk does not offer built-in methods for inference with pro-
portions. Use Replicate Y by X to construct data corresponding
to given proportions and totals.

Chapter 22. Comparing Two Proportions
COMMENTS
For summarized data, open a Scratchpad to compute the stan-
dard deviations and margin of error by typing the calculation.

DATA DESK

Inference methods for proportions are not part of the standard
Excel tool set.

COMMENTS
For summarized data, type the calculation into any cell and
evaluate it.

EXCEL

For a categorical variable that holds category labels, the
Distribution platform includes tests and intervals of proportions.
For summarized data, put the category names in one variable
and the frequencies in an adjacent variable. Designate the fre-
quency column to have the role of frequency. Then use the
Distribution platform.

COMMENTS
JMP uses slightly different methods for proportion inferences
than those discussed in this text. Your answers are likely to be
slightly different.

JMP
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To find a hypothesis test for a proportion, Choose Basic
Statistics from the Stat menu.
Choose 2Proportions . . . from the Basic Statistics submenu. If
the data are organized as category names in one column and
case IDs in another, assign the variables from the variable list
box to the Samples in one column box. If the data are organized
as two separate columns of responses, click on Samples in
different columns: and assign the variables from the variable
list box. If you have summarized data, click the Summarized
Data button and fill in the number of trials and the number of
successes for each group.

Click the Options button and specify the remaining details. Re-
member to click the Use pooled estimate of p for test box when
testing the null hypothesis of no difference between proportions.
Click the OK button.

COMMENTS
When working from a variable that names categories, MINITAB
treats the last category as the “success” category. You can spec-
ify how the categories should be ordered.

MINITAB

SPSS does not find hypothesis tests for proportions.

SPSS

To compute a confidence interval for the difference between 
two population proportions, press c, 1 for Calculator, b,
6 for Statistics, 6 for Confidence Intervals, and 6 for 
2-Prop z-interval. Complete the dialog box. Be sure to enter
each number of successes as a whole number, and the C level
as a decimal, such as .99.

To compute a hypothesis test for the difference between two
population proportions, press c, 1 for Calculator, b, 6 for
Statistics, 7 for Stat Tests, and 6 for 2-Prop z-test. Complete
the dialog box. Be sure to enter each number of successes as a
whole number.

TI-NSPIRE

To calculate a confidence interval for the difference between two
population proportions,
u Select 6:2-PropZInt from the STAT Ints menu.
u Enter the observed counts and the sample sizes for both samples.
u Specify a confidence level.
u Calculate the interval.
To do the mechanics of a hypothesis test for equality of popula-
tion proportions,
u Select 6:2-PropZTest from the STAT Tests menu.
u Enter the observed counts and sample sizes.

u Indicate what kind of test you want: one-tail upper tail, lower tail,
or two-tail.

u Specify whether results should simply be calculated or displayed
with the area corresponding to the P-value of the test shaded.

COMMENTS
Beware: When you enter the value of x, you need the count, not
the percentage. The count must be a whole number. If the num-
ber of successes is given as a percent, you must first multiply
np and round the result to obtain x.

TI-89

Select variables.
From the Calc menu, choose Estimate for confidence inter-
vals or Test for hypothesis tests. Select the interval or test 

Chapter 23. Inferences About Means
DATA DESK

Specify formulas. Find t* with the TINV(alpha, df) function.
COMMENTS
Not really automatic. There’s no easy way to find P-values 
in Excel.

EXCEL

From the Analyze menu, select Distribution. For a confidence
interval, scroll down to the “Moments” section to find the inter-
val limits. For a hypothesis test, click the red triangle next to the
variable’s name and choose Test Mean from the menu. Then fill
in the resulting dialog.

COMMENTS
“Moment” is a fancy statistical term for means, standard devia-
tions, and other related statistics.

JMP

from the drop-down menu and make other choices in the 
dialog.

From the Stat menu, choose the Basic Statistics submenu. From
that menu, choose 1-sample t . . . . Then fill in the dialog.

COMMENTS
The dialog offers a clear choice between confidence interval 
and test.

MINITAB
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From the Analyze menu, choose the Compare Means submenu.
From that, choose the One-Sample t-test command.

COMMENTS
The commands suggest neither a single mean nor an interval.
But the results provide both a test and an interval.

SPSS

To compute a confidence interval for a population mean, press
c, 1 for Calculator, b, 6 for Statistics, 6 for Confidence
Intervals, and 2 for t-interval. Select between Data and Stats,
e to OK, and press ·. Complete the dialog box. Be sure to
enter the number of successes, x, as a whole number, and the 
C level as a decimal, such as .99.

To compute a hypothesis test for a population mean, press c,
1 for Calculator, b, 6 for Statistics, 7 for Stat Tests, 
and 2 for t-test. Select between Data and Stats, e to OK,
and ·. Complete the dialog box.

TI-NSPIRE

Finding a confidence interval:
In the STAT Ints menu, choose 2:TInterval. Specify whether
you are using data stored in a list or whether you will enter the
mean, standard deviation, and sample size. You must also spec-
ify the desired level of confidence.
Testing a hypothesis:
In the STAT Tests menu, choose 2:T-Test. You must specify
whether you are using data stored in a list or whether you will

enter the mean, standard deviation, and size of your sample.
You must also specify the hypothesized model mean and
whether the test is to be two-tail, lower-tail, or upper-tail. Select
whether the test is to be simply computed or whether to display
the distribution curve and highlight the area corresponding to
the P-value of the test.

TI-89

Chapter 24. Comparing Means

There are two ways to organize data when we want to compare two independent groups. The data can be in two lists, as in the table at the
start of this chapter. Each list can be thought of as a variable. In this method, the variables in the batteries example would be Brand Name
and Generic. Graphing calculators usually prefer this form, and some computer programs can use it as
well.

There’s another way to think about the data. What is the response variable for the battery life experi-
ment? It’s the Time until the music stopped. But the values of this variable are in both columns, and actu-
ally there’s an experiment factor here, too—namely, the Brand of the battery. So, we could put the data
into two different columns, one with the Times in it and one with the Brand. Then the data would look as
shown in the table to the right.

This way of organizing the data makes sense as well. Now the factor and the response variables are
clearly visible. You’ll have to see which method your program requires. Some packages even allow you to
structure the data either way.

The commands to do inference for two independent groups on common statistics technology are not
always found in obvious places. Here are some starting guidelines.

Time Brand

194.0 Brand name
205.5 Brand name
199.2 Brand name
172.4 Brand name
184.0 Brand name
169.5 Brand name
190.7 Generic
203.5 Generic
203.5 Generic
206.5 Generic
222.5 Generic
209.4 Generic

Select variables.
From the Calc menu, choose Estimate for confidence intervals
or Test for hypothesis tests. Select the interval or test from the
drop-down menu and make other choices in the dialog.

COMMENTS
Data Desk expects the two groups to be in separate variables.

DATA DESK

From the Data Tab, Analysis Group, choose Data Analysis. Al-
ternatively (if the Data Analysis Tool Pack is not installed), in the
Formulas Tab, choose More functions > Statistical > TTEST,
and specify Type=3 in the resulting dialog.
Fill in the cell ranges for the two groups, the hypothesized differ-
ence, and the alpha level.

COMMENTS
Excel expects the two groups to be in separate cell ranges.
Notice that, contrary to Excel’s wording, we do not need to as-
sume that the variances are not equal; we simply choose not to
assume that they are equal.

EXCEL
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From the Analyze menu, select Fit y by x. Select variables: a Y,
Response variable that holds the data and an X, Factor variable
that holds the group names. JMP will make a dotplot. Click the
red triangle in the dotplot title, and choose Unequal variances.
The t-test is at the bottom of the resulting table. Find the P-value
from the Prob>F section of the table (they are the same).

COMMENTS
JMP expects data in one variable and category names in the
other. Don’t be misled: There is no need for the variances to be
unequal to use two-sample t methods.

JMP

From the Stat menu, choose the Basic Statistics submenu.
From that menu, choose 2-sample t.... Then fill in the dialog.

COMMENTS
The dialog offers a choice of data in two variables, or data in
one variable and category names in the other.

MINITAB

From the Analyze menu, choose the Compare Means submenu.
From that, choose the Independent-Samples t-test command.
Specify the data variable and “group variable.” Then type in the
labels used in the group variable. SPSS offers both the two-
sample and pooled-t results in the same table.

COMMENTS
SPSS expects the data in one variable and group names in the
other. If there are more than two group names in the group
variable, only the two that are named in the dialog box will be
compared.

SPSS

To compute a confidence interval for the difference between two
population means, press c, 1 for Calculator, b, 6 for
Statistics, 6 for Confidence Intervals, and 4 for 2-Sample 
t-interval. Select between Data and Stats, e to OK, and ·. 
Complete the dialog box. Be sure to enter the C level as a deci-
mal, such as .99.

To compute a hypothesis test for the difference between two
population means, press c, 1 for Calculator, b, 6 for Sta-
tistics, 7 for Stat Tests, and 4 for 2-Sample t-test. Select be-
tween Data and Stats, e to OK, and ·. Complete the dialog
box.

TI-NSPIRE

For a confidence interval:
In the STAT Ints menu, choose 4:2-SampTInt. You must specify
if you are using data stored in two lists or if you will enter the
means, standard deviations, and sizes of both samples. You
must also indicate whether to pool the variances (when in
doubt, say no) and specify the desired level of confidence.

To test a hypothesis:
In the STAT TESTS menu, choose 4:2-SampTTest. You must
specify if you are using data stored in two lists or if you will en-
ter the means, standard deviations, and sizes of both samples.
You must also indicate whether to pool the variances (when in
doubt, say no) and specify whether the test is to be two-tail,
lower-tail, or upper-tail.

TI-89

Select variables.
From the Calc menu, choose Estimate for confidence intervals
or Test for hypothesis tests. Select the interval or test from the
drop-down menu, and make other choices in the dialog.

Chapter 25. Paired Samples and Blocks
COMMENTS
Data Desk expects the two groups to be in separate variables
and in the same “Relation”—that is, about the same cases.

DATA DESK

In Excel 2003 and earlier, select Data Analysis from the Tools
menu.
In Excel 2007, select Data Analysis from the Analysis Group on
the Data Tab.
From the Data Analysis menu, choose t-test: paired two-sample
for Means. Fill in the cell ranges for the two groups, the hypoth-
esized difference, and the alpha level.

COMMENTS
Excel expects the two groups to be in separate cell ranges.
Warning: Do not compute this test in Excel without checking for
missing values. If there are any missing values (empty cells),
Excel will usually give a wrong answer. Excel compacts each
list, pushing values up to cover the missing cells, and then
checks only that it has the same number of values in each list.
The result is mismatched pairs and an entirely wrong analysis.

EXCEL

From the Analyze menu, select Matched Pairs. Specify the
columns holding the two groups in the Y Paired Response
Dialog. Click OK.

JMP
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From the Stat menu, choose the Basic Statistics submenu.
From that menu, choose Paired t... Then fill in the dialog.

COMMENTS
Minitab takes “First sample” minus “Second sample.”

MINITAB

From the Analyze menu, choose the Compare Means submenu.
From that, choose the Paired-Samples t-test command. Select
pairs of variables to compare, and click the arrow to add them
to the selection box.

COMMENTS
You can compare several pairs of variables at once. Options
include the choice to exclude cases missing in any pair from
all tests.

SPSS

For inference on a matched pair design, compute a third list of
differences such as Then construct thediff = time2-time1.

confidence interval or conduct the hypothesis test in the same
way as 1-sample procedures, using the list of differences.

TI-NSPIRE

If the data are stored in two lists, say, list1 and list2, create a
list of the differences: Move the cursor to the name of an empty
list, and then use VAR-LINK to enter the command list1-list2.
Press ∏ to perform the subtraction.

Since inference for paired differences uses one-sample 
t-procedures, select 2:T-Test or 2:TInterval from the STAT
Tests or Ints menu. Specify as your data the list of differences
you just created, and apply the procedure.

TI-89

Select variables.
From the Calc menu, choose Contingency Table. From the
table’s HyperView menu, choose Table Options. (Or Choose
Calc > Calculation Options > Table Options.) In the dialog,
check the boxes for Chi Square and for Standardized Residuals.
Data Desk will display the chi-square and its P-value below the
table, and the standardized residuals within the table.

Chapter 26. Comparing Counts
COMMENTS
Data Desk automatically treats variables selected for this 
command as categorical variables even if their elements are
numerals.
The Compute Counts command in the table’s HyperView menu
will make variables that hold the table contents (as selected in
the Table Options dialog), including the standardized residuals.

DATA DESK

Excel offers the function
CHITEST(actual_range, expected_range), which computes a
chi-square value for homogeneity. Both ranges are of the form
UpperleftCell:LowerRightCell, specifying two rectangular tables
that must hold counts (although Excel will not check for integer
values). The two tables must be of the same size and shape.

COMMENTS
Excel’s documentation claims this is a test for independence
and labels the input ranges accordingly, but Excel offers no way
to find expected counts, so the function is not particularly useful
for testing independence. You can use this function only if you
already know both tables of counts or are willing to program ad-
ditional calculations.

EXCEL

From the Analyze menu, select Fit Y by X. Select variables: a Y,
Response variable that holds responses for one variable, and an
X, Factor variable that holds responses for the other. Both se-
lected variables must be Nominal or Ordinal. JMP will make a
plot and a contingency table. Below the contingency table, JMP
offers a Tests panel. In that panel, the Chi Square for independ-
ence is called a Pearson ChiSquare. The table also offers the 
P-value.
Click on the Contingency Table title bar to drop down a menu
that offers to include a Deviation and Cell Chi square in each
cell of the table.

COMMENTS
JMP will choose a chi-square analysis for a Fit Y by X if both
variables are nominal or ordinal (marked with an N or O), but
not otherwise. Be sure the variables have the right type.
Deviations are the observed—expected differences in counts.
Cell chi-squares are the squares of the standardized residuals.
Refer to the deviations for the sign of the difference.
Look under Distributions in the Analyze menu to find a chi-
square test for goodness-of-fit.

JMP
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From the Stat menu, choose the Tables submenu. From that
menu, choose Chi Square Test . . . . In the dialog, identify the
columns that make up the table. Minitab will display the table
and print the chi-square value and its P-value.

COMMENTS
Alternatively, select the Cross Tabulation . . . command to see
more options for the table, including expected counts and stan-
dardized residuals.

MINITAB

From the Analyze menu, choose the Descriptive Statistics sub-
menu. From that submenu, choose Crosstabs . . . . In the
Crosstabs dialog, assign the row and column variables from the
variable list. Both variables must be categorical. Click the Cells
button to specify that standardized residuals should be dis-
played. Click the Statistics button to specify a chi-square test.

COMMENTS
SPSS offers only variables that it knows to be categorical in the
variable list for the Crosstabs dialog. If the variables you want
are missing, check that they have the right type.

SPSS

To conduct a goodness of fit test, enter the observed and the
expected values into two named lists. Then press c, 1 for
Calculator, b, 6 for Statistics, 7 for Stat Tests, and 7 for

GOF. Complete the dialog box.
To conduct a test of independence or homogeneity, first enter
the data into a matrix. Press / r and select the matrix icon.

x2
x2

x2 Enter the dimensions and e to OK, and ·. Then type the
data into the matrix. Then press ¢ to exit the matrix, press /
h and a matrix name such as ma to store the matrix. To com-
plete the test, press c, 1 for Calculator, b, 6 for Statis-
tics, 7 for Stat Tests, and 8 for 2-way Test. Complete the
dialog box.

x2

TI-NSPIRE

To test goodness-of-fit, enter the observed counts in a list and
the expected counts in another list. Expected counts can be
entered as n*p, and the calculator will compute them for you.
From the STAT Tests menu, select 7:Chi2 GOF. Enter the list
names using VAR-LINK and the degrees of freedom, ,
where k is the number of categories. Select whether to simply
calculate or display the result with the area corresponding to the
P-value highlighted.

k - 1

TI-89

To test a hypothesis of homogeneity or independence, you need
to enter the data as a matrix. From the home screen, press
O and select 6:Data/Matrix Editor, then select 3:New.
Specify type as Matrix and name the matrix in the Variable box.
Specify the number of rows and columns. Type the entries,
pressing ∏ after each. Press 2 N to leave the editor.
To do the test, choose 8:Chi2 2-way from the STAT Tests menu.

u Select Y- and X-variables.
u From the Calc menu, choose Regression.
u Data Desk displays the regression table.
u Select plots of residuals from the Regression table’s HyperView

menu.

Chapter 27. Inferences for Regression
COMMENTS
You can change the regression by dragging the icon of another
variable over either the Y- or X-variable name in the table and
dropping it there. The regression will recompute automatically.

DATA DESK

u In Excel 2003 and earlier, select Data Analysis from the Tools
menu. In Excel 2007, select Data Analysis from the Analysis
Group on the Data Tab.

u Select Regression from the Analysis Tools list.
u Click the OK button.
u Enter the data range holding the Y-variable in the box labeled 

“Y-range”.
u Enter the range of cells holding the X-variable in the box labeled

“X-range.”
u Select the New Worksheet Ply option.
u Select Residuals options. Click the OK button.

COMMENTS
The Y and X ranges do not need to be in the same rows of the
spreadsheet, although they must cover the same number of
cells. But it is a good idea to arrange your data in parallel
columns as in a data table.
Although the dialog offers a Normal probability plot of the
residuals, the data analysis add-in does not make a correct
probability plot, so don’t use this option.

EXCEL
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u From the Analyze menu, select Fit Y by X.
u Select variables: a Y, Response variable, and an X, Factor

variable. Both must be continuous (quantitative).
u JMP makes a scatterplot.
u Click on the red triangle beside the heading labeled Bivariate 

Fit... and choose Fit Line. JMP draws the least squares
regression line on the scatterplot and displays the results of
the regression in tables below the plot.

u The portion of the table labeled “Parameter Estimates” gives the
coefficients and their standard errors, t-ratios, and P-values.

COMMENTS
JMP chooses a regression analysis when both variables are
“Continuous.” If you get a different analysis, check the variable
types.
The Parameter table does not include the residual standard
deviation . You can find that as Root Mean Square Error in
the Summary of Fit panel of the output.

se

JMP

u Choose Regression from the Stat menu.
u Choose Regression... from the Regression submenu.
u In the Regression dialog, assign the Y-variable to the Response

box and assign the X-variable to the Predictors box.
u Click the Graphs button.
u In the Regression-Graphs dialog, select Standardized residuals,

and check Normal plot of residuals and Residuals versus fits.

u Click the OK button to return to the Regression dialog.
u Click the OK button to compute the regression.

COMMENTS
You can also start by choosing a Fitted Line plot from the
Regression submenu to see the scatterplot first—usually good
practice.

MINITAB

u Choose Regression from the Analyze menu.
u Choose Linear from the Regression submenu.
u In the Linear Regression dialog that appears, select the Y-variable

and move it to the dependent target. Then move the X-variable to
the independent target.

u Click the Plots button.

u In the Linear Regression Plots dialog, choose to plot the
*SRESIDs against the *ZPRED values.

u Click the Continue button to return to the Linear Regression 
dialog.

u Click the OK button to compute the regression.

SPSS

To compute a confidence interval for a population slope, first enter
the data into two named lists. Then press c, 1 for Calculator,
b, 6 for Statistics, 6 for Confidence Intervals, and 7 for Lin-
ear Reg t-intervals. Select slope, e to OK, and ·. Complete the
dialog box. Be sure to enter the C level as a decimal, such as .99.

To compute a hypothesis test for a population slope, first enter
the data into two named lists. Then press c, 1 for Calcula-
tor, b, 6 for Statistics, 7 for Stat Tests, and A for Linear
Reg t-test. Complete the dialog box.

TI-NSPIRE

Under STAT Tests choose A:LinRegTTest. Specify the two lists
where the data are stored and (usually) choose the two-tail op-
tion. Select an equation name to store the resulting line. In addi-
tion to reporting the calculated value of t and the P-value, the
calculator will tell you the coefficients of the regression equation
(a and b), the values of and r, the value of s used in predic-r2

tion and confidence intervals, and the standard error of the
slope. For 95% prediction and confidence intervals, choose
7:LinRegTint from the STAT Ints menu. Specify the two lists
where the data are stored, and select an equation name to store
the resulting line. Select for an interval for the slope or for a
response. If for a response, enter the x-value.

TI-89

u Select the response variable as Y and the factor variable as X.
u From the Calc menu, choose ANOVA.
u Data Desk displays the ANOVA table.
u Select plots of residuals from the ANOVA table’s HyperView

menu.

Chapter 28. Analysis of Variance
COMMENTS
Data Desk expects data in “stacked” format. You can change the
ANOVA by dragging the icon of another variable over either the
Y or X variable name in the table and dropping it there. The
analysis will recompute automatically.

DATA DESK
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u In Excel 2003 and earlier, select Data Analysis from the Tools
menu.

u In Excel 2007, select Data Analysis from the Analysis Group on
the Data Tab.

u Select Anova Single Factor from the list of analysis tools.
u Click the OK button.
u Enter the data range in the box provided.
u Check the Labels in First Row box, if applicable.
u Enter an alpha level for the F-test in the box provided.
u Click the OK button.

COMMENTS
The data range should include two or more columns of data to
compare. Unlike all other statistics packages, Excel expects
each column of the data to represent a different level of the fac-
tor. However, it offers no way to label these levels. The columns
need not have the same number of data values, but the selected
cells must make up a rectangle large enough to hold the column
with the most data values.

EXCEL

u From the Analyze menu select Fit Y by X.
u Select variables: a quantitative Y, Response variable, and a

categorical X, Factor variable.
u JMP opens the Oneway window.
u Click on the red triangle beside the heading, select Display

Options, and choose Boxplots.

u From the same menu choose the Means/ANOVA.t-test command.
u JMP opens the oneway ANOVA output.

COMMENTS
JMP expects data in “stacked” format with one response and
one factor variable.

JMP

u Choose ANOVA from the Stat menu.
u Choose One-way... from the ANOVA submenu.
u In the One-way Anova dialog, assign a quantitative Y variable to

the Response box and assign a categorical X variable to the
Factor box.

u Check the Store Residuals check box.
u Click the Graphs button.
u In the ANOVA-Graphs dialog, select Standardized residuals, and

check Normal plot of residuals and Residuals versus fits.

u Click the OK button to return to the Regression dialog.
u Click the OK button to compute the regression.

COMMENTS
If your data are in unstacked format, with separate columns for
each treatment level, choose One-way (unstacked) from the
ANOVA submenu.

MINITAB

u Choose Compare Means from the Analyze menu.
u Choose One-way ANOVA from the Compare Means submenu.
u In the One-Way ANOVA dialog, select the Y-variable and move

it to the dependent target. Then move the X-variable to the
independent target.

u Click the OK button.

COMMENTS
SPSS expects data in stacked format. The Contrasts and Post
Hoc buttons offer ways to test contrasts and perform multiple
comparisons. See your SPSS manual for details.

SPSS

Under STAT Tests, choose C:ANOVA
u Specify the input method (Data or Stats) according to whether

you have data entered as one list for each group or summary sta-
tistics for each group, and specify the number of groups. Press ÷.

u If Data, you will then be asked to supply the name of each list.
u If Stats, you will be asked for the stats for each group. Enter n, ,

and s for each group separated by commas and within curly
braces ({and}).

u Press ÷ to perform the calculations.

x

COMMENTS
In addition to the ANOVA table output, the calculator creates
three new lists—the means for each group (in the order speci-
fied) and individual 95% confidence interval upper and lower
bounds.

TI-89
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u Select Y- and X-variable icons.
u From the Calc menu, choose Regression.
u Data Desk displays the regression table.
u Select plots of residuals from the Regression table’s HyperView

menu.

Chapter 29. Multiple Regression
COMMENTS
You can change the regression by dragging the icon of another
variable over either the Y- or an X-variable name in the table
and dropping it there. You can add a predictor by dragging its
icon into that part of the table. The regression will recompute
automatically.

DATA DESK

u In Excel 2003 and earlier, select Data Analysis from the Tools
menu.

u In Excel 2007, select Data Analysis from the Analysis Group on
the Data Tab.

u Select Regression from the Analysis Tools list.
u Click the OK button.
u Enter the data range holding the Y-variable in the box labeled 

“Y-range.”
u Enter the range of cells holding the X-variables in the box labeled

“X-range.”
u Select the New Worksheet Ply option.
u Select Residuals options. Click the OK button.

COMMENTS
The Y and X ranges do not need to be in the same rows of the
spreadsheet, although they must cover the same number of
cells. But it is a good idea to arrange your data in parallel
columns as in a data table. The X-variables must be in adjacent
columns. No cells in the data range may hold non-numeric 
values.
Although the dialog offers a Normal probability plot of the
residuals, the data analysis add-in does not make a correct
probability plot, so don’t use this option.

EXCEL

u From the Analyze menu select Fit Model.
u Specify the response, Y. Assign the predictors, X, in the Construct

Model Effects dialog box.
u Click on Run Model.

COMMENTS
JMP chooses a regression analysis when the response variable
is “Continuous.” The predictors can be any combination of
quantitative or categorical. If you get a different analysis, check
the variable types.

JMP

u Choose Regression from the Stat menu.
u Choose Regression . . . from the Regression submenu.
u In the Regression dialog, assign the Y-variable to the Response

box and assign the X-variables to the Predictors box.
u Click the Graphs button.

MINITAB

u In the Regression-Graphs dialog, select Standardized residuals,
and check Normal plot of residuals and Residuals versus fits.

u Click the OK button to return to the Regression dialog.
u Click the OK button to compute the regression.

u Choose Regression from the Analyze menu.
u Choose Linear from the Regression submenu.
u When the Linear Regression dialog appears, select the Y-variable

and move it to the dependent target. Then move the X-variables
to the independent target.

u Click the Plots button.

SPSS

u In the Linear Regression Plots dialog, choose to plot the
*SRESIDs against the *ZPRED values.

u Click the Continue button to return to the Linear Regression 
dialog.

u Click the OK button to compute the regression.

Under STAT Tests choose B:MultREg Tests
u Specify the number of predictor variables, and which lists contain

the response variable and predictor variables.
u Press to perform the calculations.

COMMENTS

u The first portion of the output gives the F-statistic and its P-value
as well as the values of , Adj’R2, the standard deviation of the
residuals (s), and the Durbin-Watson statistic, which measures
correlation among the residuals.

R2

u The rest of the main output gives the components of the 
F-test, as well as values of the coefficients, their standard errors,
and associated t-statistics along with P-values. You can use the
right arrow to scroll through these lists (if desired).

u The calculator creates several new lists that can be used for as-
sessing the model and its conditions: Yhatlist, resid, sresid (stan-
dardized residuals), leverage, and cookd, as well as lists of the
coefficients, standard errors, t’s, and P-values.

TI-89
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CHAPTER 2

1. Categorical
3. Quantitative
5. Answers will vary.
7. Who—2500 cars

What—Distance from car to bicycle
Population—All cars passing bicyclists

9. Who—Coffee drinkers at a Newcastle University coffee station
What—Amount of money contributed
Population—All people in honor system payment situations

11. Who—25,892 men aged 30 to 87
What—Fitness level and cause of death
Population—All men

13. Who—54 bears
Cases—Each bear is a case.

What—Weight, neck size, length, and sex
When—Not specified
Where—Not specified
Why—To estimate weight from easier-to-measure variables
How—Researchers collected data on 54 bears they were able to

catch.
Variable—Weight

Type—Quantitative
Units—Not specified

Variable—Neck size
Type—Quantitative
Units—Not specified

Variable—Length
Type—Quantitative
Units—Not specified

Variable—Sex
Type—Categorical

15. Who—Arby’s sandwiches
Cases—Each sandwich is a case.

What—Type of meat, number of calories, and serving size
When—Not specified
Where—Arby’s restaurants
Why—To assess nutritional value of sandwiches
How—Report by Arby’s restaurants

Variable—Type of meat
Type—Categorical

Variable—Number of calories
Type—Quantitative
Units—Calories

Variable—Serving size
Type—Quantitative
Units—Ounces

17. Who—882 births
Cases—Each of the 882 births is a case.

What—Mother’s age, length of pregnancy, type of birth, level of
prenatal care, birth weight of baby, sex of baby, and baby’s
health problems

When—1998–2000
Where—Large city hospital
Why—Researchers were investigating the impact of prenatal care

on newborn health.
How—Not specified exactly, but probably from hospital records
Variable—Mother’s age

Type—Quantitative
Units—Not specified; probably years

Variable—Length of pregnancy
Type—Quantitative
Units—Weeks

Variable—Birth weight of baby
Type—Quantitative
Units—Not specified, probably pounds and ounces

Variable—Type of birth
Type—Categorical

Variable—Level of prenatal care
Type—Categorical

Variable—Sex
Type—Categorical

Variable—Baby’s health problems
Type—Categorical

19. Who—Experiment subjects
Cases—Each subject is an individual.

What—Treatment (herbal cold remedy or sugar solution) and
cold severity

When—Not specified

Answers

APPENDIX

C
Here are the “answers” to the exercises for the chapters and the unit reviews. As we said in Chapter 1, the answers
are outlines of the complete solution. Your solution should follow the model of the Step-By-Step examples, where
appropriate. You should explain the context, show your reasoning and calculations, and draw conclusions. For some
problems, what you decide to include in an argument may differ somewhat from the answers here. But, of course,
the numerical part of your answer should match the numbers in the answers shown.
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Where—Not specified
Why—To test efficacy of herbal remedy on common cold
How—The scientists set up an experiment.
Variable—Treatment

Type—Categorical
Variable—Cold severity rating

Type—Quantitative (perhaps ordinal categorical)
Units—Scale from 0 to 5

Concerns—The severity of a cold seems subjective and difficult to
quantify. Scientists may feel pressure to report nega-
tive findings of herbal product.

21. Who—Streams
Cases—Each stream is a case.

What—Name of stream, substrate of the stream, acidity of the
water, temperature, BCI

When—Not specified
Where—Upstate New York
Why—To study ecology of streams
How—Not specified
Variable—Stream name

Type—Identifier
Variable—Substrate

Type—Categorical
Variable—Acidity of water

Type—Quantitative
Units—pH

Variable—Temperature
Type—Quantitative
Units—Degrees Celsius

Variable—BCI
Type—Quantitative
Units—Not specified

23. Who—41 refrigerator models
Cases—Each of the 41 refrigerator models is a case.

What—Brand, cost, size, type, estimated annual energy cost,
overall rating, and repair history

When—2006
Where—United States
Why—To provide information to the readers of Consumer Reports
How—Not specified
Variable—Brand

Type—Categorical
Variable—Cost

Type—Quantitative
Units—Not specified (dollars)

Variable—Size
Type—Quantitative
Units—Cubic feet

Variable—Type
Type—Categorical

Variable—Estimated annual energy cost
Type—Quantitative
Units—Not specified (dollars)

Variable—Overall rating
Type—Categorical (ordinal)

Variable—Percent requiring repair in last 5 years
Type—Quantitative
Units—Percent

25. Who—Kentucky Derby races
What—Date, winner, margin, jockey, net proceed to winner,

duration, track condition
When—1875 to 2008
Where—Churchill Downs, Louisville, Kentucky
Why—Not specified (To see trends in horse racing?)
How—Official statistics collected at race
Variable—Year

Type—Quantitative

Units—Day and year
Variable—Winner

Type—Identifier
Variable—Margin

Type—Quantitative
Units—Horse lengths

Variable—Jockey
Type—Categorical

Variable—Net proceeds to winner
Type—Quantitative
Units—Dollars

Variable—Duration
Type—Quantitative
Units—Minutes and seconds

Variable—Track condition
Type—Categorical

CHAPTER 3

1. Answers will vary.
3. Answers will vary.
5. a) Yes; each is categorized in a single genre.

b) Thriller/Horror
7. a) Comedy

b) It is easier to tell from the bar chart; slices of the pie chart are
too close in size.

9. 1755 students applied for admission to the magnet schools pro-
gram. 53% were accepted, 17% were wait-listed, and the other
30% were turned away.

11. a) Yes. We can add because these categories do not overlap.
(Each person is assigned only one cause of death.)

b)
c) Either a bar chart or pie chart with “other” added would be

appropriate. A bar chart is shown.

13. a) The bar chart shows that grounding and collision are the most
frequent causes of oil spills. Very few have unknown causes. 

b) A pie chart seems appropriate as well.
15. There’s no title, the percentages total only 92%, and the three-

dimensional display distorts the sizes of the regions.
17. In both the South and West, about 58% of the eighth-grade smok-

ers preferred Marlboro. Newport was the next most popular
brand, but was far more popular in the South than in the West,
where Camel was cited nearly 3 times as often as in the South.
Nearly twice as many smokers in the West as in the South indi-
cated that they had no usual brand (12.9% to 6.7%).

19. a) The column totals are 100%.
b) 31.7%
c) 60%
d) i. 35.7%; ii. can’t tell; iii. 0%; iv. can’t tell

21. a) 82.5% b) 12.9% c) 11.1%
d) 13.4% e) 85.7%

23. a) 73.9% 4-yr college, 13.4% 2-year college, 1.5% military, 
5.2% employment, 6.0% other
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b) 77.2% 4-yr college, 10.5% 2-year college, 1.8% military, 
5.3% employment, 5.3% other

c) Many charts are possible. Here is a side-by-side bar chart.

d) The white and minority students’ plans are very similar. The
small differences should be interpreted with caution because
the total number of minority students is small. There is little
evidence of an association between race and plans.

25. a) 16.6% b) 11.8% c) 37.7% d) 53.0%
27. 1755 students applied for admission to the magnet schools

program: 53% were accepted, 17% were wait-listed, and the other
30% were turned away. While the overall acceptance rate was
53%, 93.8% of blacks and Hispanics were accepted, compared to
only 37.7% of Asians and 35.5% of whites. Overall, 29.5% of appli-
cants were black or Hispanic, but only 6% of those turned away
were. Asians accounted for 16.6% of all applicants, but 25.4% of
those turned away. Whites were 54% of the applicants and 68.5%
of those who were turned away. It appears that the admissions
decisions were not independent of the applicant’s ethnicity.

29. a) 9.3% b) 24.7% c) 80.8%
d) No, there appears to be no association between weather and

ability to forecast weather. On days it rained, his forecast was
correct 79.4% of the time. When there was no rain, his forecast
was correct 81.0% of the time.

31. a) Low 20.0%, Normal 48.9%, High 31.0%
b)
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d) As age increases, the percent of adults with high blood
pressure increases. By contrast, the percent of adults with low
blood pressure decreases.

e) No, but it gives an indication that it might. There might be
additional reasons that explain the differences in blood pressures.

33. No, there’s no evidence that Prozac is effective. The relapse rates
were nearly identical: 28.6% among the people treated with
Prozac, compared to 27.3% among those who took the placebo.

35. a) 4.7% b) 50.0%.
c) There are about 50% of each sex in each age group, but it

ranges from 48.8% female in the youngest group to 54.6% in
the oldest. As the age increases, there is a slight increase in the
percentage of female drivers.

d) There is a slight association. As the age increases, there is a
small increase in the percentage of female drivers.

37. a) 160 of 1300, or 12.3%
b) Yes. Major surgery: 15.3% vs. minor surgery: 6.7%
c) Large hospital: 13%; small hospital: 10%
d) Large hospital: Major 15% vs. minor 5%

Small hospital: Major 20% vs. minor 8%
e) No. Smaller hospitals have a higher rate for both kinds of

surgery, even though it’s lower “overall.”
f) The small hospital has a larger percentage of minor surgeries

(83.3%) than the large hospital (20%). Minor surgeries have a
lower delay rate, so the small hospital looks better “overall.”

39. a) 42.6%
b) A higher percentage of males than females were admitted:

Males: 47.2% to females: 30.9%
c) Program 1: Males 61.9%, females 82.4%

Program 2: Males 62.9%, females 68.0%
Program 3: Males 33.7%, females 35.2%
Program 4: Males 5.9%, females 7.0%

d) The comparisons in c) show that males have a lower admit-
tance rate in every program, even though the overall rate
shows males with a higher rate of admittance. This is an
example of Simpson’s paradox.

CHAPTER 4

1. Answers will vary.
3. Answers will vary.
5. a) Unimodal (near 0) and skewed to the right. Many seniors will

have 0 or 1 speeding tickets. Some may have several, and a
few may have more than that.

b) Probably unimodal and slightly skewed to the right. It is 
easier to score 15 strokes over the mean than 15 strokes under
the mean.

c) Probably unimodal and symmetric. Weights may be equally
likely to be over or under the average.

d) Probably bimodal. Men’s and women’s distributions may
have different modes. It may also be skewed to the right, 
since it is possible to have very long hair, but hair length 
can’t be negative.
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7. a) Bimodal. Looks like two groups. Modes are near 6% and 46%.
No real outliers.

b) Looks like two groups of cereals, a low-sugar and a high-
sugar group.

9. a) 78%
b) Skewed to the right with at least one high outlier. Most of the

vineyards are less than 90 acres with a few high ones. The
mode is between 0 and 30 acres.

11. a) Because the distribution is skewed to the right, we expect the
mean to be larger.

b) Bimodal and skewed to the right. Center mode near 8 days.
Another mode at 1 day (may represent patients who didn’t
survive). Most of the patients stay between 1 and 15 days.
There are some extremely high values above 25 days.

c) The median and IQR, because the distribution is strongly
skewed.

13. a) 45 points b) 37 points and 54 (or 55) points
c) In the Super Bowl teams typically score a total of about 

45 points, with half the games totaling between 37 and 
55 points. In only one fourth of the games have the teams
scored fewer than 27 points, and they once totaled 75.

15. a) The standard deviation will be larger for set 2, since the values
are more spread out. 

b) The standard deviation will be larger for set 2, since 11 and 19
are farther from 15 than are 14 and 16. Other numbers are the
same. 

c) The standard deviation will be the same for both sets, since 
the values in the second data set are just the values in the first
data set The spread has not changed. 

17. The mean and standard deviation because the distribution is 
unimodal and symmetric.

19. a) The mean is closest to $2.60 because that’s the balancing point
of the histogram.

b) The standard deviation is closest to $0.15 since that’s a typical
distance from the mean. There are no prices as far as $0.50 or
$1.00 from the mean.

21. a) About 100 minutes
b) Yes, only 4 of these movies run that long.
c) The mean would be higher. The distribution is skewed high.

23. a) i. The middle 50% of movies ran between 97 and 119 minutes.
ii. On average, movie lengths varied from the mean run time

by 19.6 minutes.
b) We should be cautious in using the standard deviation be-

cause the distribution of run times is skewed to the right.
25. a) The median will probably be unaffected. The mean will be

larger.
b) The range and standard deviation will increase; the IQR will

be unaffected.
27. The publication is using the median; the watchdog group is using

the mean, pulled higher by the several very expensive movies 
in the long right tail.

29. a) Mean $525, median $450
b) 2 employees earn more than the mean.
c) The median because of the outlier.
d) The IQR will be least sensitive to the outlier of $1200, so it

would be the best to report.
31. a)
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SD(set 2) = 4.2.
SD(set 1) = 4.2,+   80.

SD(set 1) = 3.6, SD(set 2) = 4.5.

SD(set 1) = 2.2, SD(set 2) = 3.2.

b) The distribution of gas prices is unimodal and skewed to the
right (upward), centered around $2.27, with most stations
charging between $2.26 and $2.33 per gallon. The lowest and
highest prices were $2.21 and $2.46.

c) There are two high prices separated from the other gas 
stations by a gap.

33. a) Since these data are strongly skewed to the right, the median
and IQR are the best statistics to report.

b) The mean will be larger than the median because the data are
skewed to the right.

c) The median is 4 million. The IQR is 4.5 million

d) The distribution of populations of the states and Washington,
DC, is unimodal and skewed to the right. The median popula-
tion is 4 million. One state is an outlier, with a population of
34 million.

35. Skewed to the right, median at 36. Three low outliers, then a gap
from 9 to 22.

37. a)

b) Slightly skewed to the right. Unimodal, mode near 2. Possibly
a second mode near 5. No outliers.

39. a) This is not a histogram. The horizontal axis should split the
number of home runs hit in each year into bins. The vertical
axis should show the number of years in each bin.

b)

41. Skewed to the right, possibly bimodal with one fairly symmetric
group near 4.4, another at 5.6. Two outliers in middle seem not to
belong to either group.
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APPENDIX C    Chapter 5 A-29

43. Histogram bins are too wide to be useful.
45. Neither appropriate nor useful. Zip codes are categorical data,

not quantitative. But they do contain some information. The
leading digit gives a rough East-to-West placement in the 
United States. So, we see that they have almost no customers
in the Northeast, but a bar chart by leading digit would be
more appropriate.

47) a) Median 239, IQR 9, Mean 237.6, SD 5.7
b) Because it’s skewed to the left, probably better to report 

Median and IQR.
c) Skewed to the left; may be bimodal. The center is around 239.

The middle 50% of states scored between 233 and 242. 
Alabama, Mississippi, and New Mexico scores were much
lower than other states’ scores.

49. In the year 2004, per capita gasoline use by state in the United
States averaged around 500 gallons per person (mean 488.8, 
median 500.5). States varied in per capita consumption, with a
standard deviation of 68.7 gallons. The only outlier is New York.
The IQR of 96.9 gallons shows that 50% of the states had per
capita consumption of between 447.5 and 544.4 gallons. The 
data appear to be bimodal, so the median and IQR are better 
choices of summary statistics.

CHAPTER 5

1. Answers will vary.
3. Answers will vary.
5. a) Prices appear to be both higher on average and more variable

in Baltimore than in the other three cities. Prices in Chicago
may be slightly higher than in Dallas and Denver, but the
difference is very small.

b) There are outliers on the low end in Baltimore and Chicago
and one high outlier in Dallas, but these do not affect the
overall conclusions reached in part a).

7. a) Essentially symmetric, very slightly skewed to the right with
two high outliers at 36 and 48. Most victims are between the
ages of 16 and 24.

b) The slight increase between ages 22 and 24 is apparent 
in the histogram but not in the boxplot. It may be a second
mode.

c) The median would be the most appropriate measure of center
because of the slight skew and the extreme outliers.

d) The IQR would be the most appropriate measure of spread
because of the slight skew and the extreme outliers.

9. a) About 59% b) Bimodal
c) Some cereals are very sugary; others are healthier low-sugar

brands.
d) Yes
e) Although the ranges appear to be comparable for both groups

(about 28%), the IQR is larger for the adult cereals, indicating
that there’s more variability in the sugar content of the middle
50% of adult cereals.
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11. a)

b) Growth rates in NE/MW states are tightly clustered near 5%.
S/W states are more variable, and bimodal with modes near
14 and 22. The S/W states have an outlier as well. Around all
the modes, the distributions are fairly symmetric.

13. a) They should be put on the same scale, from 0 to 20 days.
b) Lengths of men’s stays appear to vary more than for women.

Men have a mode at 1 day and then taper off from there.
Women have a mode near 5 days, with a sharp drop afterward.

c) A possible reason is childbirth.
15. a) Both girls have a median score of about 17 points per game,

but Scyrine is much more consistent. Her IQR is about 
2 points, while Alexandra’s is over 10.

b) If the coach wants a consistent performer, she should take
Scyrine. She’ll almost certainly deliver somewhere between 
15 and 20 points. But if she wants to take a chance and needs 
a “big game,” she should take Alexandra. Alex scores over 
24 points about a quarter of the time. (On the other hand, she
scores under 11 points as often.)

17. Women appear to marry about 3 years younger than men, but the
two distributions are very similar in shape and spread.

19. (Note: Numerical details may vary.) In general, fuel economy is
higher in cars than in either SUVs or vans. There are numerous out-
liers on both ends for cars and a few high outliers for SUVs. The top
50% of cars gets higher fuel economy than 75% of SUVs and nearly
all vans. On average, SUVs and vans get about the same fuel econ-
omy, although the distribution for vans shows less spread. The
range for vans is about 40 mpg, while for SUVs it is nearly 30 mpg.

21. The class A is 1, class B is 2, and class C is 3.
23. a) Probably slightly left skewed. The mean is slightly below the

median, and the 25th percentile is farther from the median
than the 75th percentile.

b) No, all data are within the fences.
c)

d) The 48 universities graduate, on average, about 68% of fresh-
men “on time,” with percents ranging from 43% to 87%. The
middle 50% of these universities graduate between 59% and
75% of their freshmen in 4 years.

25. a) Who: Student volunteers
What: Memory test
Where, when: Not specified
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How: Students took memory test 2 hours after drinking 
caffeine-free, half-dose caffeine, or high-caffeine soda.
Why: To see if caffeine makes you more alert and aids memory
retention.

b) Drink: categorical; Test score: quantitative.
c)

d) The participants scored about the same with no caffeine 
and low caffeine. The medians for both were 21 points, 
with slightly more variation for the low-caffeine group. 
The high-caffeine group generally scored lower than the other
two groups on all measures of the 5-number summary: min,
lower quartile, median, upper quartile, and max.

27. a) About 36 mph
b) Q1 about 35 mph and Q3 about 37 mph
c) The range appears to be about 7 mph, from about 31 to 

38 mph. The IQR is about 2 mph.
d) We can’t know exactly, but the boxplot may look something

like this:

e) The median winning speed has been about 36 mph, with a
max of about 38 and a min of about 31 mph. Half have run
between about 35 and 37 mph, for an IQR of 2 mph.

29. a) Boys b) Boys c) Girls
d) The boys appeared to have more skew, as their scores were

less symmetric between quartiles. The girls’ quartiles are the
same distance from the median, although the left tail stretches
a bit farther to the left.

e) Girls. Their median and upper quartiles are larger. The lower
quartile is slightly lower, but close.

f)
31.

There appears to be an outlier! This point should be investigated.
We’ll proceed by redoing the plots with the outlier omitted:
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It appears that slow speed provides much greater accuracy. But
the outlier should be investigated. It is possible that slow speed
can induce an infrequent very large distance.

33. a)

b) Mileage for U.S. models is typically lower, although the 
variability is about the same as for cars made elsewhere. The
median for U.S. models is around 21 mpg, compared to 28 for
the others. Half of U.S. models fall below the first quartile of
others. (Other answers possible.)

35. a) Day 16 (but any estimate near 20 is okay).
b) Day 65 (but anything around 60 is okay).
c) Around day 50

37. a) Most of the data are found in the far left of this histogram. The
distribution is very skewed to the right.

b) Re-expressing the data by, for example, logs or square roots
might help make the distribution more nearly symmetric.

39. a) The logarithm makes the histogram more symmetric. It is easy
to see that the center is around 3.5 in log assets.

b) That has a value of around 2,500 million dollars.
c) That has a value of around 1,000 million dollars.

41. a) Fusion time and group.
b) Fusion time is quantitative Group is cate-

gorical.
c) Both distributions are skewed to the right with high outliers.

The boxplot indicates that visual information may reduce fu-
sion time. The median for the Verbal/Visual group seems to be
about the same as the lower quartile of the No/Verbal group.

CHAPTER 6

1. a) 72 oz., 40 oz. b) 4.5 lb, 2.5 lb
3. a) Skewed to the right; mean is higher than median.

b) $350 and $950.
c) Minimum $350. Mean $750. Median $550. Range $1200. 

IQR $600. Q1 $400. SD $400.
d) Minimum $330. Mean $770. Median $550. Range $1320. 

IQR $660. Q1 $385. SD $440.
5.

7. Your score was 2.2 standard deviations higher than the mean
score in the class.

9. 65
11. In January, a high of 55 is not quite 2 standard deviations above

the mean, whereas in July a high of 55 is more than 2 standard de-
viations lower than the mean. So it’s less likely to happen in July.

Q3 = 1350. Median = 1270. IQR = 240.
SD = 120.Mean = 1230.Lowest score = 910.

1units = seconds2.
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APPENDIX C    Part I Review A-31

13. The z-scores, which account for the difference in the distributions
of the two tests, are 1.5 and 0 for Derrick and 0.5 and 2 for Julie.
Derrick’s total is 1.5, which is less than Julie’s 2.5.

15. a) Megan b) Anna
17. a) About 1.81 standard deviations below the mean.

b) 1000 is more unusual than 1250 
19. a) SD is unchanged at 

84 pounds.
b)

21.

23. College professors can have between 0 and maybe 40 (or possibly
50) years’ experience. A standard deviation of 1/2 year is impos-
sible, because many professors would be 10 or 20 SDs away from
the mean, whatever it is. An SD of 16 years would mean that 
2 SDs on either side of the mean is plus or minus 32, for a range
of 64 years. That’s too high. So, the SD must be 6 years.

25. a)

b) 18.6 to 31.0 mpg c) 16%
d) 13.5% e) less than 12.4 mpg

27. Any weight more than 2 standard deviations below the mean, 
or less than pounds, is unusually low. We
expect to see a steer below pounds only
rarely.

29. a)

b) Between 1.0 and 19.8 inches c) 2.5%
d) 34% e) 16%

31. Since the histogram is not unimodal and symmetric, it is not wise
to have faith in numbers from the Normal model.

33. a) 16% b) 3.8%
c) Because the Normal model doesn’t fit well.
d) Distribution is skewed to the right.

35. a) 2.5%
b) 2.5% of the receivers should gain less than , but

that’s impossible, so the model doesn’t fit well.
c) Data are strongly skewed to the right, not symmetric.

37. a) 12.2% b) 71.6% c) 23.3%
39. a) 1259.7 lb b) 1081.3 lb c) 1108 lb to 1196 lb
41. a) 1130.7 lb b) 1347.4 lb c) 113.3 lb
43. a)

b) 30.85% c) 17.00% d) 32 points e) 212.9 points
45. a) 11.1% b) (35.9, 40.5) inches c) 40.5 inches
47. a) 5.3 grams b) 6.4 grams

c) Younger because SD is smaller.

116 140 164 188 212 236 260
Cholesterol (mg/dL)

68%

95%
99.7%

-333 yards

–3.7 1.0 5.7 10.4 15.1 19.8 24.5

Diameter (in.)

68%

95%
99.7%

1152 - 31842 = 900
1152 - 21842 = 984

6.2 12.4 18.6 24.8 31.0 37.2 43.4

mpg

68%

95%
99.7%

SD = 0.401842 = $33.60; IQR = 0.4011022 = $40.80.
median =  0.40111402 -  20 = $436;
Min = 0.4019802 - 20 = $372;

Mean = 0.40111522 = $460.80; SD = 0.401842 = $33.60.

Mean = 1152 - 1000 = 152 pounds;
1z = 1.172.1z = 1.812

PART I REVIEW

1. a)

b) Median 49 cents, IQR 6 cents.
c) The distribution is unimodal and left skewed. The center is

near 50 cents; values range from 42 cents to 53 cents.
3. a) If enough sopranos have a height of 65 inches, this can happen.

b) The distribution of heights for each voice part is roughly
symmetric. The basses are slightly taller than the tenors. 
The sopranos and altos have about the same median height.
Heights of basses and sopranos are more consistent than those
of altos and tenors.

5. a) It means their heights are also more variable.
b) The z-score for women to qualify is 2.40, compared with 1.75

for men, so it is harder for women to qualify.
7. a) Who—People who live near State University

What—Age, attended college? Favorable opinion of State?
When—Not stated
Where—Region around State U.
Why—To report to the university’s directors
How—Sampled and phoned 850 local residents

b) Age—Quantitative (years); attended college?—categorical;
favorable opinion?—categorical.

c) The fact that the respondents know they are being interviewed
by the university’s staff may influence answers.

9. a) These are categorical data, so mean and standard deviation
are meaningless.

b) Not appropriate. Even if it fits well, the Normal model is
meaningless for categorical data.

11. a)

b) The scores on Friday were higher by about 5 points on aver-
age. This is a drop of more than 10% off the average score and
shows that students fared worse on Monday after preparing
for the test on Friday. The spreads are about the same, but the
scores on Monday are a bit skewed to the right.

c)

d) The changes (Friday–Monday) are unimodal and centered
near 4 points, with a spread of about 5 (SD). They are fairly
symmetric, but slightly skewed to the right. Only 3 students
did better on Monday (had a negative difference).
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A-32 APPENDIX C    Answers

13. a) Categorical
b) Go fish. All you need to do is match the denomination. The

denominations are not ordered. (Answers will vary.)
c) Gin rummy. All cards are worth their value in points (face

cards are 10 points). (Answers will vary.)
15. a) Annual mortality rate for males (quantitative) in deaths per

100,000 and water hardness (quantitative) in parts per million.
b) Calcium is skewed right, possibly bimodal. There looks to be 

a mode down near 12 ppm that is the center of a fairly tight
symmetric distribution and another mode near 62.5 ppm that
is the center of a much more spread out, symmetric (almost
uniform) distribution. Mortality, however, appears unimodal
and symmetric with the mode near 1500 deaths per 100,000.

17. a) They are on different scales.
b) January’s values are lower and more spread out.
c) Roughly symmetric but slightly skewed to the left. There are

more low outliers than high ones. Center is around 40 degrees
with an IQR of around 7.5 degrees.

19. a) Bimodal with modes near 2 and 4.5 minutes. Fairly symmetric
around each mode.

b) Because there are two modes, which probably correspond to
two different groups of eruptions, an average might not make
sense.

c) The intervals between eruptions are longer for long eruptions.
There is very little overlap. More than 75% of the short eruptions
had intervals less than about an hour (62.5 minutes), while
more than 75% of the long eruptions had intervals longer than
about 75 minutes. Perhaps the interval could even be used to
predict whether the next eruption will be long or short.

21. a)

The distribution is left skewed with a center of about 15. It has
an outlier between 11 and 12.

b) Even though the distribution is somewhat skewed, the mean
and median are close. The mean is 15.0 and the SD is 1.25.

c) Yes. 11.8 is already an outlier. 9.3 is more than 4.5 SDs below
the mean. It is a very low outlier.

23. If we look only at the overall statistics, it appears that the follow-
up group is insured at a much lower rate than those not traced
(11.1% of the time compared with 16.6%). But most of the follow-
up group were black, who have a lower rate of being insured.
When broken down by race, the follow-up group actually has a
higher rate of being insured for both blacks and whites. So the
overall statistic is misleading and is attributable to the difference
in race makeup of the two groups.

25. a)

b) According to the model, reaction times are symmetric with
center at 1.5 seconds. About 95% of all reaction times are be-
tween 1.14 and 1.86 seconds.

0.96 1.14 1.32 1.50 1.68 1.86 2.04

Reaction time (sec)
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c) 8.2% d) 24.1%
e) Quartiles are 1.38 and 1.62 seconds, so the IQR is 0.24 seconds.
f) The slowest 1/3 of all drivers have reaction times of 1.58 sec-

onds or more.
27. a)

b) Mean 100.25, SD 25.54 pieces of mail.
c) The distribution is somewhat symmetric and unimodal, but

the center is rather flat, almost uniform.
d) 64%. The Normal model seems to work reasonably well, since

it predicts 68%.
29. a) Who—100 health food store customers

What—Have you taken a cold remedy?, and Effectiveness
(scale 1 to 10)
When—Not stated
Where—Not stated
Why—Promotion of herbal medicine
How—In-person interviews

b) Have you taken a cold remedy?—categorical. Effectiveness—
categorical or ordinal.

c) No. Customers are not necessarily representative, and the
Council had an interest in promoting the herbal remedy.

31. a) 38 cars
b) Possibly because the distribution is skewed to the right.
c) Center—median is 148.5 cubic inches. Spread—IQR is 

126 cubic inches.
d) No. It’s bigger than average, but smaller than more than 25%

of cars. The upper quartile is at 231 inches.
e) No. 1.5 IQR is 189, and is negative, so there can’t be

any low outliers. There aren’t any cars with
engines bigger than this, since the maximum has to be at most

f) Because the distribution is skewed to the right, this is probably
not a good approximation.

g) Mean, median, range, quartiles, IQR, and SD all get multiplied
by 16.4.

33. a) 30.4%
b) If this were a random sample of all voters, yes.
c) 36.6% d) 8.8%
e) 23.1% f) 47.0%

35. a) Republican—16,535, Democrat—17,183, Other— 20,666; or
Republican—30.4%, Democrat—31.6%, Other—38.0%.

b)

c) Among voters over 30, political affiliation appears to be
largely unrelated to age. However there is some evidence that
younger voters are less likely to be Republican

d) Voters who identified themselves as “Other” seem to be gen-
erally younger than Democrats or Republicans.
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APPENDIX C    Chapter 7 A-33

37. a) 0.43 hours. b) 1.4 hours.
c) 0.89 hours (or 53.4 minutes).
d) Survey results vary, and the mean and the SD may have

changed.

CHAPTER 7

1. a) Weight in ounces: explanatory; Weight in grams: response.
(Could be other way around.) To predict the weight in grams
based on ounces. Scatterplot: positive, straight, strong (per-
fectly linear relationship).

b) Circumference: explanatory. Weight: response. To predict 
the weight based on the circumference. Scatterplot: positive,
linear, moderately strong.

c) Shoe size: explanatory; GPA: response. To try to predict GPA
from shoe size. Scatterplot: no direction, no form, very weak.

d) Miles driven: explanatory; Gallons remaining: response. To pre-
dict the gallons remaining in the tank based on the miles driven
since filling up. Scatterplot: negative, straight, moderate.

3. a) Altitude: explanatory; Temperature: response. (Other way
around possible as well.) To predict the temperature based on
the altitude. Scatterplot: negative, possibly straight, weak to
moderate.

b) Ice cream cone sales: explanatory. Air-conditioner sales:
response—although the other direction would work as well.
To predict one from the other. Scatterplot: positive, straight,
moderate.

c) Age: explanatory; Grip strength: response. To predict the grip
strength based on age. Scatterplot: curved down, moderate.
Very young and elderly would have grip strength less than
that of adults.

d) Reaction time: explanatory; Blood alcohol level: response. To
predict blood alcohol level from reaction time test. (Other way
around is possible.) Scatterplot: positive, nonlinear, moder-
ately strong.

5. a) None b) 3 and 4 c) 2, 3, and 4
d) 1 and 2 e) 3 and possibly 1

7. There seems to be a very weak—or possibly no—relation be-
tween brain size and performance IQ.

9. a)

b) Unimodal, skewed to the right. The skew.
c) The positive, somewhat linear relation between batch number

and broken pieces.
11. a) 0.006 b) 0.777 c) d)
13. There may be an association, but not a correlation unless the

variables are quantitative. There could be a correlation between
average number of hours of TV watched per week per person
and number of crimes committed per year. Even if there is a
relationship, it doesn’t mean one causes the other.

15. a) Yes. It shows a linear form and no outliers.
b) There is a strong, positive, linear association between drop

and speed; the greater the coaster’s initial drop, the higher the
top speed.

17. The scatterplot is not linear; correlation is not appropriate.
19. The correlation may be near 0. We expect nighttime temperatures

to be low in January, increase through spring and into the sum-
mer months, then decrease again in the fall and winter. The rela-
tionship is not linear.
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21. The correlation coefficient won’t change, because it’s based on 
z-scores. The z-scores of the prediction errors are the same
whether they are expressed in nautical miles or miles.

23. a) Assuming the relation is linear, a correlation of shows
a strong relation in a negative direction.

b) Continent is a categorical variable. Correlation does not apply.
25. a) Actually, yes, taller children will tend to have higher reading

scores, but this doesn’t imply causation.
b) Older children are generally both taller and are better readers.

Age is the lurking variable.
27. a) No. We don’t know this from the correlation alone. There may

be a nonlinear relationship or outliers.
b) No. We can’t tell from the correlation what the form of the

relationship is.
c) No. We don’t know from the correlation coefficient.
d) Yes, the correlation doesn’t depend on the units used to meas-

ure the variables.
29. This is categorical data even though it is represented by numbers.

The correlation is meaningless.
31. a) The association is positive, moderately strong, and roughly

straight, with several states whose HCI seems high for their
median income and one state whose HCI appears low given
its median income.

b) The correlation would still be 0.65.
c) The correlation wouldn’t change.
d) DC would be a moderate outlier whose HCI is high for its me-

dian income. It would lower the correlation slightly.
e) No. We can only say that higher median incomes are associ-

ated with higher housing costs, but we don’t know why. There
may be other economic variables at work.

33. a)

b) Negative, linear, strong. c)
d) There is a strong linear relation in a negative direction be-

tween horsepower and highway gas mileage. Lower fuel
efficiency is associated with higher horsepower.

35.

(Plot could have explanatory and predictor variables swapped.)
Correlation is 0.199. There does not appear to be a relation be-
tween sodium and fat content in burgers, especially without the
low-fat, low-sodium item. The correlation of 0.199 shows a weak
relationship, even with the outlier included.

37. a) Yes, the scatterplot appears to be somewhat linear.
b) As the number of runs increases, the attendance also increases.
c) There is a positive association, but it does not prove that more

fans will come if the number of runs increases. Association
does not indicate causality.

39. A scatterplot shows a generally straight scattered pattern with no
outliers. The correlation between Drop and Duration is 0.35, indi-
cating that rides on coasters with greater initial drops generally
last somewhat longer, but the association is weak.
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A-34 APPENDIX C    Answers

41. a)

The relation between position and distance is nonlinear, with a
positive direction. There is very little scatter from the trend.

b) The relation is not linear.
c)

The relation between position number and log of distance
appears to be roughly linear.

CHAPTER 8

1. 281 milligrams
3. The potassium content is actually lower than the model predicts

for a cereal with that much fiber.
5. The model predicts that cereals will have approximately 27 more

milligrams of potassium for every additional gram of fiber.
7. 81.5%
9. The true potassium contents of cereals vary from the predicted

amounts with a standard deviation of 30.77 milligrams.
11. a) Model is appropriate.

b) Model is not appropriate. Relationship is nonlinear.
c) Model may not be appropriate. Spread is changing.

13. 300 pounds/foot. It’s ridiculous to suggest an extra foot in length
would add 3, 30, or 3000 pounds to a car’s weight.

15. a) Price (in thousands of dollars) is y and Size (in square feet) is x.
b) Slope is thousands of $ per square foot.
c) Positive. Larger homes should cost more.

17. A linear model on Size accounts for 71.4% of the variation in
home Price.

19. a) 0.845; because larger homes cost more.
b) Price should be 0.845 SDs above the mean in price.
c) Price should be 1.690 SDs below the mean in price.

21. a) Price increases by about or $61.00, per addi-
tional sq ft.

b) 230.82 thousand, or $230,820.
c) $115,020; $6000 is the residual.

23. a) does not tell whether the model is appropriate, but meas-
ures the strength of the linear relationship. High could also
be due to an outlier.

b) Predictions based on a regression line are estimates of average
values of y for a given x. The actual wingspan will vary around
the prediction.

25. a) Probably not. Your score is better than about 97.5% of people,
assuming scores follow the Normal model. Your next score is
likely to be closer to the mean.

b) The friend should probably retake the test. His score is better
than only about 16% of people. His score is likely to be closer
to the mean.

27. a) Probably. The residuals show some initially low points, but
there is no clear curvature.
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b) The linear model on Tar content accounts for 92.4% of the vari-
ability in Nicotine.

29. a)
b) Nicotine should be 1.922 SDs below average.
c) Tar should be 0.961 SDs above average.

31. a)
b) 0.414 mg
c) Predicted nicotine content increases by 0.065 mg of nicotine

per additional milligram of tar.
d) We’d expect a cigarette with no tar to have 0.154 mg of nicotine.
e) 0.1094 mg

33. a) Yes. The relationship is straight enough, with a few outliers.
The spread increases a bit for states with large median in-
comes, but we can still fit a regression line.

b) From summary statistics: from
original data: 

c) From summary statistics: predicted from 
original data: 324.87.

d) 223.09 e) f)
35. a)

b) Yes. Both variables are quantitative; the plot is straight 
(although flat); there are no apparent outliers; the plot does
not appear to change spread throughout the range of Age.

c) $559.65; $594.94
d) 0.14%
e) No. The plot is nearly flat. The model explains almost none of

the variation in Total Yearly Purchases.
37. a) Moderately strong, fairly straight, and positive. Possibly some

outliers (higher-than-expected math scores).
b) The student with 500 verbal and 800 math.
c) Positive, fairly strong linear relationship. 46.9% of variation in

math scores is explained by verbal scores.
d)
e) Every point of verbal score adds 0.662 points to the predicted

average math score.
f) 548.5 points g) 53.0 points

39. a) 0.685 b)
c) The observed verbal score is higher than predicted from the

math score
d) 516.7 points. e) 559.6 points
f) Regression to the mean. Someone whose math score is below av-

erage is predicted to have a verbal score below average, but not
as far (in SDs). So if we use that verbal score to predict math, they
will be even closer to the mean in predicted math score than their
observed math score. If we kept cycling back and forth, eventu-
ally we would predict the mean of each and stay there.

41. a)

b) Negative, linear, strong. c) Yes. d)
e) Age accounts for 94.4% of the variation in Advertised Price.
f) Other factors contribute—options, condition, mileage, etc.

43. a)
b) Every extra year of age decreases average value by $959.
c) The average new Corolla costs a predicted $14,286.
d) $7573
e) Negative residual. Its price is below the predicted value for 

its age.
f)
g) No. After age 14, the model predicts negative prices. The 

relationship is no longer linear.
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Verbal = 162.1 + 0.71 * Math.

Math = 217.7 + 0.662 * Verbal.

Total = 539.803 + 1.103Age
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HCI = 324.93;
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HCI = -156.50 + 0.0107 MFI;

Nicotine = 0.15403 + 0.065052 Tar

r = 0.961
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APPENDIX C    Chapter 9 A-35

45. a)

b) 92.3% of the variation in calories can be accounted for by the
fat content.

c)
d)

Residuals show no clear pattern, so the model seems 
appropriate.

e) Could say a fat-free burger still has 211.0 calories, but this is
extrapolation (no data close to 0).

f) Every gram of fat adds 11.06 calories, on average.
g) 553.5 calories.

47. a) The regression was for predicting calories from fat, not the
other way around.

b) . Predict 34.8 grams of fat.
49. a)

b) Residuals look randomly scattered around 0, so conditions are
satisfied.

c) % Body Fat increases, on average, by 0.25 percent per pound of
Weight.

d) Reliable is relative. is 48.5%, but residuals have a standard
deviation of 7%, so variation around the line is large.

e) 0.9 percent.
51. a) High-jump height

is lower, on average, by 0.00671 meters per additional second
of 800-m race time.

b) 16.4%
c) Yes, the slope is negative. Faster runners tend to jump higher.
d) There is a slight tendency for less variation in high-jump

height among the slower runners than among the faster ones.
e) Not especially. The residual standard deviation is 0.060 meters,

which is not much smaller than the SD of all high jumps 
(0.066 meters). The model doesn’t appear to do a very good
job of predicting.

53. The sum of the squared vertical distances to any other line would
be greater than 1790.

CHAPTER 9

1. a) The trend appears to be somewhat linear up to about 1940, but
from 1940 to about 1970 the trend appears to be nonlinear.
From 1975 or so to the present, the trend appears to be linear.

b) Relatively strong for certain periods.
c) No, as a whole the graph is clearly nonlinear. Within certain

periods (ex: 1975 to the present) the correlation is high.
d) Overall, no. You could fit a linear model to the period from

1975 to 2003, but why? You don’t need to interpolate, since
every year is reported, and extrapolation seems dangerous.

HighJump = 2.681 - 0.00671 * 800mTime.

R2

% Body Fat = -27.4 + 0.25 * Weight.
Fat = -15.0 + 0.083 * Calories
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3. a) The relationship is not straight.
b) It will be curved downward.
c) No. The relationship will still be curved.

5. a) No. We need to see the scatterplot first to see if the conditions
are satisfied, and models are always wrong.

b) No, the linear model might not fit the data everywhere.
7. a) Millions of dollars per minute of run time.

b) Costs for movies increase at the same rate per minute.
c) On average dramas cost about $20 million less for the same

runtime.
9. a) The use of the Oakland airport has been growing at about

59,700 passengers/year, starting from about 282,000 in 1990.
b) 71% of the variation in passengers is accounted for by this model.
c) Errors in predictions based on this model have a standard

deviation of 104,330 passengers.
d) No, that would extrapolate too far from the years we’ve 

observed.
e) The negative residual is September 2001. Air traffic was 

artificially low following the attacks on 9/11.
11. a) 1) High leverage, small residual.

2) No, not influential for the slope.
3) Correlation would decrease because outlier has large 

and increasing correlation.
4) Slope wouldn’t change much because the outlier is in line

with other points.
b) 1) High leverage, probably small residual.

2) Yes, influential.
3) Correlation would weaken, increasing toward zero.
4) Slope would increase toward 0, since outlier makes it

negative.
c) 1) Some leverage, large residual.

2) Yes, somewhat influential.
3) Correlation would increase, since scatter would decrease.
4) Slope would increase slightly.

d) 1) Little leverage, large residual.
2) No, not influential.
3) Correlation would become stronger and become more 

negative because scatter would decrease.
4) Slope would change very little.

13. 1) e 2) d 3) c 4) b 5) a
15. Perhaps high blood pressure causes high body fat, high body fat

causes high blood pressure, or both could be caused by a lurking
variable such as a genetic or lifestyle issue.

17. a) The graph shows that, on average, students progress at about
one reading level per year. This graph shows averages for each
grade. The linear trend has been enhanced by using averages.

b) Very close to 1.
c) The individual data points would show much more scatter,

and the correlation would be lower.
d) A slope of 1 would indicate that for each 1-year grade level

increase, the average reading level is increasing by 1 year.
19. a) Cost decreases by $2.13 per degree of average daily Temp. So

warmer temperatures indicate lower costs.
b) For an avg. monthly temperature of , the cost is predicted

to be $133.
c) Too high; the residuals (observed predicted) around 

are negative, showing that the model overestimates the costs.
d) $111.70 e) About $105.70
f) No, the residuals show a definite curved pattern. The data are

probably not linear.
g) No, there would be no difference. The relationship does not

depend on the units.
21. a) 0.88

b) Interest rates during this period grew at about 0.25% per year,
starting from an interest rate of about 0.64%.

c) Substituting 50 in the model yields a prediction of about 13%.
d) Not really. Extrapolating 20 years beyond the end of these data

would be dangerous and unlikely to be accurate.

32°F-

0°F
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23. a) The two models fit comparably well, but they have very
different slopes.

b) This model predicts the interest rate in 2000 to be 3.24%, much
lower than the other model predicts.

c) We can trust the new predicted value because it is in the mid-
dle of the data used for the regression.

d) The best answer is “I can’t predict that.”
25. a) Stronger. Both slope and correlation would increase.

b) Restricting the study to nonhuman animals would justify it.
c) Moderately strong.
d) For every year increase in life expectancy, the gestation period

increases by about 15.5 days, on average.
e) About 270.5 days.

27. a) Removing hippos would make the association stronger, since
hippos are more of a departure from the pattern.

b) Increase.
c) No, there must be a good reason for removing data points.
d) Yes, removing it lowered the slope from 15.5 to 11.6 days per

year.
29. a) Answers may vary. Using the data for 1955–2000 results in a

scatterplot that is relatively linear with some curvature. The
residuals plot shows a definite trend, indicating that the data
are not linear. If you used the line, for 2010 the predicted age is
26.07 years.

b) Not much, since the data are not truly linear and 2010 is 10 years
from the last data point (extrapolating is risky).

c) No, that extrapolation of more than 50 years would be absurd.
There’s no reason to believe the trend from 1955 to 2000 will
continue.

31.

a) Except for the outlier, Costa Rica, the data appear to have a
linear form in a negative direction.

b) The outlier is Costa Rica, whose data appear to be wrong,
with 25 births per woman. That’s impossible.

c) With Costa Rica, and R-squared indicating
that 2.8% of the variation in Life Expectancy is explained by the
variation in Births per Woman. Without Costa Rica, 
and R-squared indicating that 63.3% of the variation
in Life Expectancy is explained by the variation in Births/Woman.

d) With Costa Rica, without
Costa Rica, 

e) The model with Costa Rica is not appropriate. The residuals
plot shows a distinct outlier, which is Costa Rica. Removing
Costa Rica gives a better residuals plot, suggesting that the
linear equation is more appropriate.

f) With Costa Rica, the slope is near 0, suggesting that the linear
model is not very useful. The y-intercept suggests that with no
births, the life expectancy is about 72.6 years. Without Costa
Rica, the slope is indicating that an average increase 
of one child per woman predicts a lower life expectancy of
4.44 years, on average. The y-intercept indicates that a country
with a birth rate of zero would have a life expectancy of 
84.5 years. This is extrapolation.

g) While there is an association, there is no reason to expect
causality. Lurking variables may be involved.

-4.44,

Life Expectancy = 84.5 - 4.44 Births.
Life Expectancy = 72.6 + 0.15 Births;

= 63.3%,
r = -0.796

= 2.8%,r = 0.168

Births/woman

80

76

72

68

64

Li
fe

 E
xp

ec
ta

nc
y

5 10 15 20 25

33. a) The scatterplot is clearly nonlinear; however, the last few
years—say, from 1970 on—do appear to be linear.

b) Using the data from 1970 to 2006 gives and
. Predicted CPI in 

(an extrapolation of doubtful accuracy).

CHAPTER 10

1. a) No re-expression needed.
b) Re-express to straighten the relationship.
c) Re-express to equalize spread.

3. a) There’s an annual pattern in when people fly, so the residuals
cycle up and down.

b) No, this kind of pattern can’t be helped by re-expression.
5. a) 16.44 b) 7.84 c) 0.36 d) 1.75 e) 27.59
7. a) Fairly linear, negative, strong.

b) Gas mileage decreases an average 7.652 mpg for each
thousand pounds of weight.

c) No. Residuals show a curved pattern.
9. a) Residuals are more randomly spread around 0, with some low

outliers.
b)
c) For each additional 1000 pounds of Weight, an additional 

1.178 gallons will be needed to drive 100 miles.
d) 21.06 miles per gallon.

11. a) Although more than 97% of the variation in GDP can be
accounted for by this model, we should examine a scatterplot
of the residuals to see if it’s appropriate.

b) No. The residuals show clear curvature.
13. Yes, the pattern in the residuals is somewhat weaker.
15. a)

But residuals have a curved shape, so linear model is not
appropriate.

b)

linearizes the plot.
c)
d) 263.4 feet. e) 390.2 feet (an extrapolation)

Predicted 2Distance = 3.30 + 0.235 * Speed.
2Distance
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Fuel Consumption = 0.625 + 1.178 * Weight.

2016 = 241.34CPI = -9052.42 + 4.61 Year
r = 0.997
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f) Fairly confident, since and s is small.
17. a) The plot looks fairly straight. (It is okay to see a bend in the

plot; there’s one there.)

b)

The residuals plot shows a strong bend.
c) log(Salary) works well.
d)

19. a)

Log(Distance) against position works pretty well.

b) Pluto’s residual is not especially larger in the log scale.
However, a model without Pluto predicts the 9th planet
should be 5741 million miles. Pluto, at “only” 3707 million
miles, doesn’t fit very well, giving support to the argument
that Pluto doesn’t behave like a planet.

21. The predicted log(Distance) of Eris is 3.685, corresponding to a
distance of 4841 million miles. That’s short of the actual average
distance of 6300 million miles.

23. a)

The model is exact.
b) 36 board feet. c) 1024 board feet.

25.

log Life = 1.685 + 0.18497 log Decade
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R2
= 98.4%, 27. The relationship cannot be made straight by the methods of this

chapter.

29. a) b) 52.10 years
c) No; the residuals plot still shows a pattern.

PART II REVIEW

1. % over 50, 0.69.
% under 20, .
% Graduating on time, .
% Full-time Faculty, 0.09

3. a) There does not appear to be a linear relationship.
b) Nothing, there is no reason to believe that the results for the Fin-

ger Lakes region are representative of the vineyards of the world.
c)
d) Only 2.7 % of the variation in case price is accounted for by

the ages of vineyards. Most of that is due to two outliers. We
are better off using the mean price rather than this model.

5. a)
b) Each year, the number of twins born in a year increases, on

average, by approximately 2618.25.
c) 143,092.5 births. The scatterplot appears to be somewhat

linear, but there is some curvature in the pattern. There is no
reason to believe that the increase will continue to be linear 
5 years beyond the data.

d) The residuals plot shows a definite curved pattern, so the
relation is not linear.

7. a)
b) Negative, not strong, somewhat linear, but with more varia-

tion as pH increases.
c) The BCI would also be average.
d) The predicted BCI will be 1.56 SDs of BCI below the mean BCI.

9. a)
(in 1000s).

b) According to the model, for each increase of 10,000 motorboat
registrations, the number of manatees killed increases by ap-
proximately 1.315.

c) If there were 0 motorboat registrations, the number of manatee
deaths would be This is obviously a silly extrapolation.

d) The predicted number is 82.41 deaths. The actual number of
deaths was 79. The residual is The model
overestimated the number of deaths by 3.41.

e) Negative residuals would suggest that the actual number of
deaths was lower than the predicted number.

f) Over time, the number of motorboat registrations has in-
creased and the number of manatee kills has increased. The
trend may continue. Extrapolation is risky, however, because
the government may enact legislation to protect the manatee.

11. a) b) 96.9% c) 32.95 mph d) 1.66 mph
e) Slope will increase.
f) Correlation will weaken (become less negative).
g) Correlation is the same, regardless of units.

13. a) Weight (but unable to verify linearity).
b) As weight increases, mileage decreases.
c) Weight accounts for 81.5% of the variation in Fuel Efficiency.

15. a)
b) Thousands. For the equation to have predicted values between 60

and 160, the X values would have to be in thousands of pounds.
c) Yes. The residual plot does not show any pattern.
d) 115.0 horsepower.

17. a) The scatterplot shows a fairly strong linear relation in a posi-
tive direction. There seem to be two distinct clusters of data.

b)
c) The time between eruptions increases by about 10.4 minutes

per minute of Duration on average.

Interval = 33.967 , 10.358 * Duration.

Horsepower = 3.50 + 34.314 * Weight.

-0.984

79 - 82.41 = -3.41.

-45.67.

Manatee Deaths = -45.67 * 0.1315 Powerboat Registrations

-0.520

TwinBirths = -5119590 + 2618.25 * Year.

CasePrice = 92.77 + 0.567 * Years.

-0.51
-0.71

1Left = 8.465 - 0.069261Age2
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d) Since 77% of the variation in Interval is accounted for by
Duration and the error standard deviation is 6.16 minutes, the
prediction will be relatively accurate.

e) 75.4 minutes.
f) A residual is the observed value minus the predicted value. So

the minutes, indicating that the
model underestimated the interval in this case.

19. a) Although r is high, you must look at the scatterplot
and verify that the relation is linear in form.

b)

The association between diameter and age appears to be
strong, somewhat linear, and positive.

c)
d)

The residuals show a curved pattern (and two outliers).
e) The residuals for five of the seven largest trees (15 in. or

larger) are positive, indicating that the predicted values
underestimate the age.

21. Most houses have areas between 1000 and 5000 square feet.
Increasing 1000 square feet would result in either 
8 thousand dollars, thousand dollars, 
800 thousand dollars, or thousand dollars. Only
$80,000 is reasonable, so the slope must be 0.08.

23. a) The model predicts % smoking from year, not the other way
around.

b)
c) The smallest % smoking given is 12.7, and an extrapolation to

is probably too far from the given data. The prediction is
not very reliable in spite of the strong correlation.

25. The relation shows a negative direction, with a somewhat linear
form, but perhaps with some slight curvature. There are several
model outliers.

27. a) 71.9%
b) As latitude increases, the January temperature decreases.
c)
d) As the latitude increases by 1 degree, the average January

temperature drops by about 2.11 degrees, on average.
e) The y-intercept would indicate that the average January

temperature is 108.8 when the latitude is 0. However, this is
extrapolation and may not be meaningful.

f ) 24.4 degrees.
g) The equation underestimates the average January temperature.

29. a) The scatterplot shows a strong, linear, positive association.
b) There is an association, but it is likely that training and tech-

nique have increased over time and affected both jump
performances.

January Temperature = 108.80 - 2.111 * Latitude.

x = 0

Year = 2027.91 - 202.74 * % Smoking. 

1000(8) = 8000
1000(.8) =1000(.08) = 80
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c) Neither; the change in units does not affect the correlation.
d) The long-jumper would jump 0.925 SDs above the mean long

jump, on average.
31. a) No relation; the correlation would probably be close to 0.

b) The relation would have a positive direction and the correla-
tion would be strong, assuming that students were studying
French in each grade level. Otherwise, no correlation.

c) No relation; correlation close to 0.
d) The relation would have a positive direction and the correla-

tion would be strong, since vocabulary would increase with
each grade level.

33.
Each minute extra at the table results in 3.08 fewer calories being
consumed, on average. Perhaps the hungry children eat fast and
eat more.

35. There seems to be a strong, positive, linear relationship with one
high-leverage point (Northern Ireland) that makes the overall 
quite low. Without that point, the increases to 61.5%. Of
course, these data are averaged across thousands of households,
so the correlation appears to be higher than it would be for indi-
viduals. Any conclusions about individuals would be suspect.

37. a) 3.842 b) 501.187 c) 4.0
39. a) 30,818 pounds.

b) 1302 pounds.
c) 31,187.6 pounds.
d) I would be concerned about using this relation if we needed

accuracy closer than 1000 pounds or so, as the residuals are
more than pounds.

e) Negative residuals will be more of a problem, as the predicted
weight would overestimate the weight of the truck; trucking
companies might be inclined to take the ticket to court.

41. The original data are nonlinear, with a significant curvature.
Using reciprocal square root of diameter gave a scatterplot that 
is nearly linear:

CHAPTER 11

1. Yes. You cannot predict the outcome beforehand.
3. A machine pops up numbered balls. If it were truly random, 

the outcome could not be predicted and the outcomes would be
equally likely. It is random only if the balls generate numbers in
equal frequencies.

5. Use two-digit numbers 00–99; let 00–02 = defect, 03–99 = no defect
7. a) 45, 10 b) 17, 22
9. If the lottery is random, it doesn’t matter which number you

play; all are equally likely to win.
11. a) The outcomes are not equally likely; for example, tossing 

5 heads does not have the same probability as tossing 0 or 
9 heads, but the simulation assumes they are equally likely.

b) The even-odd assignment assumes that the player is equally
likely to score or miss the shot. In reality, the likelihood of
making the shot depends on the player’s skill.

c) The likelihood for the first ace in the hand is not the same as
for the second or third or fourth. But with this simulation, 
the likelihood is the same for each. (And it allows you to get 
5 aces, which could get you in trouble in a real poker game!)

13. The conclusion should indicate that the simulation suggests that
the average length of the line would be 3.2 people. Future results
might not match the simulated results exactly.

15. a) The component is one voter voting. An outcome is a vote for
our candidate or not. Use two random digits, giving 00–54 
a vote for your candidate and 55–99 for the underdog.

b) A trial is 100 votes. Examine 100 two-digit random numbers,
and count how many people voted for each candidate.
Whoever gets the majority of votes wins that trial.

c) The response variable is whether the underdog wins or not.

1/2Drain Time = 0.0024 + 0.219 Diameter.

;1000

R2
R2

Calories = 560.7 - 3.08 * Time.

BOCK_AppC_SE_0321570448.qxd  12/18/08  3:59 PM  Page 38



APPENDIX C    Chapter 13 A-39

17. Answers will vary, but average answer will be about 51%.
19. Answers will vary, but average answer will be about 26%.
21. a) Answers will vary, but you should win about 10% of the time.

b) You should win at the same rate with any number.
23. Answers will vary, but you should win about 10% of the time.
25. Answers will vary, but average answer will be about 1.9 tests.
27. Answers will vary, but average answer will be about 1.24 points.
29. Do the simulation in two steps. First simulate the payoffs. Then

count until $500 is reached. Answers will vary, but average
should be near 10.2 customers.

31. Answers will vary, but average answer will be about 3 children.
33. Answers will vary, but average answer will be about 7.5 rolls.
35. No, it will happen about 40% of the time.
37. Answers will vary, but average answer will be about 37.5%.
39. Three women will be selected about 7.8% of the time.

CHAPTER 12

1. a) No. It would be nearly impossible to get exactly 500 males and
500 females from every country by random chance.

b) A stratified sample, stratified by whether the respondent is
male or female.

3. a) Voluntary response.
b) We have no confidence at all in estimates from such studies.

5. a) The population of interest is all adults in the United States
aged 18 and older.

b) The sampling frame is U.S. adults with telephones.
c) Some members of the population (e.g, many college students)

don’t have landline phones, which could create a bias.
7. a) Population—All U.S. adults.

b) Parameter—Proportion who have used and benefited from
alternative medicine.

c) Sampling Frame—All Consumers Union subscribers.
d) Sample—Those who responded.
e) Method—Questionnaire to all (nonrandom).
f) Bias—Nonresponse. Those who respond may have strong feel-

ings one way or another.
9. a) Population—Adults.

b) Parameter—Proportion who think drinking and driving is a
serious problem.

c) Sampling Frame—Bar patrons.
d) Sample—Every 10th person leaving the bar.
e) Method—Systematic sampling (may be random).
f ) Bias—Those interviewed had just left a bar. They may

think drinking and driving is less of a problem than do
other adults.

11. a) Population—Soil around a former waste dump.
b) Parameter—Concentrations of toxic chemicals.
c) Sampling Frame—Accessible soil around the dump.
d) Sample—16 soil samples.
e) Method—Not clear.
f) Bias—Don’t know if soil samples were randomly chosen. 

If not, may be biased toward more or less polluted soil.
13. a) Population—Snack food bags.

b) Parameter—Weight of bags, proportion passing inspection.
c) Sampling Frame—All bags produced each day.
d) Sample—Bags in 10 randomly selected cases, 1 bag from each

case for inspection.
e) Method—Multistage random sampling.
f) Bias—Should be unbiased.

15. Bias. Only people watching the news will respond, and their
preference may differ from that of other voters. The sampling
method may systematically produce samples that don’t represent
the population of interest.

17. a) Voluntary response. Only those who see the ad, have Internet
access, and feel strongly enough will respond.

b) Cluster sampling. One school may not be typical of all.

c) Attempted census. Will have nonresponse bias.
d) Stratified sampling with follow-up. Should be unbiased.

19. a) This is a multistage design, with a cluster sample at the first
stage and a simple random sample for each cluster.

b) If any of the three churches you pick at random is not repre-
sentative of all churches, then you’ll introduce sampling error
by the choice of that church.

21. a) This is a systematic sample.
b) The sampling frame is patrons willing to wait for the roller

coaster on that day at that time. It should be representative of
the people in line, but not of all people at the amusement park.

c) It is likely to be representative of those waiting for the roller
coaster. Indeed, it may do quite well if those at the front of the
line respond differently (after their long wait) than those at the
back of the line.

23. a) Answers will definitely differ. Question 1 will probably get
many “No” answers, while Question 2 will get many “Yes”
answers. This is response bias.

b) “Do you think standardized tests are appropriate for deciding
whether a student should be promoted to the next grade?”
(Other answers will vary.)

25. a) Biased toward yes because of “pollute.” “Should companies
be responsible for any costs of environmental cleanup?”

b) Biased toward no because of “old enough to serve in the
military.” “Do you think the drinking age should be lowered
from 21?”

27. a) Not everyone has an equal chance. Misses people with un-
listed numbers, or without landline phones, or at work.

b) Generate random numbers and call at random times.
c) Under the original plan, those families in which one person

stays home are more likely to be included. Under the second
plan, many more are included. People without landline
phones are still excluded.

d) It improves the chance of selected households being included.
e) This takes care of phone numbers. Time of day may be an

issue. People without landline phones are still excluded.
29. a) Answers will vary.

b) Your own arm length. Parameter is your own arm length;
population is all possible measurements of it.

c) Population is now the arm lengths of you and your friends.
The average estimates the mean of these lengths.

d) Probably not. Friends are likely to be of the same age and not
very diverse or representative of the larger population.

31. a) Assign numbers 001 to 120 to each order. Use random num-
bers to select 10 transactions to examine.

b) Sample proportionately within each type. (Do a stratified
random sample.)

33. a) Select three cases at random; then select one jar randomly
from each case.

b) Use random numbers to choose 3 cases from numbers 61
through 80; then use random numbers between 1 and 12 to
select the jar from each case.

c) No. Multistage sampling.
35. a) Depends on the Yellow Page listings used. If from regular

(line) listings, this is fair if all doctors are listed. If from ads,
probably not, as those doctors may not be typical.

b) Not appropriate. This cluster sample will probably contain
listings for only one or two business types.

CHAPTER 13

1. a) No. There are no manipulated factors. Observational study.
b) There may be lurking variables that are associated with both

parental income and performance on the SAT.
3. a) This is a retrospective observational study.

b) That’s appropriate because MS is a relatively rare disease.

BOCK_AppC_SE_0321570448.qxd  12/18/08  3:59 PM  Page 39



A-40 APPENDIX C    Answers

19. a) Experiment.
b) Athletes with hamstring injuries.
c) 1 factor: type of exercise program (2 levels).
d) 2 treatments.
e) Time to return to sports.
f ) Completely randomized.
g) No blinding—subjects must know what kind of exercise

they do.
h) Can determine which of the two exercise programs is more

effective.
21. They need to compare omega-3 results to something. Perhaps

bipolarity is seasonal and would have improved during the ex-
periment anyway.

23. a) Subjects’ responses might be related to many other factors
(diet, exercise, genetics, etc). Randomization should equalize
the two groups with respect to unknown factors.

b) More subjects would minimize the impact of individual vari-
ability in the responses, but the experiment would become
more costly and time consuming.

25. People who engage in regular exercise might differ from others
with respect to bipolar disorder, and that additional variability
could obscure the effectiveness of this treatment.

27. Answers may vary. Use a random-number generator to ran-
domly select 24 numbers from 01 to 24 without replication. 
Assign the first 8 numbers to the first group, the second 8 numbers
to the second group, and the third 8 numbers to the third group.

29. a) First, they are using athletes who have a vested interest in the
success of the shoe by virtue of their sponsorship. They
should choose other athletes. Second, they should randomize
the order of the runs, not run all the races with their shoes sec-
ond. They should blind the athletes by disguising the shoes 
if possible, so they don’t know which is which. The timers
shouldn’t know which athletes are running with which shoes,
either. Finally, they should replicate several times, since times
will vary under both shoe conditions.

b) Because of the problems in (a), the results they obtain may 
favor their shoes. In addition, the results obtained for Olympic
athletes may not be the same as for the general runner.

31. a) Allowing athletes to self-select treatments could confound the
results. Other issues such as severity of injury, diet, age, etc.,
could also affect time to heal; randomization should equalize
the treatment groups with respect to any such variables.

b) A control group could have revealed whether either exercise
program was better (or worse) than just letting the injury heal.

c) Doctors who evaluated the athletes to approve their return to
sports should not know which treatment the subject had.

d) It’s hard to tell. The difference of 15 days seems large, but the
standard deviations indicate that there was a great deal of
variability in the times.

33. a) The differences among the Mozart and quiet groups were more
than would have been expected from sampling variation.

b)

c) The Mozart group seems to have the smallest median differ-
ence and thus the least improvement, but there does not 
appear to be a significant difference.

d) No, if anything, there is less improvement, but the difference
does not seem significant compared with the usual variation.

35. a) Observational, prospective study.
b) The supposed relation between health and wine consumption

might be explained by the confounding variables of income
and education.

c) None of these. While the variables have a relation, there is no
causality indicated for the relation.

Pretest Post-test

Music by Glass

Mozart Piano sonata

Silence

c) The subjects were U.S. military personnel, some of whom had
developed MS.

d) The variables were the vitamin D blood levels and whether or
not the subject developed MS.

5. a) This was a randomized, placebo-controlled experiment.
b) Yes, such an experiment is the right way to determine whether

black cohosh has an effect.
c) 351 women aged 45 to 55 who reported at least two hot flashes

a day.
d) The treatments were black cohosh, a multiherb supplement, 

a multiherb supplement plus advice, estrogen, and a placebo.
The response was the women’s symptoms (presumably 
frequency of hot flashes).

7. a) Experiment.
b) Bipolar disorder patients.
c) Omega-3 fats from fish oil, two levels.
d) 2 treatments.
e) Improvement (fewer symptoms?).
f) Design not specified.
g) Blind (due to placebo), unknown if double-blind.
h) Individuals with bipolar disease improve with high-dose

omega-3 fats from fish oil.
9. a) Observational study.

b) Prospective.
c) Men and women with moderately high blood pressure and

normal blood pressure, unknown selection process.
d) Memory and reaction time.
e) As there is no random assignment, there is no way to know that

high blood pressure caused subjects to do worse on memory and
reaction-time tests. A lurking variable may also be the cause.

11. a) Experiment.
b) Postmenopausal women.
c) Alcohol—2 levels; blocking variable—estrogen supplements 

(2 levels).
d) 1 factor (alcohol) at 2 levels 2 treatments.
e) Increase in estrogen levels.
f ) Blocked.
g) Not blind.
h) Indicates that alcohol consumption for those taking estrogen

supplements may increase estrogen levels.
13. a) Observational study.

b) Retrospective.
c) Women in Finland, unknown selection process with data from

church records.
d) Women’s lifespans.
e) As there is no random assignment, there is no way to know

that having sons or daughters shortens or lengthens the life-
span of mothers.

15. a) Observational study.
b) Prospective.
c) People with or without depression, unknown selection

process.
d) Frequency of crying in response to sad situations.
e) There is no apparent difference in crying response (to sad

movies) for depressed and nondepressed groups.
17. a) Experiment.

b) People experiencing migraines.
c) 2 factors (pain reliever and water temperature), 2 levels each.
d) 4 treatments.
e) Level of pain relief.
f ) Completely randomized over 2 factors.
g) Blind, as subjects did not know if they received the pain med-

ication or the placebo, but not blind, as the subjects will know
if they are drinking regular or ice water.

h) It may indicate whether pain reliever alone or in combination
with ice water gives pain relief, but patients are not blinded to
ice water, so placebo effect may also be the cause of any relief
seen caused by ice water.

=
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37. a) Arrange the 20 containers in 20 separate locations. Use a 
random-number generator to identify the 10 containers that
should be filled with water.

b) Guessing, the dowser should be correct about 50% of the time.
A record of 60% (12 out of 20) does not appear to be signifi-
cantly different.

c) Answers may vary. You would need to see a high level of 
success—say, 90% to 100%, that is, 18 to 20 correct.

39. Randomly assign half the reading teachers in the district to use
each method. Students should be randomly assigned to teachers
as well. Make sure to block both by school and grade (or control
grade by using only one grade). Construct an appropriate read-
ing test to be used at the end of the year, and compare scores.

41. a) They mean that the difference is higher than they would ex-
pect from normal sampling variability.

b) An observational study.
c) No. Perhaps the differences are attributable to some confound-

ing variable (e.g., people are more likely to engage in riskier
behaviors on the weekend) rather than the day of admission.

d) Perhaps people have more serious accidents and traumas on
weekends and are thus more likely to die as a result.

43. Answers may vary. This experiment has 1 factor (pesticide), at 
3 levels (pesticide A, pesticide B, no pesticide), resulting in 3
treatments. The response variable is the number of beetle larvae
found on each plant. Randomly select a third of the plots to be
sprayed with pesticide A, a third with pesticide B, and a third
with no pesticide (since the researcher also wants to know
whether the pesticides even work at all). To control the experi-
ment, the plots of land should be as similar as possible with re-
gard to amount of sunlight, water, proximity to other plants, etc.
If not, plots with similar characteristics should be blocked together.
If possible, use some inert substance as a placebo pesticide on the
control group, and do not tell the counters of the beetle larvae
which plants have been treated with pesticides. After a given pe-
riod of time, count the number of beetle larvae on each plant and
compare the results.

45. Answers may vary. Find a group of volunteers. Each volunteer
will be required to shut off the machine with his or her left hand
and right hand. Randomly assign the left or right hand to be used
first. Complete the first attempt for the whole group. Now repeat
the experiment with the alternate hand. Check the differences in
time for the left and right hands.

47. a) Jumping with or without a parachute.
b) Volunteer skydivers (the dimwitted ones).
c) A parachute that looks real but doesn’t work.
d) A good parachute and a placebo parachute.
e) Whether parachutist survives the jump (or extent of injuries).
f) All should jump from the same altitude in similar weather

conditions and land on similar surfaces.
g) Randomly assign people the parachutes.
h) The skydivers (and the people involved in distributing the

parachute packs) shouldn’t know who got a working chute.
And the people evaluating the subjects after the jumps should
not be told who had a real parachute either!

PART III REVIEW

1. Observational prospective study. Indications of behavior differ-
ences can be seen in the two groups. May show a link between
premature birth and behavior, but there may be lurking variables
involved.

Plots
of

corn

Count the
number of
beetle larvae
on each plant
and compare

Group 1 – pesticide A 

Group 2 – pesticide B

Group 3 – no pesticide

R
a
n
d
o
m

3. Experiment, matched by gender and weight, randomization
within blocks of two pups of same gender and weight. Factor:
type of diet. Treatments: low-calorie diet and allowing the dog 
to eat all it wants. Response variable: length of life. Can conclude
that, on average, dogs with a lower-calorie diet live longer.

5. Observational prospective study. Indicates folate may help in re-
ducing colon cancer for those with family histories of the disease.

7. Sampling. Probably a simple random sample, although may be
stratified by type of firework. Population is all fireworks pro-
duced each day. Parameter is proportion of duds. Can determine
if the day’s production is ready for sale.

9. Observational retrospective study. Living near strong electromag-
netic fields may be associated with more leukemia than normal.
May be lurking variables, such as socioeconomic level.

11. Experiment. Blocked by sex of rat. Randomization is not speci-
fied. Factor is type of hormone given. Treatments are leptin and
insulin. Response variable is lost weight. Can conclude that hor-
mones can help suppress appetites in rats, and the type of hor-
mone varies by gender.

13. Experiment. Factor is gene therapy. Hamsters were randomized
to treatments. Treatments were gene therapy or not. Response
variable is heart muscle condition. Can conclude that gene ther-
apy is beneficial (at least in hamsters).

15. Sampling. Population is all oranges on the truck. Parameter is
proportion of unsuitable oranges. Procedure is probably simple
random sampling. Can conclude whether or not to accept the
truckload.

17. Observational prospective study. Physically fit men may have a
lower risk of death from cancer.

19. Answers will vary. This is a simulation problem. Using a random
digits table or software, call 0–4 a loss and 5–9 a win for the gam-
bler on a game. Use blocks of 5 digits to simulate a week’s pick.

21. Answers will vary.
23. a) Experiment. Actively manipulated candy giving, diners were

randomly assigned treatments, control group was those with
no candy, lots of dining parties.

b) It depends on when the decision was made. If early in the
meal, the server may give better treatment to those who will
receive candy—biasing the results.

c) A difference in response so large it cannot be attributed to
natural sampling variability.

25. a) Voluntary response. Only those who feel strongly will pay for
the 900 phone call.

b) “If it would help future generations live a longer, healthier
life, would you be in favor of human cloning?”

27. a) Simulation results will vary. Average will be around 5.8
points.

b) Simulation results will vary. Average will also be around 5.8
points.

c) Answers will vary.
29. a) Yes.

b) No. Residences without phones are excluded. Residences with
more than one phone had a higher chance.

c) No. People who respond to the survey may be of age but not
registered voters.

d) No. Households who answered the phone may be more likely
to have someone at home when the phone call was generated.
These may not be representative of all households.

31. a) Does not prove it. There may be other confounding variables.
Only way to prove this would be to do a controlled experiment.

b) Alzheimer’s usually shows up late in life. Perhaps smokers
have died of other causes before Alzheimer’s can be seen.

c) An experiment would be unethical. One could design a
prospective study in which groups of smokers and non-
smokers are followed for many years and the incidence of
Alzheimer’s is tracked.
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33.

Numerous subjects will be randomly assigned to see shows with
violent, sexual, or neutral content. They will see the same com-
mercials. After the show, they will be interviewed for their recall
of brand names in the commercials.

35. a) May have been a simple random sample, but given the rela-
tive equality in age groups, may have been stratified.

b) 35.1%.
c) We don’t know. Perhaps cell phones or unlisted numbers were

excluded, and Democrats have more (or fewer) of those. Prob-
ably OK, though.

d) Do party affiliations differ for different age groups?
37. The factor in the experiment will be type of bird control. I will

have three treatments: scarecrow, netting, and no control. I will
randomly assign several different areas in the vineyard to one of
the treatments, taking care that there is sufficient separation that the
possible effect of the scarecrow will not be confounded. At the end
of the season, the response variable will be the proportion of bird-
damaged grapes.

39. a) We want all subjects treated as alike as possible. If there were
no “placebo surgery,” subjects would know this and perhaps 
behave differently.

b) The experiment looked for a difference in the effectiveness of
the two treatments. (If we wanted to generalize, we would
need to assume that the results for these volunteers are the
same as on all patients who might need this operation.)

c) “Not statistically significant” means the difference in results
were small enough that it could be explained by natural 
sampling variability.

41. a) Use stratified sampling to select 2 first-class passengers and 
12 from coach.

b) Number passengers alphabetically, 01 Bergman to 20
Testut. Read in blocks of two, ignoring any numbers more
than 20. This gives 65, 43, 67, 11 (selects Fontana), 27, 04 
(selects Castillo).

c) Number passengers alphabetically from 001 to 120. Use the
random-number table to find three-digit numbers in this
range until 12 different values have been selected.

43. Simulation results will vary.
(Use integers 00 to 99 as a basis. Use integers 00 to 69 to represent
a tee shot on the fairway. If on the fairway, use digits 00 to 79 to
represent on the green. If off the fairway, use 00 to 39 to represent
getting on the green. If not on the green, use digits 00 to 89 to rep-
resent landing on the green. For the first putt, use digits 00 to 19
to represent making the shot. For subsequent putts, use digits 00
to 89 to represent making the shot.)

==

Compare
ad recall

Numerous
subjects

R
an
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Violent content

Sexual content

Neutral content

9. a) There is some chance you would have to pay out much more
than the $300.

b) Many customers pay for insurance. The small risk for any one
customer is spread among all.

11. a) Legitimate. b) Legitimate.
c) Not legitimate (sum more than 1). d) Legitimate.
e) Not legitimate (can’t have negatives or values more than 1).

13. A family may own both a car and an SUV. The events are not 
disjoint, so the Addition Rule does not apply.

15. When cars are traveling close together, their speeds are not inde-
pendent, so the Multiplication Rule does not apply.

17. a) He has multiplied the two probabilities.
b) He assumes that being accepted at the colleges are independ-

ent events.
c) No. Colleges use similar criteria for acceptance, so the deci-

sions are not independent.
19. a) 0.72 b) 0.89 c) 0.28
21. a) 0.5184 b) 0.0784 c) 0.4816
23. a) Repair needs for the two cars must be independent.

b) Maybe not. An owner may treat the two cars similarly, taking
good (or poor) care of both. This may decrease (or increase)
the likelihood that each needs to be repaired.

25. a)
b)

27. a) 0.195 b) 0.913
c) Responses are independent.
d) People were polled at random.

29. a) 0.4712 b) 0.7112
c)

31. a) 1) 0.30 2) 0.30 3) 0.90 4) 0.0
b) 1) 0.027 2) 0.128 3) 0.512 4) 0.271

33. a) Disjoint (can’t be both red and orange).
b) Independent (unless you’re drawing from a small bag).
c) No. Once you know that one of a pair of disjoint events has

occurred, the other is impossible.
35. a) 0.0046 b) 0.125 c) 0.296 d) 0.421 e) 0.995
37. a) 0.027 b) 0.063 c) 0.973 d) 0.014
39. a) 0.024 b) 0.250 c) 0.543
41. 0.078.
43. a) For any day with a valid three-digit date, the chance is 0.001, or

1 in 1000. For many dates in October through December, the
probability is 0. (No three digits will make 10/15, for example.)

b) There are 65 days when the chance to match is 0. (Oct. 10–31,
Nov. 10–30, and Dec. 10–31.) The chance for no matches on the
remaining 300 days is 0.741

c) 0.259 d) 0.049

CHAPTER 15

1. a) 0.68 b) 0.32 c) 0.04
3. a) 0.31 b) 0.48 c) 0.31
5. a) 0.2025 b) 0.6965 c) 0.2404 d) 0.0402
7. a) 0.50 b) 1.00 c) 0.077 d) 0.333
9. a) 0.11 b) 0.27 c) 0.407 d) 0.344

11. a) 0.011 b) 0.222 c) 0.054 d) 0.337 e) 0.436
13. 0.21
15. a) 0.145 b) 0.118 c) 0.414 d) 0.217
17. a) 0.318 b) 0.955 c) 0.071 d) 0.009
19. a) 32% b) 0.135

c) No, 7% of juniors have taken both.
d) No, the probability that a junior has taken a computer course

is 0.23. The probability that a junior has taken a computer
course given he or she has taken a Statistics course is 0.135.

21. a) 0.266
b) No, 26.6% of homes with garages have pools; 21% of homes

overall have pools.
c) No, 17% of homes have both.

(1 - 0.76) + 0.76(1 - 0.38) or 1 - (0.76)(0.38)

30/1005 + 50/1005 = 80/1005 = 0.080.
342/1005 = 0.340.

CHAPTER 14

1. a) , equally likely.
b) , not equally likely.
c) , not equally likely.
d) , not equally likely.

3. In this context “truly random” should mean that every number is
equally likely to occur.

5. There is no “Law of Averages.” She would be wrong to think that
they are “due” for a harsh winter.

7. There is no “Law of Averages.” If at bats are independent, his chance
for a hit does not change based on recent successes or failures.

S = {1, 2, 3, 4, 5, 6}
S = {H, TH, TTH, TTT}
S = {0, 1, 2, 3}
S = {HH, HT, TH, TT}
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23. Yes, . .
25. a) 0.17

b) No; 13% of the chickens had both contaminants.
c) No; . If a chicken is contaminated with

salmonella, it’s more likely also to have campylobacter.
27. No, only 32% of all men have high cholesterol, but 40.7% of those

with high blood pressure do.
29. a) 95.6%

b) Probably. 95.4% of people with cell phones had landlines, and
95.6% of all people did.

31. No. Only 34% of men were Democrats, but over 41% of all voters
were.

33. a) No, the probability that the luggage arrives on time depends
on whether the flight is on time. The probability is 95% if the
flight is on time and only 65% if not.

b) 0.695
35. 0.975
37. a) No, the probability of missing work for day-shift employees 

is 0.01. It is 0.02 for night-shift employees. The probability 
depends on whether they work day or night shift.

b) 1.4%
39. 57.1%
41. a) 0.20 b) 0.272 c) 0.353 d) 0.033
43. 0.563 45. Over 0.999

P(C ƒ  S) = 0.87 Z P(C)

P(Ace ƒ  any suit) = 1>13P(Ace) = 4>52

CHAPTER 16

1. a) 19 b) 4.2
3. a)

Amount won $0 $5 $10 $30

P(Amount won) 26
52

13
52

12
52

1
52

Children 1 2 3

P(Children) 0.5 0.25 0.25

Boys 0 1 2 3

P(Boys) 0.5 0.25 0.125 0.125

b) $4.13 c) $4 or less (answers may vary)
5. a)

b) 1.75 children c) 0.875 boys

7. $27,000
9. a) 7 b) 1.89

11. $5.44
13. 0.83
15. a) 1.7 b) 0.9
17. , 
19. a) $50 b) $100
21. a) No. The probability of winning the second depends on the

outcome of the first.
b) 0.42 c) 0.08
d)

s = 0.93m = 0.64

e) , 
23. a)

s = 0.62m = 0.66

Games won 0 1 2

P(Games won) 0.42 0.50 0.08

b) 1.40 c) 0.61
25. a) , b) , c) , 

d) , e) , s = 2.83m = 20s = 5.39m = -10
s = 5.39m = 30s = 5m = 26s = 6m = 30

Number good 0 1 2

P(Number good) 0.067 0.467 0.467

27. a) , b) , 
c) , d) , 
e) , 

29. a) 1.8 b) 0.87
c) Cartons are independent of each other.

31. , (assuming the hours are independent of each
other).

33. a) , 
b) We assume each truck gets tickets independently.

35. a) There will be many gains of $150 with a few large losses.
b) , 
c) , 
d) Yes. $0 is 2.5 SDs below the mean for 10,000 policies.
e) Losses are independent of each other. A major catastrophe

with many policies in an area would violate the assumption.
37. a) 1 oz b) 0.5 oz c) 0.023

d) oz, oz
e) 0.159
f ) oz, oz

39. a) 12.2 oz b) 0.51 oz c) 0.058
41. a) sec, sec

b) No, . There is only 0.009

probability of swimming that fast or faster.
43. a) ; of

potatoes; 
b) $63.00 c) $20.62
d) Mean—no; SD—yes (independent sales prices).

45. a) , ; 
b) , ; No—$300 is more than 7 SDs above the

mean.
c) P(D -

1
2C 7 0) L 0.26

s = 11.09m = $220
P(T 7 2000) = 0.051s = 48.99m = 1920

Profit = 100A + 50P - 2
P = price of a poundA = price of a pound of apples

z =

199.48 - 200.57
0.461

= -2.36

s = 0.46m = 200.57

s = 0.54m = 12.3

s = 0.5m = 4

s = $600,000m = $1,500,000
s = $8485.28m = $300

s = 2.97m = 23.4

s = 2.55m = 13.6

s = 22.63m = 600
s = 39.40m = 60s = 34.18m = 720
s = 24m = 140s = 12.80m = 240

CHAPTER 17

1. a) No. More than two outcomes are possible.
b) Yes, assuming the people are unrelated to each other.
c) No. The chance of a heart changes as cards are dealt so the

trials are not independent.
d) No, 500 is more than 10% of 3000.
e) If packages in a case are independent of each other, yes.

3. a) Use single random digits. Let 0, . Count the number
of random numbers until a 0 or 1 occurs.

c) Results will vary.
d)

1 = Tiger

x 1 2 3 4 5 6 7 8 $9

P(x) 0.2 0.16 0.128 0.102 0.082 0.066 0.052 0.042 0.168

x 0 1 2 3 4 5

P(x) 0.33 0.41 0.20 0.05 0.01 0.0

5. a) Use single random digits. Let 0, . Examine random
digits in groups of five, counting the number of 0’s and 1’s.

c) Results will vary.
d)

1 = Tiger

7. Departures from the same airport during a 2-hour interval may not
be independent. All could be delayed by weather, for example.

9. a) 0.0819 b) 0.0064 c) 0.992
11. 5 13. 20 calls
15. a) 25 b) 0.185 c) 0.217 d) 0.693
17. a) 0.0745 b) 0.502 c) 0.211

d) 0.0166 e) 0.0179 f) 0.9987
19. a) 0.65 b) 0.75 c) 7.69 picks
21. a)

b) i) 0.812 ii) 0.475 iii) 0.00193 iv) 0.998
m = 10.44, s = 1.16
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23.
25. a) 0.118 b) 0.324 c) 0.744 d) 0.580
27. a)

b) Yes, , , serves are independent.
c) In a match with 80 serves, approximately 68% of the time she

will have between 51.9 and 60.1 good serves, approximately
95% of the time she will have between 47.8 and 64.2 good
serves, and approximately 99.7% of the time she will have 
between 43.7 and 68.3 good serves.

d) Normal, approx.: 0.014; Binomial, exact: 0.016
29. a) Assuming apples fall and become blemished independently of

each other, Binom(300, 0.06) is appropriate. Since and
, N(18, 4.11) is also appropriate.

b) Normal, approx.: 0.072; Binomial, exact: 0.085
c) No, 50 is 7.8 SDs above the mean.

31. Normal, approx.: 0.053; Binomial, exact: 0.061
33. The mean number of sales should be 24 with SD 4.60. Ten sales is

more than 3.0 SDs below the mean. He was probably misled.
35. a) 5 b) 0.066 c) 0.107 d)

e) Normal, approx.: 0.819; Binomial, exact: 0.848
37. . I’d want at least 32 (3 SDs above the mean).

(Answers will vary.)
39. Probably not. There’s a more than 9% chance that he could hit 4

shots in a row, so he can expect this to happen nearly once in
every 10 sets of 4 shots he takes. That does not seem unusual.

41. Yes. We’d expect him to make 22 shots, with a standard deviation
of 3.15 shots. 32 shots is more than 3 standard deviations above
the expected value, an unusually high rate of success.

PART IV REVIEW

1. a) 0.34 b) 0.27 c) 0.069
d) No, 2% of cars have both types of defects.
e) Of all cars with cosmetic defects, 6.9% have functional defects.

Overall, 7.0% of cars have functional defects. The probabilities
here are estimates, so these are probably close enough to say
the defects are independent.

3. a) ; ; 
b) c)
d) Means—no. Standard deviations—yes; ticket prices must be

independent of each other for different countries, but all tick-
ets to the same country are at the same price.

5. a) b)
7. a) 0.106 b) 0.651 c) 0.442
9. a) 0.590 b) 0.328 c) 0.00856

11. a) b) Yes, 
c) Normal, approx.: 0.080; Binomial, exact: 0.097

13. a) 0.0173 b) 0.591
c) Left: 960; right: 120; both: 120
d)
e) About 68% chance of between 110 and 130; about 95% 

between 99 and 141; about 99.7% between 89 and 151.
15. a) Men’s heights are more variable than women’s.

b) Men (1.75 SD vs 2.4 SD for women)
c) ; ; is how

much taller the man is.
d) e) f)
g) If independent, it should be about 91.3%. We are told 92%.

This difference seems small and may be due to natural sam-
pling variability.

17. a) The chance is . b) 0.952 c) 0.063
19. $240
21. a) 0.717 b) 0.588
23. a) b)

c) d)
e) m = 100, s = 11.31

m = -50, s = 10m = 100, s = 8.54
m = 1000, s = 60m = 100, s = 8

1.6 * 10-7

0.9133.75"5.1"

M - WW = Woman’s heightM = Man’s height

m = 120, s = 10.39

np Ú 10 and nq Ú 10m = 15.2, s = 3.70

m = - $0.40, s = $2.67m = - $0.20, s = $1.89

m = $500, s = $180.28m = $5500, s = $672.68
Total = 3C + 5FF = Price to FranceC = Price to China

m = 20, s = 4

m = 24, s = 2.19

nq Ú 10
np Ú 10

nq = 24 Ú 10np = 56 Ú 10
m = 56, s = 4.10

m = 20.28, s = 4.22 25. a) Many do both, so the two categories can total more than 100%.
b) No. They can’t be disjoint. If they were, the total would be

100% or less.
c) No. Probabilities are different for boys and girls.
d) 0.0524

27. a) 21 days b) 1649.73 som
c) 3300 som extra. About 157-som “cushion” each day.

29. No, you’d expect 541.2 homeowners, with an SD of 13.56. 523 is
1.34 SDs below the mean; not unusual.

31. a) 0.018 b) 0.300 c) 0.26
33. a) 6 b) 15 c) 0.402
35. a) 34% b) 35% c) 31.4%

d) 31.4% of classes that used calculators used computer assign-
ments, while in classes that didn’t use calculators, 30.6% used
computer assignments. These are close enough to think the
choice is probably independent.

37. a) b) c) d) 0 e)
39. a) Expected number of stars with planets.

b) Expected number of planets with intelligent life.
c) Probability of a planet with a suitable environment having 

intelligent life.
d) : If a planet has a suitable environment, the probability that

life develops.
: If a planet develops life, the probability that the life evolves 

intelligence.
: If a planet has intelligent life, the probability that it devel-

ops radio communication.
41. 0.991

fc

fi

fl

19>665>117>221>11

CHAPTER 18

1. All the histograms are centered near 0.05. As n gets larger, the
histograms approach the Normal shape, and the variability in the
sample proportions decreases.

3. a)

n
Observed 

mean
Theoretical 

mean
Observed 

st. dev.
Theoretical 

st. dev.

20 0.0497 0.05 0.0479 0.0487
50 0.0516 0.05 0.0309 0.0308

100 0.0497 0.05 0.0215 0.0218
200 0.0501 0.05 0.0152 0.0154

b) They are all quite close to what we expect from the theory.
c) The histogram is unimodal and symmetric for .
d) The success/failure condition says that np and nq should both

be at least 10, which is not satisfied until for .
The theory predicted my choice.

5. a) Symmetric, because probability of heads and tails is equal.
b) 0.5 c) 0.125 d)

7. a) About 68% should have proportions between 0.4 and 0.6,
about 95% between 0.3 and 0.7, and about 99.7% between 
0.2 and 0.8.

b) , ; both are .
c)

; both are .
d) Becomes narrower (less spread around 0.5).

9. This is a fairly unusual result: about 2.26 SDs below the mean.
The probability of that is about 0.012. So, in a class of 100 this is
certainly a reasonable possibility.

Ú  10np = nq = 32

0.3125 0.3750 0.4375 0.5000 0.5625 0.6250 0.6875
Proportion

68%

95%
99.7%

Ú  10nq = 12.5np = 12.5

np = 8 6 10

p = 0.05n = 200

n = 200
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11. a)

b) Both and . Drivers may be independent
of each other, but if flow of traffic is very fast, they may not
be. Or weather conditions may affect all drivers. In these cases
they may get more or fewer speeders than they expect.

13. a) Assume that these children are typical of the population. They
represent fewer than 10% of all children. We expect 20.4 near-
sighted and 149.6 not; both are at least 10.

b)

c) Probably between 12 and 29.
15. a) , 

b) Assume that clients pay independently of each other, that we
have a random sample of all possible clients, and that these
represent less than 10% of all possible clients. and

are both at least 10.
c) 0.048

17.

These are not random samples, and not all colleges may be typi-
cal (representative). , are both at least 10.

19. Yes; if their students were typical, a retention rate of 522/603
86.6% would be over 7 standard deviations above the expected
rate of 74%.

21. 0.212. Reasonable that those polled are independent of each other
and represent less than 10% of all potential voters. We assume the
sample was selected at random. Success/Failure Condition met:

, . Both .
23. 0.088 using N(0.08, 0.022) model.
25. Answers will vary. Using for “very sure,” the restaurant

should have 89 nonsmoking seats. Assumes customers at any
time are independent of each other, a random sample, and repre-
sent less than 10% of all potential customers. , ,
so Normal model is reasonable .

27. a) Normal, center at , standard deviation .
b) Standard deviation will be smaller. Center will remain the

same.
29. a) The histogram is unimodal and slightly skewed to the 

right, centered at 36 inches with a standard deviation near 
4 inches.

b) All the histograms are centered near 36 inches. As n gets
larger, the histograms approach the Normal shape and the
variability in the sample means decreases. The histograms are
fairly normal by the time the sample reaches size 5.

s>1nm

1m = 0.60, s = 0.0452
nq = 48np = 72

m + 3s

Ú  10nq = 192np = 208

=

nq = 104np = 296

0.674 0.696 0.718 0.740 0.762 0.784 0.806
Retention Rate

68%

95%
99.7%

nq = 186
np = 14

s = 1.8%m = 7%

0.045 0.070 0.095 0.120 0.145 0.170 0.195
Proportion

68%

95%
99.7%

nq = 24 Ú 10np = 56

0.547 0.598 0.649 0.700 0.751 0.802 0.853

Proportion Speeding

68%

95%
99.7%

31. a)

n
Observed 

mean 
Theoretical 

mean
Observed 

st. dev.
Theoretical 

st. dev.

2 36.314 36.33 2.855 2.842
5 36.314 36.33 1.805 1.797

10 36.341 36.33 1.276 1.271
20 36.339 36.33 0.895 0.899

b) They are all very close to what we would expect.
c) For samples as small as 5, the sampling distribution of sample

means is unimodal and very symmetric.
d) The distribution of the original data is nearly unimodal and

symmetric, so it doesn’t take a very large sample size for the
distribution of sample means to be approximately Normal.

33.

Normal, , . We assume that the students are ran-
domly assigned to the seminars and represent less than 10% of all
possible students, and that individual’s GPAs are independent of
one another.

35. a) As the CLT predicts, there is more variability in the smaller
outlets.

b) If the lottery is random, all outlets are equally likely to sell
winning tickets.

37. a) 21.1% b) 276.8 days or more
c) N(266, 2.07) d) 0.002

39. a) There are more premature births than very long pregnancies.
Modern practice of medicine stops pregnancies at about 
2 weeks past normal due date.

b) Parts (a) and (b)—yes—we can’t use Normal model if it’s very
skewed. Part (c)—no—CLT guarantees a Normal model for
this large sample size.

41. a) , 
b) , 
c) 0.191. Model is N(80, 22.83).

43. a) , 
b) No. The score distribution in the sample should resemble that

in the population, somewhat uniform for scores 1–4 and about
half as many 5’s.

c) Approximately .

45. About 20%, based on N(2.859, 0.167).
47. a) N(2.9, 0.045) b) 0.0131 c) 2.97 gm/mi
49. a) Can’t use a Normal model to estimate probabilities. The

distribution is skewed right—not Normal.
b) 4 is probably not a large enough sample to say the average

follows the Normal model.
c) No. This is 3.16 SDs above the mean.

51. a) 0.0003. Model is N(384, 34.15). b) $427.77 or more.
53. a) 0.734

b) 0.652. Model is N(10, 12.81).
c) 0.193. Model is N(120, 5.774).
d) 0.751. Model is N(10, 7.394).

CHAPTER 19

1. She believes the true proportion is within 4% of her estimate,
with some (probably 95%) degree of confidence.

3. a) Population—all cars; sample—those actually stopped at the
checkpoint; p—proportion of all cars with safety problems; 

Na2.859, 
1.324
140

b

s = 1.324m = 2.859

s = $5.10m = $4.00
s = $3.61m = $2.00

s = 0.07m = 3.4

3.19 3.26 3.33 3.40 3.47 3.54 3.61

Mean GPA

68%

95%
99.7%
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27. a) (15.5%, 26.3%) b) 612
c) Sample may not be random or representative. Deer that are

legally hunted may not represent all sexes and ages.
29. a) 141 b) 318 c) 564
31. 1801 33. 384 total, using 35. 90%p = 0.15

—proportion actually seen with safety problems (10.4%); if
sample (a cluster sample) is representative, then the methods
of this chapter will apply.

b) Population—general public; sample—those who logged onto
the Web site; p—population proportion of those who favor
prayer in school; —proportion of those who voted in the poll
who favored prayer in school (81.1%); can’t use methods of
this chapter—sample is biased and nonrandom.

c) Population—parents at the school; sample—those who re-
turned the questionnaire; p—proportion of all parents who 
favor uniforms; —proportion of respondents who favor uni-
forms (60%); should not use methods of this chapter, since not
SRS (possible non-response bias).

d) Population—students at the college; sample—the 1632 stu-
dents who entered that year; p—proportion of all students
who will graduate on time; —proportion of that year’s stu-
dents who graduate on time (85.0%); can use methods of this
chapter if that year’s students (a cluster sample) are viewed as
a representative sample of all possible students at the school.

5. a) Not correct. This implies certainty.
b) Not correct. Different samples will give different results. Many

fewer than 95% will have 88% on-time orders.
c) Not correct. The interval is about the population proportion,

not the sample proportion in different samples.
d) Not correct. In this sample, we know 88% arrived on time.
e) Not correct. The interval is about the parameter, not the days.

7. a) False b) True c) True d) False
9. On the basis of this sample, we are 90% confident that the pro-

portion of Japanese cars is between 29.9% and 47.0%.
11. a) (0.798, 0.863)

b) We’re 95% confident that between 80% and 86% of all broiler
chicken sold in U.S. food stores is infected with Campylobacter.

c) The size of the population is irrelevant. If Consumer Reports
had a random sample, 95% of intervals generated by studies
like this will capture the true contamination level.

13. a) 0.025
b) We’re 90% confident that this poll’s estimate is within 

of the true proportion of people who are baseball fans.
c) Larger. To be more certain, we must be less precise.
d) 0.039 e) less confidence
f) No evidence of change; given the margin of error, 0.37 is a

plausible value for 2007 as well.
15. a) (0.0465, 0.0491). The assumptions and conditions for construct-

ing a confidence interval are satisfied.
b) The confidence interval gives the set of plausible values (with

95% confidence). Since 0.05 is outside the interval, that seems
to be a bit too optimistic.

17. a) (12.7%, 18.6%)
b) We are 95% confident, based on this sample, that the propor-

tion of all auto accidents that involve teenage drivers is 
between 12.7% and 18.6%.

c) About 95% of all random samples will produce confidence 
intervals that contain the true population proportion.

d) Contradicts. The interval is completely below 20%.
19. Probably nothing. Those who bothered to fill out the survey may

be a biased sample.
21. a) Response bias (wording) b) (54%, 60%)

c) Smaller—the sample size was larger.
23. a) (18.2%, 21.8%)

b) We are 98% confident, based on the sample, that between 18.2%
and 21.8% of English children are deficient in vitamin D.

c) About 98% of all random samples will produce a confidence
interval that contains the true proportion of children deficient
in vitamin D.

25. a) Wider. The sample size is probably about one-fourth of the
sample size for all adults, so we’d expect the confidence inter-
val to be about twice as wide.

b) Smaller. The second poll used a slightly larger sample size.

;2.5%

pN

pN

pN

pN

CHAPTER 20

1. a)
b)
c)

3. Statement d is correct.
5. No, we can say only that there is a 27% chance of seeing the 

observed effectiveness just from natural sampling variation.
There is no evidence that the new formula is more effective, 
but we can’t conclude that they are equally effective.

7. a) No. There’s a 25% chance of losing twice in a row. That’s not
unusual.

b) 0.125 c) No, we expect that to happen 1 time in 8.
d) Maybe 5? The chance of 5 losses in a row is only 1 in 32, 

which seems unusual.
9. 1) Use p, not in hypotheses.

2) The question was about failing to meet the goal, so should
be .

3) Did not check . Since , the Success/
Failure Condition is violated. Didn’t check 10% Condition.

4)

5) z is incorrect; should be 

6)
7) There is only weak evidence that the new instructions do not

work.
11. a)

b) Possibly an SRS; we don’t know if the sample is less than 10%
of his customers, but it could be viewed as less than 10% of all
possible customers; and . Wells
are independent only if customers don’t have farms on the
same underground springs.

c) P-value 
d) If his dowsing is no different from standard methods, there is

more than a 23% chance of seeing results as good as those of
the dowser’s, or better, by natural sampling variation.

e) These data provide no evidence that the dowser’s chance of
finding water is any better than normal drilling.

13. a)
b) Students were randomly sampled and should be independent.

34% and 66% of 8302 are greater than 10. 8302 students is less
than 10% of the entire student population of the United States.

c)
d) With such a small P-value, I reject . There has been a statisti-

cally significant change in the proportion of students who
have no absences.

e) No. A difference this small, although statistically significant, 
is not meaningful. We might look at new data in a few years.

15. a) vs. 
b) We assume the whole mailing list has over 1,000,000 names.

This is a random sample, and we expect 5000 successes and
95,000 failures.

c) ; P-value , so we reject ; there is
strong evidence that the donation rate would be below 5%.

17. a)
b) The sample is representative. of all law school 

applicants. We expect to be admitted and
not to be, both at least 10. ; 

P-value =  0.057
z = 1.5824010.372 = 88.8

24010.632 = 151.2
240 6 10%

H0: p = 0.63, HA: p 7 0.63

H0= 0.00074z = -3.178

HA: p 6 0.05H0: p = 0.05

H0

P = 0.058

H0: p2000 = 0.34; HA: p2000 Z 0.34

= 0.232z = 0.73;

10.721802 Ú 1010.321802 Ú 10

H0: p = 0.30; HA: p 7 0.30

P = P1z 6 -1.432 = 0.076

z =

0.94 - 0.96
0.014

= -1.43

188>200 = 0.94; SD1p)N =

B

(0.96210.042

200
= 0.014

nq 6 100.0412002 = 8
p 6 0.96

HA

pN ,

H0: p = 0.20; HA: p 7 0.20
H0: p = 0.50; HA: p Z 0.50
H0: p = 0.30; HA: p 6 0.30
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c) Although the evidence is weak, there is some indication that
the program may be successful. Candidates should decide
whether they can afford the time and expense.

19. . SRS (not clear from information 
provided); 22 is more than 10% of the population of 150;

. Do not proceed with a test.
21. . One mother having twins will

not affect another, so observations are independent; not an SRS;
sample is less than 10% of all births. However, the mothers at this
hospital may not be representative of all teenagers;

P-value . With a P-value this low, reject . These data
show some evidence that the rate of twins born to teenage girls at
this hospital is less than the national rate of 3%. It is not clear
whether this can be generalized to all teenagers.

23. . SRS; sample is less than 10% of all po-
tential subscribers; . ;
P-value . The P-value is high, so do not reject . These
data do not show that more than 25% of current readers would
subscribe; the company should not go ahead with the WebZine
on the basis of these data.

25. . Data are for all executives in this com-
pany and may not be able to be generalized to all companies;

; P-value .
Because the P-value is high, we fail to reject . These data do
not show that the proportion of women executives is less than
the 40% of women in the company in general.

27. ; P-value
Because the P-value is low, we reject . These data provide 
evidence that the dropout rate has increased.

29.
. Because the P-value is so low, we reject .

There is strong evidence that the actual rate at which passengers
with lost luggage are reunited with it within 24 hours is less than
the 90% claimed by the airline.

31. a) Yes; assuming this sample to be a typical group of people,
This cancer rate is very unusual.

b) No, this group of people may be atypical for reasons that have
nothing to do with the radiation.

P = 0.0008.

H0P-value = 0.0201
z = -2.05;pN = 0.844;HA: p 6 0.90.H0: p = 0.90;

H0

= 0.02.H0: p = 0.103; HA: p 7 0.103. pN = 0.118; z = 2.06

H0

= 0.095510.4021432 Ú 10; 10.6021432 Ú 10. z = -1.31

H0: p = 0.40; HA: p 6 0.40

H0= 0.1076
z = 1.2410.25215002 Ú 10; 10.75215002 Ú 10

H0: p = 0.25; HA: p 7 0.25

H0= 0.0556
z = -1.91;10.03214692 = 14.07 Ú 10; 10.97214692 Ú 10.

H0: p = 0.03; p Z 0.03. pN = 0.015
10.2021222 6 10

H0: p = 0.20; HA: p 7 0.20

9. a) (1.9%, 4.1%)
b) Because 5% is not in the interval, there is strong evidence that

fewer than 5% of all men use work as their primary measure
of success.

c) ; it’s a lower-tail test based on a 98% confidence interval.
11. a) (0.274, 0.327)

b) Since 0.27 is not in the confidence interval, we reject the 
hypothesis that 

13. a) The Success/Failure Condition is violated: only 5 pups had
dysplasia.

b) We are 95% confident that between 5% and 26% of puppies
will show signs of hip dysplasia at the age of 6 months.

15. a) Type II error b) Type I error
c) By making it easier to get the loan, the bank has reduced the

alpha level.
d) The risk of a Type I error is decreased and the risk of a Type II

error is increased.
17. a) Power is the probability that the bank denies a loan that

would not have been repaid.
b) Raise the cutoff score.
c) A larger number of trustworthy people would be denied

credit, and the bank would miss the opportunity to collect 
interest on those loans.

19. a) The null is that the level of home ownership remains the 
same. The alternative is that it rises.

b) The city concludes that home ownership is on the rise, but in
fact the tax breaks don’t help.

c) The city abandons the tax breaks, but they were helping.
d) A Type I error causes the city to forego tax revenue, while a

Type II error withdraws help from those who might have oth-
erwise been able to buy a home.

e) The power of the test is the city’s ability to detect an actual in-
crease in home ownership.

21. a) It is decided that the shop is not meeting standards when it is.
b) The shop is certified as meeting standards when it is not.
c) Type I d) Type II

23. a) The probability of detecting a shop that is not meeting standards.
b) 40 cars. Larger n. c) 10%. More chance to reject 
d) A lot. Larger differences are easier to detect.

25. a) One-tailed. The company wouldn’t be sued if “too many” mi-
norities were hired.

b) Deciding the company is discriminating when it is not.
c) Deciding the company is not discriminating when it is.
d) The probability of correctly detecting actual discrimination.
e) Increases power. f ) Lower, since n is smaller.

27. a) One-tailed. Software is supposed to decrease the dropout rate.
b)
c) He buys the software when it doesn’t help students.
d) He doesn’t buy the software when it does help students.
e) The probability of correctly deciding the software is helpful.

29. a) . The change is statistically significant. A
95% confidence interval is (2.3%, 8.5%). This is clearly lower
than 13%. If the cost of the software justifies it, the professor
should consider buying the software.

b) The chance of observing 11 or fewer dropouts in a class of 203
is only 0.07% if the dropout rate is really 13%.

31. a) , where p is the probability of heads
b) Reject the null hypothesis if the coin comes up tails—

otherwise fail to reject.
c)
d)
e) Spin the coin more than once and base the decision on the

sample proportion of heads.
33. a) 0.0464 b) Type I c) 37.6%

d) Increase the number of shots. Or keep the number of shots at
10, but increase alpha by declaring that 8, 9, or 10 will be
deemed as having improved.

P1tails given the alternative hypothesis2 = power = 0.70
P1tails given the null hypothesis2 = 0.1 = a.

HA: p = 0.30

z = -3.21, p = 0.0007

H0: p = 0.13; HA: p 6 0.13

H0.

p = 0.27

a = 0.01

CHAPTER 21

1. a) Two sided. Let p be the percentage of students who prefer Diet
Pepsi. vs. 

b) One sided. Let p be the percentage of teenagers who prefer the
new formulation. vs. 

c) One sided. Let p be the percentage of people who intend to
vote for the override. vs. 

d) Two sided. Let p be the percentage of days that the market
goes up. vs. 

3. If there is no difference in effectiveness, the chance of seeing an
observed difference this large or larger is 4.7% by natural sam-
pling variation.

5. : Yes. The P-value is less than 0.05, so it’s less than 0.10.
But to reject at , the P-value must be below 0.01,
which isn’t necessarily the case.

7. a) There is only a 1.1% chance of seeing a sample proportion as
low as 89.4% vaccinated by natural sampling variation if 90%
have really been vaccinated.

b) We conclude that p is below 0.9, but a 95% confidence interval
would suggest that the true proportion is between (0.889,
0.899). Most likely, a decrease from 90% to 89.9% would not be
considered important. On the other hand, with 1,000,000 chil-
dren a year vaccinated, even 0.1% represents about 1000
kids—so this may very well be important.

a = 0.01H0

a = 0.10

HA: p Z 0.5H0: p = 0.5

HA: p 7 2>3.H0: p = 2>3

HA: p 7 0.5H0: p = 0.5

HA: p Z 0.5H0: p = 0.5
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CHAPTER 22

1. It’s very unlikely that samples would show an observed differ-
ence this large if in fact there is no real difference in the propor-
tions of boys and girls who have used online social networks.

3. The ads may be working. If there had been no real change in name
recognition, there’d be only about a 3% chance the percentage of
voters who heard of this candidate would be at least this much
higher in a different sample.

5. The responses are not from two independent groups, but are
from the same individuals.

7. a) Stratified b) 6% higher among males c) 4%
d)

e) Yes; a poll result showing little difference is only 1–2 standard
deviations below the expected outcome.

9. a) Yes. Random sample; less than 10% of the population; samples
are independent; more than 10 successes and failures in each
sample.

b) (0.055, 0.140)
c) We are 95% confident, based on these samples, that the pro-

portion of American women age 65 and older who suffer from
arthritis is between 5.5% and 14.0% more than the proportion
of American men of the same age who suffer from arthritis.

d) Yes; the entire interval lies above 0.
11. a) 0.035 b) (0.356, 0.495)

c) We are 95% confident, based on these data, that the proportion
of pets with a malignant lymphoma in homes where herbi-
cides are used is between 35.6% and 49.5% higher than the
proportion of pets with lymphoma in homes where no pesti-
cides are used.

13. a) Yes, subjects were randomly divided into independent groups,
and more than 10 successes and failures were observed in each
group.

b) (4.7%, 8.9%)
c) Yes, we’re 95% confident that the rate of infection is 5–9 per-

centage points lower. That’s a meaningful reduction, consider-
ing the 20% infection rate among the unvaccinated kids.

15. a)
b) Because 0 is not in the confidence interval, reject the null. There’s

evidence that the vaccine reduces the rate of ear infections.
c) 2.5% d) Type I
e) Babies would be given ineffective vaccinations.

17. a) Prospective study
b) where is the proportion of

students whose parents disapproved of smoking who became
smokers and is the proportion of students whose parents
are lenient about smoking who became smokers.

c) Yes. We assume the students were randomly selected; they are
less than 10% of the population; samples are independent; at
least 10 successes and failures in each sample.

d) . These samples do not show evi-
dence that parental attitudes influence teens’ decisions to smoke.

e) If there is no difference in the proportions, there is about a
24% chance of seeing the observed difference or larger by
natural sampling variation.

f) Type II
19. a)

b) We are 95% confident that the proportion of teens whose
parents disapprove of smoking who will eventually smoke
is between 22.1% less and 6.5% more than for teens with
parents who are lenient about smoking.

1-0.065, 0.2212

z = -1.17, P-value = 0.2422

p2

p1H0: p1 - p2 = 0; HA: p1 - p2 Z 0

H0: pV - pNV = 0, HA: pV - pNV 6 0.

–6% –2% 2% 6% 10% 14% 18%
pM – pF

68%

95%
99.7%

c) 95% of all random samples will produce intervals that contain
the true difference.

21. a) No; subjects weren’t assigned to treatment groups. It’s an ob-
servational study.

b) .
With a P-value this low, we reject . There is a significant
difference in the clinic’s effectiveness. Younger mothers have a
higher birth rate than older mothers. Note that the Success/
Failure Condition is met based on the pooled estimate of p.

c) We are 95% confident, based on these data, that the proportion
of successful live births at the clinic is between 10.0% and
27.8% higher for mothers under 38 than in those 38 and older.
However, the Success/Failure Condition is not met for the
older women, since # Successes . We should be cautious
in trusting this confidence interval.

23. a) .
With P-value this high, we fail to reject . These data do
not show evidence of a decrease in the voter support for the
candidate.

b) Type II
25. a)

With a P-value this high, we fail to reject . There is no evi-
dence of racial differences in the likelihood of multiple births,
based on these data.

b) Type II
27. a) We are 95% confident, that between 67.0% and 83.0% of

patients with joint pain will find medication A effective.
b) We are 95% confident, that between 51.9% and 70.3% of

patients with joint pain will find medication B effective.
c) Yes, they overlap. This might indicate no difference in the

effectiveness of the medications. (Not a proper test.)
d) We are 95% confident that the proportion of patients with joint

pain who will find medication A effective is between 1.7% and
26.1% higher than the proportion who will find medication B
effective.

e) No. There is a difference in the effectiveness of the medications.
f) To estimate the variability in the difference of proportions, we

must add variances. The two one-sample intervals do not. The
two-sample method is the correct approach.

29. The conditions are satisfied to test against
. The one-sided P-value is 0.0619, so we may

reject the null hypothesis. Although the evidence is not strong,
Time may be justified in saying that younger men are more com-
fortable discussing personal problems.

31. Yes. With a low P-value of 0.003, reject the null hypothesis of no
difference. There’s evidence of an increase in the proportion of
parents checking the Web sites visited by their teens.

PART V REVIEW

1. : There is no difference in cancer rates, . : The
cancer rate in those who use the herb is higher, .

3. a) 10.29
b) Not really. The z-score is . Not any evidence to suggest

that the proportion for Monday is low.
c) Yes. The z-score is 2.26 with a P-value of 0.024 (two-sided).
d) Some births are scheduled for the convenience of the doctor

and/or the mother.
5. a)

b) Random sample; less than 10% of all California gas stations,
. Assumptions and conditions

are met.
c)
d) With a P-value this high, we fail to reject . These data do

not provide evidence that the proportion of leaking gas tanks
is less than 40% (or that the new program is effective in de-
creasing the proportion).

H0

z = -1.49, P-value = 0.0677

0.41272 = 10.8, 0.61272 = 16.2

H0: p1 = 0.40; HA: p1 6 0.40

-1.11

p1 - p2 7 0
HAp1 - p2 = 0H0

HA: pyoung 7 pold

H0: pyoung = pold

H0

P-value = 0.6951.H0: p1 -  p2 =  0; HA: p1 - p2 Z 0. z = -0.39,

H0

H0: p1 - p2 = 0; HA: p1 - p2 7 0. z = 1.18, P-value = 0.118

6 10

H0

H0: p1 - p2 = 0; HA: p1 - p2 Z 0. z = 3.56, P-value = 0.0004
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e) Yes, Type II.
f) Increase , increase the sample size.
g) Increasing —increases power, lowers chance of Type II error,

but increases chance of Type I error.
Increasing sample size—increases power, costs more time and
money.

7. a) The researcher believes that the true proportion of “A’s” is within
10% of the estimated 54%, namely, between 44%  and 64%.

b) Small sample c) No, 63% is contained in the interval.
9. a) Pew believes that the true proportion is within 3% of the 33%

from the sample; that is, between 30% and 36%.
b) Larger, since it’s a smaller sample.
c) We are 95% confident that the proportion of active traders

who rely on the Internet for investment information is be-
tween 38.7% and 51.3%, based on this sample.

d) Larger, since it’s a smaller sample.
11. a) Bimodal!

b) , the population mean. Sample size does not matter.
c) ; sample size does matter.
d) It becomes closer to a Normal model and narrower as the

sample size increases.
13. a)

b) Yes. . Both .
c)

d) 0.039
15. : There is no difference, : Early births have in-

creased, . Because the
P-value is so high, we do not reject . These data do not show
an increase in the incidence of early birth of twins.

17. a) : There is no difference, : Treatment pre-
vents deaths from eclampsia, .

b) Samples are random and independent; less than 10% of all
pregnancies (or eclampsia cases); more than 10 successes and
failures in each group.

c) 0.8008
d) There is insufficient evidence to conclude that magnesium

sulfide is effective in preventing eclampsia deaths.
e) Type II f) Increase the sample size, increase .
g) Increasing sample size: decreases variation in the sampling

distribution, is costly. Increasing : Increases likelihood of 
rejecting , increases chance of Type I error.

19. a) It is not clear what the pollster asked. Otherwise they did fine.
b) Stratified sampling. c) 4% 
d) 95% e) Smaller sample size.
f) Wording and order of questions (response bias).

21. a) : There is no difference, : The fatal accident
rate is lower in girls, .
Because the P-value is low, we reject . These data give some
evidence that the fatal accident rate is lower for girls than for
teens in general.

b) If the proportion is really 14.3%, we will see the observed
proportion (11.3%) or lower 4.8% of the time by sampling
variation.

23. a) One would expect many small fish, with a few large ones.
b) We don’t know the exact distribution, but we know it’s not

Normal.
c) Probably not. With a skewed distribution, a sample size of five

is not a large enough sample to say the sampling model for the
mean is approximately Normal.

d) 0.961

H0

p 6 0.143. z = -1.67, P-value = 0.0479
p = 0.143. HAH0

H0

a

a

p1 - p2 6 0
HAp1 - p2 Ú 0.H0

H0

p1 - p2 6 0. z = -0.729, P-value = 0.2329
HAp1 - p2 = 0.H0

0.716 0.744 0.772 0.800 0.828 0.856 0.884

15

10

5

0

p̂

68%

95%
99.7%

Ú 100.812002 = 160, 0.212002 = 40
m = 0.80, s = 0.028

s>1n
m

a

a

25. a) Yes. . Both are .
b) 0.834
c) Higher. Bigger sample means smaller standard deviation for .
d) Answers will vary. For , the probability is 0.997.

27. a) 54.4 to 62.5%
b) Based on this study, with 95% confidence the proportion of

Crohn’s disease patients who will respond favorable to inflix-
imab is between 54.4% and 62.5%.

c) 95% of all such random samples will produce confidence
intervals that contain the true proportion of patients who
respond favorably.

29. At least 423, assuming that p is near 50%.
31. a) Random sample (?); certainly less than 10% of all preemies

and normal babies; more than 10 failures and successes in
each group. 1.7% to 16.3% greater for normal-birth weight
children.

b) Since 0 is not in the interval, there is evidence that preemies
have a lower high school graduation rate than children of nor-
mal birth weight.

c) Type I, since we rejected the null hypothesis.
33. a) : The computer is undamaged. : The computer is

damaged.
b) 20% of good PCs will be classified as damaged (bad), while all

damaged PCs will be detected (good).
c) 3 or more. d) 20%
e) By switching to two or more as the rejection criterion, 7% of

the good PCs will be misclassified, but only 10% of the bad
ones will, increasing the power from 20% to 90%.

35. The null hypothesis is that Bush’s disapproval proportion is
66%—the Nixon benchmark. The one-tailed test has a z-value of

2.00, so the P-value is 0.0228. It looks like Bush’s May 2007 rat-
ings were better than the Nixon benchmark low.

37. a) The company is interested only in confirming that the athlete
is well known.

b) Type I: the company concludes that the athlete is well known,
but that’s not true. It offers an endorsement contract to some-
one who lacks name recognition. Type II: the company over-
looks a well-known athlete, missing the opportunity to sign a
potentially effective spokesperson.

c) Type I would be more likely, Type II less likely.
39. I am 95% confident that the proportion of U.S. adults who favor

nuclear energy is between 7 and 19 percentage points higher than
the proportion who would accept a nuclear plant near their area.

CHAPTER 23

1. a) 1.74 b) 2.37 c) 0.0524 d) 0.0889
3. Shape becomes closer to Normal; center does not change; spread

becomes narrower.
5. a) The confidence interval is for the population mean, not the 

individual cows in the study.
b) The confidence interval is not for individual cows.
c) We know the average gain in this study was 56 pounds!
d) The average weight gain of all cows does not vary. It’s what

we’re trying to estimate.
e) No. There is not a 95% chance for another sample to have an

average weight gain between 45 and 67 pounds. There is a
95% chance that another sample will have its average weight
gain within two standard errors of the true mean.

7. a) No. A confidence interval is not about individuals in the
population.

b) No. It’s not about individuals in the sample, either.
c) No. We know the mean cost for students in the sample was

$1196.
d) No. A confidence interval is not about other sample means.
e) Yes. A confidence interval estimates a population parameter.

-

HAH0

n = 500
pN

Ú  100.81602 = 48, 0.21602 = 12
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9. a) Based on this sample, we can say, with 95% confidence, that
the mean pulse rate of adults is between 70.9 and 74.5 beats
per minute.

b) 1.8 beats per minute
c) Larger

11. The assumptions and conditions for a t-interval are not met. 
The distribution is highly skewed to the right and there is a large
outlier.

13. a) Yes. Randomly selected group; less than 10% of the popula-
tion; the histogram is not unimodal and symmetric, but it is
not highly skewed and there are no outliers, so with a sample
size of 52, the CLT says is approximately Normal.

b) (98.06, 98.51) degrees F
c) We are 98% confident, based on the data, that the average

body temperature for an adult is between 98.06°F and 98.51°F.
d) 98% of all such random samples will produce intervals 

containing the true mean temperature.
e) These data suggest that the true normal temperature is some-

what less than .
15. a) Narrower. A smaller margin of error, so less confident.

b) Advantage: more chance of including the true value. Disad-
vantage: wider interval.

c) Narrower; due to the larger sample, the SE will be smaller.
d) About 252

17. a) (709.90, 802.54)
b) With 95% confidence, based on these data, the speed of light is

between 299,709.9 and 299,802.5 km/sec.
c) Normal model for the distribution, independent measure-

ments. These seem reasonable here, but it would be nice to see
if the Nearly Normal Condition held for the data.

19. a) Given no time trend, the monthly on-time departure rates
should be independent. Though not a random sample, these
months should be representative, and they’re fewer than 10%
of all months. The histogram looks unimodal, but slightly left-
skewed; not a concern with this large sample.

b)
c) We can be 90% confident that the interval from 80.57% to

81.80% holds the true mean monthly percentage of on-time
flight departures.

21. The 95% confidence interval lies entirely above the 0.08 ppm
limit, evidence that mirex contamination is too high and con-
sistent with rejecting the null. We used an upper-tail test, so the
P-value should therefore be smaller than ,
and it was.

23. If in fact the mean cholesterol of pizza eaters does not indicate a
health risk, then only 7 of every 100 samples would have mean
cholesterol levels as high (or higher) as observed in this sample.

25. a) Upper-tail. We want to show it will hold 500 pounds (or more)
easily.

b) They will decide the stands are safe when they’re not.
c) They will decide the stands are unsafe when they are in 

fact safe.
27. a) Decrease . This means a smaller chance of declaring the

stands safe if they are not.
b) The probability of correctly detecting that the stands are capa-

ble of holding more than 500 pounds.
c) Decrease the standard deviation—probably costly. Increase the

sample size—takes more time for testing and is costly. Increase
—more Type I errors. Increase the “design load” to be well

above 500 pounds—again, costly.
29. a)

b) We have a random sample of the population. Population may
not be normally distributed, as it would be easier to have a
few much older men at their first marriage than some very
young men. However, with a sample size of 40, should be
approximately Normal. We should check the histogram for
severity of skewness and possible outliers.

y

H0: m = 23.3; HA: m 7 23.3

a

a

1
211 - 0.952 = 0.025

80.57 6 m1OT Departure%2 6 81.80

98.6°F

y

c) d) 0.1447
e) If the average age at first marriage is still 23.3 years, there is a

14.5% chance of getting a sample mean of 24.2 years or older
simply from natural sampling variation.

f ) We lack evidence that the average age at first marriage has 
increased from the mean of 23.3 years.

31. a) Probably a representative sample; the Nearly Normal Condi-
tion seems reasonable. (Show a Normal probability plot or
histogram.) The histogram is nearly uniform, with no outliers
or skewness.

b) c)
d) Based on this sample, we are 95% confident the average

weight of the content of Ruffles bags is between 28.36 and
29.21 grams.

e) The company is erring on the safe side, as it appears that, on
average, it is putting in slightly more chips than stated.

33. a) Type I; he mistakenly rejected the null hypothesis that
(or worse).

b) Yes. These are a random sample of bags and the Nearly Normal
Condition is met (Show a Normal probability plot or histogram.);

with 7 df for a one-sided P-value of 0.0203.
35. a) Random sample; the Nearly Normal Condition seems reason-

able from a Normal probability plot. The histogram is roughly
unimodal and symmetric with no outliers. (Show plot.)

b)
c) Based on this sample, the mean number of chips in an 18-

ounce bag is between 1187.9 and 1288.4, with 95% confidence.
The mean number of chips is clearly greater than 1000. How-
ever, if the claim is about individual bags, then it’s not neces-
sarily true. If the mean is 1188 and the SD deviation is near 94,
then 2.5% of the bags will have fewer than 1000 chips, using
the Normal model. If in fact the mean is 1288, the proportion
below 1000 will be less than 0.1%, but the claim is still false.

37. a) The Normal probability plot is relatively straight, with one
outlier at 93.8 sec. Without the outlier, the conditions seem to
be met. The histogram is roughly unimodal and symmetric
with no other outliers. (Show your plot.)

b) , . With the outlier included, we
might conclude that the mean completion time for the maze is
not 60 seconds; in fact, it is less.

c) , . Because the P-value is so small,
we reject Without the outlier, we see strong evidence that
the average completion time for the maze is less than 60 sec-
onds. The outlier here did not change the conclusion.

d) The maze does not meet the “one-minute average” requirement.
Both tests rejected a null hypothesis of a mean of 60 seconds.

39. a)
b) These data are not a random sample of golfers. The top 

professionals are (unfortunately) not representative and were
not selected at random. We might consider the 2006 data to
represent the population of all professional golfers, past, 
present, and future.

c) The data are means for each golfer, so they are less variable
than if we looked at all the separate drives.

CHAPTER 24

1. Yes. The high P-value means that we lack evidence of a differ-
ence, so 0 is a possible value for 

3. a) Plausible values of are all negative, so the mean
fat content is probably higher for beef hot dogs.

b) The difference is significant. c) 10%
5. a) False. The confidence interval is about means, not about 

individual hot dogs.
b) False. The confidence interval is about means, not about 

individual hot dogs.

mMeat - mBeef

mMeat - mBeef.

287.3 6 m1Drive Distance2 6 289.9

H0.
P-value = 0.0003t = -4.46

P-value = 0.0160t = -2.63

11187.9, 1288.42 chips

t = -2.51

p = 0.10

128.36, 29.21) gramsy = 28.78, s = 0.40

1y - 23.32>1s>2402 ' t39

BOCK_AppC_SE_0321570448.qxd  12/18/08  3:59 PM  Page 50



APPENDIX C    Chapter 24 A-51

d) We want to work directly with the average difference. The
two separate confidence intervals do not answer questions
about the difference. The difference has a different standard
deviation, found by adding variances.

19. a)
b) Based on these data, with 95% confidence, American League

stadiums average between 0.18 fewer runs and 0.89 more runs
per game than National League stadiums.

c) No; 0 is in the interval.
21. These are not two independent samples. These are before and 

after scores for the same individuals.
23. a) These data do not provide evidence of a difference in ad recall

between shows with sexual content and violent content.
b) vs. 

. Because the P-value is low, we reject .
These data suggest that ad recall between shows with sexual
and neutral content is different; those who saw shows with
neutral content had higher average recall.

25. a) vs.
Because of the very small P-value, we

reject . There is a significant difference in mean ad recall be-
tween shows with violent content and neutral content; view-
ers of shows with neutral content remember more brand
names, on average.

b) With 95% confidence, the average number of brand names re-
membered 24 hours later is between 1.45 and 2.41 higher for
viewers of neutral content shows than for viewers of sexual
content shows, based on these data.

27. vs. ; bowl size was
assigned randomly; amount scooped by individuals and by the
two groups should be independent. With 34.3 df, and

The low P-value leads us to reject the null
hypothesis. There is evidence of a difference in the average amount
of ice cream that people scoop when given a bigger bowl.

29. a) The 95% confidence interval for the difference is . 
0 is not in the interval, so scores in 1996 were significantly higher.
(Or the t, with more than 7500 df, is 2.459 for a P-value of 0.0070.)

b) Since both samples were very large, there shouldn’t be a dif-
ference in how certain you are, assuming conditions are met.

31. Independent Groups Assumption: The runners are different
women, so the groups are independent. The Randomization Con-
dition is satisfied since the runners are selected at random for
these heats.

Nearly Normal Condition: The boxplots show an outlier, but we
will proceed and then redo the analysis with the outlier deleted.
When we include the outlier, with a two-sided P-value
of 0.97. With the outlier deleted, , with . 
Either P-value is so large that we fail to reject the null hypothesis
of equal means and conclude that there is no evidence of a differ-
ence in the mean times for runners in unseeded heats.

33. With and a very low P-value of 0.0013, we reject the
null hypothesis of equal mean velocities. There is strong evidence
that golf balls hit off Stinger tees will have a higher mean initial
velocity.

t = -4.57

P = 0.2837t = -1.14
t = 0.035
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(0.61, 5.39)

P-value = 0.0428.
t = 2.104

HA: mbig - msmall Z 0H0: mbig - msmall = 0

H0

P-value = 1.1 * 10-11.
HA: mV - mN Z 0. t = -7.21, df = 201.96,H0: mV - mN = 0

H0P-value = 5.5 * 10-9
HA: mS - mN Z 0. t = -6.08 , df = 213.99,H0: mS - mN = 0

(-0.18, 0.89)

c) True.
d) False. CI’s based on other samples will also try to estimate 

the true difference in population means; there’s no reason to
expect other samples to conform to this result.

e) True.
7. a) 2.927 b) Larger

c) Based on this sample, we are 95% confident that students who
learn Math using the CPMP method will score, on average, 
between 5.57 and 11.43 points better on a test solving applied
Algebra problems with a calculator than students who learn
by traditional methods.

d) Yes; 0 is not in the interval.
9. a) vs. 

b) Yes. Groups are independent, though we don’t know if stu-
dents were randomly assigned to the programs. Sample sizes
are large, so CLT applies.

c) If the means for the two programs are really equal, there is less
than a 1 in 10,000 chance of seeing a difference as large as or
larger than the observed difference just from natural sampling
variation.

d) On average, students who learn with the CPMP method do sig-
nificantly worse on Algebra tests that do not allow them to use
calculators than students who learn by traditional methods.

11. a)
b) No; 5 minutes is beyond the high end of the interval.

13.

Random sample—questionable, but probably representative, 
independent samples, less than 10% of all cereals; boxplot shows
no outliers—not exactly symmetric, but these are reasonable 
sample sizes. Based on these samples, with 95% confidence, 
children’s cereals average between 32.49% and 40.80% more
sugar content than adult’s cereals.

15. vs. 
. Because of the small P-value, we reject .

These data do suggest that new activities are better. The mean
reading comprehension score for the group with new activities is
significantly (at ) higher than the mean score for the con-
trol group.

17. a)

Both are unimodal and reasonably symmetric.
b) Based on these data, the average number of runs in an 

American League stadium is between 9.36 and 10.23, with
95% confidence.

c) No. The boxplot indicates it isn’t an outlier.
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35. a) We can be 95% confident that the interval min-
utes includes the true difference in mean crossing times be-
tween men and women. Because the interval includes zero,
we cannot be confident that there is any difference at all.

b) Independence Assumption: There is no reason to believe that
the swims are not independent or that the two groups are not
independent of each other. 
Randomization Condition: The swimmers are not a random
sample from any identifiable population, but they may be rep-
resentative of swimmers who tackle challenges such as this.
Nearly Normal Condition: the boxplots show no outliers. The
histograms are unimodal; the histogram for men is somewhat
skewed to the right. (Show your graphs.)

37. a) vs. 
. Because the P-value is large, we fail to reject

. These data show no evidence of a difference in mean num-
ber of objects recalled between listening to rap or no music at all.

b) Didn’t conclude any difference.

CHAPTER 25

1. a) Randomly assign 50 hens to each of the two kinds of feed.
Compare production at the end of the month.

b) Give all 100 hens the new feed for 2 weeks and the old food
for 2 weeks, randomly selecting which feed the hens get first.
Analyze the differences in production for all 100 hens.

c) Matched pairs. Because hens vary in egg production, the
matched-pairs design will control for that.

3. a) Show the same people ads with and without sexual images,
and record how many products they remember in each group.
Randomly decide which ads a person sees first. Examine the
differences for each person.

b) Randomly divide volunteers into two groups. Show one
group ads with sexual images and the other group ads with-
out. Compare how many products each group remembers.

5. a) Matched pairs—same cities in different periods.
b) There is a significant difference in the labor

force participation rate for women in these cities; women’s
participation seems to have increased between 1968 and 1972.

7. a) Use the paired t-test because we have pairs of Fridays in 5 dif-
ferent months. Data from adjacent Fridays within a month
may be more similar than data from randomly chosen Fridays.

b) We conclude that there is evidence (P-value 0.0212) that the
mean number of cars found on the M25 motorway on Friday
the 13th is less than on the previous Friday.

c) We don’t know if these Friday pairs were selected at random.
If these are the Fridays with the largest differences, this will
affect our conclusion. The Nearly Normal Condition appears
to be met by the differences, but the sample size is small.

9. Adding variances requires that the variables be independent. These
price quotes are for the same cars, so they are paired. Drivers
quoted high insurance premiums by the local company will be
likely to get a high rate from the online company, too.

11. a) The histogram—we care about differences in price.
b) Insurance cost is based on risk, so drivers are likely to see

similar quotes from each company, making the differences
relatively smaller.

c) The price quotes are paired; they were for a random sample
of fewer than 10% of the agent’s customers; the histogram of
differences looks approximately Normal.

13. vs. ; with 
9 df, . With a high P-value of 0.215, we don’t reject the
null hypothesis. These data don’t provide evidence that online
premiums are lower, on average.

t = 0.83
HA: m(Local - Online) 7 0H0: m(Local - Online) = 0

(P-value = 0.0244)

H0

P-value = 0.0945
HA: mR - mN 6 0. t = -1.36, df = 20.00,H0: mR - mN = 0

74.8 ; 178.05 15.

Data are paired for each city; cities are independent of each other;
boxplot shows the temperature differences are reasonably sym-
metric, with no outliers. This is probably not a random sample,
so we might be wary of inferring that this difference applies to all
European cities. Based on these data, we are 90% confident that
the average temperature in European cities in July is between
32.3°F and 41.3°F higher than in January.

17. Based on these data, we are 90% confident that boys, on average,
can do between 1.6 and 13.0 more push-ups than girls (independ-
ent samples—not paired).

19. a) Paired sample test. Data are before/after for the same work-
ers; workers randomly selected; assume fewer than 10% of all
this company’s workers; boxplot of differences shows them to
be symmetric, with no outliers.

b) vs. .
Because , reject . These data show evidence that
average job satisfaction has increased after implementation
of the program.

c) Type I
21. vs. . Data are paired by brand; brands are

independent of each other; fewer than 10% of all yogurts (ques-
tionable); boxplot of differences shows an outlier (100) for Great
Value:

With the outlier included, the mean difference (Strawberry –
Vanilla) is 12.5 calories with a t-stat of 1.332, with 11 df, for a 
P-value of 0.2098. Deleting the outlier, the difference is even smaller,
4.55 calories with a t-stat of only 0.833 and a P-value of 0.4241. With
P-values so large, we do not reject . We conclude that the data do
not provide evidence of a difference in mean calories.

23. a) Cars were probably not a simple random sample, but may be
representative in terms of stopping distance; boxplot does not
show outliers, but does indicate right skewness. A 95% confi-
dence interval for the mean stopping distance on dry pave-
ment is (131.8, 145.6) feet.
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b) Data are paired by car; cars were probably not randomly cho-
sen, but representative; boxplot shows an outlier (car 4) with a
difference of 12. With deletion of that car, a Normal probabil-
ity plot of the differences is relatively straight.

Retaining the outlier, we estimate with 95% confidence that the av-
erage braking distance is between 38.8 and 62.6 feet more on wet
pavement than on dry, based on this sample. (Without the outlier,
the confidence interval is 47.2 to 62.8 feet.)

25. a) Paired Data Assumption: Data are paired by college. Random-
ization Condition: This was a random sample of public col-
leges and universities. 10% Condition: these are fewer than
10% of all public colleges and universities.

Normal Population Assumption: U.C. Irvine seems to be an
outlier; we might consider removing it.

b) Having deleted the observation for U.C.-Irvine, whose differ-
ence of $9300 was an outlier, we are 90% confident, based on
the remaining data, that nonresidents pay, on average, be-
tween $2615.31 and $3918.02 more than residents. If we retain
the outlier, the interval is ($2759, $4409).

c) Assertion is reasonable; with or without the outlier, $3500 is in
the confidence interval.

27. a) 60% is 30 strikes; vs. 
. With a very small P-value, we reject

. There is very strong evidence that players can throw more
than 60% strikes after training, based on this sample.

b) vs. . With
such a high P-value, we do not reject . These data provide
no evidence that the program has improved pitching in these
Little League players.

PART VI REVIEW

1. a)
. Since , reject the null.

These data show a significant difference in mean age to crawl
between January and July babies.

b)
. Since , do not reject the

null; these data do not show a significant difference between
April and October with regard to the mean age at which
crawling begins.

c) These results are not consistent with the claim.

P 7 0.10P-value = 0.3610df = 59.40;
t = -0.92;HA: mApr - mOct Z 0.H0: mApr - mOct = 0;

P 6 0.10P-value = 0.0590df = 43.68,
t = -1.94,HA: mJan - mJul Z 0.H0: mJan - mJul = 0;

H0

HA: mD 7 0. t = 0.135, P-value = 0.4472H0: mD = 0

H0

P-value = 3.92 * 10-6
m 7 30. t = 6.07,HA:H0: m = 30
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3. . Because
the P-value is high, we do not reject . These data do not show
that the Denver-area rate is different from the national rate in the
proportion of businesses with women owners.

5. Based on these data, we are 95% confident that the mean differ-
ence in aluminum oxide content is between and 1.65. Since
the interval contains 0, the means in aluminum oxide content of
the pottery made at the two sites could reasonably be the same.

7. a)
With such a low P-value, we reject . This

is strong evidence that there is a higher proportion of varsity
athletes among ALS patients than those with other disorders.

b) Observational retrospective study. To make the inference, one
must assume the patients studied are representative.

9. .
With such a low P-value, we reject . Assuming that Missouri
babies fairly represent the United States, these data suggest that
American babies are different from Australian babies in birth
weight; it appears American babies are heavier, on average.

11. a) If there is no difference in the average fish sizes, the chance of
seeing an observed difference this large just by natural sam-
pling variation is less than 0.1%.

b) If cost justified, feed them a natural diet. c) Type I
13. a) Assuming the conditions are met, from these data we are 95%

confident that patients with cardiac disease average between
3.39 and 5.01 years older than those without cardiac disease.

b) Older patients are at greater risk from a variety of other health
issues, and perhaps more depressed.

15. a) Stratified sample survey.
b) We are 95% confident that the proportion of boys who play

computer games is between 7.0 and 17.0 percentage points
higher than among girls.

c) Yes. The entire interval lies above 0.
17. Based on the data, we are 95% confident that the mean difference

in words misunderstood is between and 3.10. Because 0 is
in the confidence interval, we would conclude that the two tapes
could be equivalent.

-3.76

H0

P-value = 0.0313df = 111;t = 2.18;m Z 7.41.H0: m = 7.41; HA:

H0P-value = 0.0058.
 z = 2.52;pALS - pOther 7 0.HA:H0: pALS - pOther = 0;

-3.37

H0

H0: p = 0.26; HA: p Z 0.26. z = 0.946; P-value = 0.3443

19. a)

The countries that appear to be outliers are Spain, Italy, and
Portugal. They are all Mediterranean countries.

b) .
. With such a low P-value,

we reject . These data show that European men are more
likely than women to read newspapers.

21. We are 95% confident that the proportion of American adults who
would agree with the statement is between 57.0% and 63.0%.

23. Data are matched pairs (before and after for the same rooms); less
than 10% of all rooms in a large hotel; uncertain how these rooms
were selected (are they representative?). Histogram shows that
differences are roughly unimodal and symmetric, with no out-
liers. A 95% confidence interval for the difference, before – after, is
(0.58, 2.65) counts. Since the entire interval is above 0, these data
suggest that the new air-conditioning system was effective in
reducing average bacteria counts.

25. a) We are 95% confident that between 19.77% and 38.66% of chil-
dren with bipolar symptoms will be helped with medication
and psychotherapy, based on this study.

b) 221 children
27. a) From this histogram, about 115 loaves or more. (Not Normal.)

This assumes the last 100 days are typical.
b) Large sample size; CLT says will be approximately Normal.y

H0

P-value = 0.0001t = 5.56; df = 10;
mD 7 0HA:mD = 0;H0:

0 5 10 15 20 25 30 35

M – W Difference
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c) From the data, we are 95% confident that on average the bak-
ery will sell between 101.2 and 104.8 loaves of bread a day.

d) 25
e) Yes, 100 loaves per day is too low—the entire confidence inter-

val is above that.
29. a)

. Because the P-value is so low, we reject .
These data suggest the IRS risk is different in the two groups;
it appears people who consume dairy products often have a
lower risk, on average.

b) Doesn’t indicate causality; this is not an experiment.
31. Based on these data, we are 95% confident that seeded clouds

will produce an average of between and 559.56 more acre-
feet of rain than unseeded clouds. Since the interval contains neg-
ative values, it may be that seeding is unproductive.

33. a) Randomizing order of the tasks helps avoid bias and memory
effects. Randomizing the cards helps avoid bias as well.

b)

Boxplot of the differences looks symmet-
ric with no outliers.

; do not reject , because
. The data do not provide evidence that the color or

written word dominates.
35. a) Different samples give different means; this is a fairly small sam-

ple. The difference may be due to natural sampling variation.
b)
c) Batteries selected are a SRS (representative); fewer than 10% of

the company’s batteries; lifetimes are approximately Normal.
d) ; do not reject . This sample

does not show that the average life of the batteries is signifi-
cantly less than 100 hours.

e) Type II.

CHAPTER 26

1. a) Chi-square test of independence. We have one sample and two
variables. We want to see if the variable Account Type is inde-
pendent of the variable Trade Type.

b) Other test. Account Size is quantitative, not counts.
c) Chi-square test of homogeneity. We want to see if the distribu-

tion of one variable, Courses, is the same for two groups (resi-
dent and nonresident students).

3. a) 10 b) Goodness-of-fit
c) : The die is fair (all faces have ).

: The die is not fair.
d) Count data; rolls are random and independent; expected 

frequencies are all bigger than 5.
e) 5 f) , 
g) Because the P-value is high, do not reject . The data show

no evidence that the die is unfair.
5. a) Weights are quantitative, not counts.

b) Count the number of each kind of nut, assuming the com-
pany’s percentages are based on counts rather than weights.

7. : The police force represents the population (29.2% white,
28.2% black, etc.). : The police force is not representative of the
population. . Because the
P-value is so low, we reject . These data show that the police
force is not representative of the population. In particular, there
are too many white officers in relationship to their membership
in the community.

H0

x2
= 16516.88, df = 4, P-value = 0.0000

HA

H0

H0

P-value = 0.3471x2
= 5.600

HA

p = 1/6H0

H0t = -1.0; P-value = 0.1666

H0: m = 100; HA: m 6 100

P 7 0.05
H0P-value = 0.0999t = -1.70;

5
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mD Z 0HA:mD = 0;H0:

-4.76

H0P-value = 0.0004
z = -3.57;pHigh - pLow Z 0.HA:pHigh - pLow = 0;H0:

9. a) . With a P-value this high,
we fail to reject . Yes, these data are consistent with those
predicted by genetic theory.

b) Because of the low 
P-value, we reject . These data provide evidence that the
distribution is not as specified by genetic theory.

c) With small samples, many more data sets will be consistent
with the null hypothesis. With larger samples, small discrep-
ancies will show evidence against the null hypothesis.

11. a) b) Goodness of Fit
c) : The number of large hurricanes remains constant over

decades.
: The number of large hurricanes has changed.

d) 15 e)
f) The very high P-value means these data offer no evidence that

the numbers of large hurricanes has changed.
g) The final period is only 6 years rather than 10 and already 

7 large hurricanes have been observed. Perhaps this decade
will have an unusually large number of such hurricanes.

13. a) Independence
b) : Breastfeeding success is independent of having an

epidural.
: There’s an association between breastfeeding success and

having an epidural.
15. a) 1 b) 159.34

c) Breastfeeding behavior should be independent for these ba-
bies. They are fewer than 10% of all babies; we assume they
are representative. We have counts, and all the expected
counts are at least 5.

17. a) 5.90 b)
c) The P-value is very low, so reject the null. There’s evidence of

an association between having an epidural and subsequent
success in breastfeeding.

19. a)

b) It appears that babies whose mothers had epidurals during
childbirth are much less likely to be breastfeeding 6 months
later.

21. These factors would not be mutually exclusive. There would be
yes or no responses for every baby for each.

23. a) 40.2% b) 8.1% c) 62.2% d) 285.48
e) : Survival was independent of status on the ship.

: Survival depended on the status.
f) 3
g) We reject the null hypothesis. Survival depended on status.

We can see that first-class passengers were more likely to sur-
vive than passengers of any other class.

25. First class passengers were most likely to survive, while 3rd-class
passengers and crew were under-represented among the survivors.

27. a) Experiment—actively imposed treatments (different drinks)
b) Homogeneity
c) : The rate of urinary tract infection is the same for all three

groups. : The rate of urinary tract infection is different
among the groups.

d) Count data; random assignment to treatments; all expected
frequencies larger than 5.

e) 2 f) .
g) With a P-value this low, we reject . These data provide rea-

sonably strong evidence that there is a difference in urinary
tract infection rates between cranberry juice drinkers, lacto-
bacillus drinkers, and the control group.

h) The standardized residuals are

H0

x2
= 7.776, P-value = 0.020

HA

H0

HA

H0

(190 - 159.34)

2159.34
= 2.43

P-value 6 0.005

HA

H0

P-value = 0.63
HA

H0

96/16 = 6

H0

x2
= 11.342, df = 3, P-value = 0.0100.

H0

x2
= 5.671, df = 3, P-value = 0.1288

Cranberry Lactobacillus Control

Infection 21.87276 1.19176 0.68100
No Infection 1.24550 20.79259 20.45291
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From the standardized residuals (and the sign of the residu-
als), it appears those who drank cranberry juice were less
likely to develop urinary tract infections; those who drank lac-
tobacillus were more likely to have infections.

29. a) Independence
b) : Political Affiliation is independent of Sex.

: There is a relationship between Political Affiliation and Sex.
c) Counted data; probably a random sample, but can’t extend re-

sults to other states; all expected frequencies greater than 5.
d) .
e) Because of the high P-value, we do not reject . These data

do not provide evidence of a relationship between Political Af-
filiation and Sex.

31. : Political Affiliation is independent of Region. : There is a re-
lationship between Political Affiliation and Region.

. With a P-value this low, we reject .
Political Affiliation and Region are related. Examination of the
residuals shows that those in the West are more likely to be
Democrat than Republican; those in the Northeast are more 
likely to be Republican than Democrat.

33. a) Homogeneity
b) : The grade distribution is the same for both professors.

: The grade distributions are different.
c)

HA

H0

H0df = 4, P-value = 0.0078
x2

= 13.849,
HAH0

H0

x2
= 4.851, df = 2, P-value = 0.0884

HA

H0

3. a) RunTime. The model suggests that
movies cost about $714,000 per minute to make.

b) A negative starting value makes no sense, but the P-value of
0.07 indicates that we can’t discern a difference between our
estimated value and zero. The statement that a movie of zero
length should cost $0 makes sense.

c) Amounts by which movie costs differ from predictions made
by this model vary, with a standard deviation of about 
$33 million.

d) 0.154 $m/min
e) If we constructed other models based on different samples of

movies, we’d expect the slopes of the regression lines to vary,
with a standard deviation of about $154,000 per minute.

5. a) The scatterplot looks straight enough, the residuals look ran-
dom and nearly normal, and the residuals don’t display any
clear change in variability.

b) I’m 95% confident that the cost of making longer movies in-
creases at a rate of between 0.41 and 1.02 million dollars per
additional minute.

7. a) ; there’s no association between calories and sodium
content in all-beef hot dogs. : there is an association.

b) Based on the low P-value (0.0018), I reject the null. There is ev-
idence of an association between the number of calories in all-
beef hot dogs and their sodium contents.

9. a) Among all-beef hot dogs with the same number of calories, the
sodium content varies, with a standard deviation of about 60 mg.

b) 0.561 mg/cal
c) If we tested many other samples of all-beef hot dogs, the slopes

of the resulting regression lines would be expected to vary, with
a standard deviation of about 0.56 mg of sodium per calorie.

11. I’m 95% confident that for every additional calorie, all-beef hot
dogs have, on average, between 1.07 and 3.53 mg more sodium.

13. a) : Difference in age at first marriage has not been changing,
: Difference in age at first marriage has been chang-

ing, .
b) Residual plot shows no obvious pattern; histogram is not par-

ticularly Normal, but shows no obvious skewness or outliers.
c) , P-value With such a low P-value, we re-

ject . These data show evidence that difference in age at first
marriage is decreasing.

15. Based on these data, we are 95% confident that the average dif-
ference in age at first marriage is decreasing at a rate between

and years per year.
17. a) : Fuel Economy and Weight are not (linearly) related,

: Fuel Economy changes with Weight, . 
P-value , indicating strong evidence of an association.

b) Yes, the conditions seem satisfied. Histogram of residuals is
unimodal and symmetric; residual plot looks OK, but some
“thickening” of the plot with increasing values.

c) , P-value These data show evidence that
Fuel Economy decreases with the Weight of the car.

19. a) mpg per 1000 pounds.
b) Based on these data, we are 95% confident that Fuel Efficiency

decreases between 6.86 and 9.57 miles per gallon, on average,
for each additional 1000 pounds of Weight.

21. a) We are 95% confident that 2500-pound cars will average 
between 27.34 and 29.07 miles per gallon.

b) Based on the regression, a 3450-pound car will get between
15.44 and 25.36 miles per gallon, with 95% confidence.

23. a) Yes. , P-value . With a P-value so low, we re-
ject . There is a positive relationship between Calories and
Sodium content.

b) No. % and s appears to be large, although without see-
ing the data, it is a bit hard to tell.

25. Plot of Calories against Fiber does not look linear; the residuals
plot also shows increasing variance as predicted values get large.
The histogram of residuals is right skewed.

R2
= 9

H0

= 0.0079t = 2.73

(-9.57, -6.86)

6 0.0001.t = -12.2

6 0.0001
b1 Z 0b1 = 0. HA

H0

0.0210.039

H0

60.0001.t = -7.04

b1 Z 0
b1 = 0. HA

H0

HA: b1 Z 0
H0: b1 = 0

Budget = -31.387 + 0.714

Dr. Alpha Dr. Beta

A 6.667 5.333

B 12.778 10.222
C 12.222 9.778
D 6.111 4.889
F 2.222 1.778

Three cells have expected frequencies less than 5.
35. a)

Dr. Alpha Dr. Beta

A 6.667 5.333
B 12.778 10.222

C 12.222 9.778

Below C 8.333 6.667

All expected frequencies are now larger than 5.
b) Decreased from 4 to 3.
c) Because the P-value is so low,

we reject . The grade distributions for the two professors are
different. Dr. Alpha gives fewer A’s and more grades below C
than Dr. Beta.

37. . With a P-value this low,
we reject . There is evidence of racial steering. Blacks are much
less likely to rent in Section A than Section B.

39. a) .
b) (same as in Exercise 25).

41. . Because the P-value is , these
data show no evidence of an association between the mother’s
age group and the outcome of the pregnancy.

CHAPTER 27

1. a) ; according to the model,
the error made in predicting a hurricane’s path was about 453
nautical miles, on average, in 1970. It has been declining at a
rate of about 8.37 nautical miles per year.

b) ; there has been no change in prediction accuracy.
; there has been a change in prediction accuracy.

c) With a P-value , I reject the null hypothesis and con-
clude that prediction accuracies have in fact been changing
during this period.

d) 58.5% of the variation in hurricane prediction accuracy is 
accounted for by this linear model on time.

6  0.001
HA: b1 Z 0
H0: b1 = 0

Error = 453.22 - 8.37 YearSince1970

70.05x2
= 5.89, df = 3, P = 0.117
P-value (z) = 0.0002
z = 3.74936, z2

= 14.058

H0

x2
= 14.058, df = 1, P-value = 0.0002

H0

x2
= 9.306, P-value = 0.0255.
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27. a) : No (linear) relationship between BCI and pH, 
: There seems to be a relationship, .

b) with 161 df; P-value 
c) There seems to be a negative relationship; BCI decreases as pH

increases at an average of 197.7 BCI units per increase of 1 pH.
29. a) : No linear relationship between Population and Ozone,

: Ozone increases with Population, ,
P-value 0.0018. With a P-value so low, we reject . These
data show evidence that Ozone increases with Population.

b) Yes, Population accounts for 84% of the variability in Ozone
level, and s is just over 5 parts per million.

31. a) Based on this regression, each additional million residents cor-
responds to an increase in average ozone level of between 3.29
and 10.01 ppm, with 90% confidence.

b) The mean Ozone level for cities with 600,000 people is between
18.47 and 27.29 ppm, with 90% confidence.

33. a) 33 batteries.
b) Yes. The scatterplot is roughly linear with lots of scatter; plot

of residuals vs. predicted values shows no overt patterns; Nor-
mal probability plot of residuals is reasonably straight.

c) : No linear relationship between Cost and Cranking Amps,
: Cranking Amps increase with cost, 

P-value . With a P-value so low, we re-
ject . These data provide evidence that more expensive 
batteries do have more cranking amps.

d) No. and amps. Since the range of amper-
age is only about 400 amps, an s of 116 is not very useful.

e)
f) cold cranking amps per dollar.
g) Cranking amps increase, on average, between 1.97 and 6.32 per

dollar of battery Cost increase, with 90% confidence.
35. a) : No linear relationship between Waist size and %Body Fat,

: %Body Fat changes with Waist size, 
; P-value . There’s evidence that %Body Fat

seems to increase with Waist size.
b) With 95% confidence, mean %Body Fat for people with 40-inch

waists is between 23.58 and 29.02, based on this regression.
37. a) The regression model is 

Estimate Std Error t-ratio P-value
Intercept 12.00543 15.9553 0.752442 0.454633

Slope 0.72099 0.183716 3.924477 0.000221

RSquare 0.198982

s 16.78107

n 64

b) The scatterplot shows a weak, somewhat linear, positive rela-
tionship. There are several outlying points, but removing them
only makes the relationship slightly stronger. There is no obvi-
ous pattern in the residual plot. The regression model appears
appropriate. The small P-value for the slope shows that the
slope is statistically distinguishable from 0 even though the 
value of 0.199 suggests that the overall relationship is weak.

c) No. The value is only 0.199 and the value of s of 16.8 points
indicates that she would not be able to predict performance on
Midterm2 very accurately.

39. : Slope of Effectiveness vs Initial Ability � 0; 

28 30 32 34 36
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–5.0

–2.5

0.0

2.5

5.0
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e

H
A
: Slope Z 0H0

R2

R2

Midterm2 = 12.005 + 0.721 Midterm1

6 0.0001t = 8.14
b1 Z 0.b1 = 0. HA

H0

(1.97,  6.32)
Cranking amps = 384.59 + 4.15 * Cost.

s = 116R2
= 25.2%

H0

=
1
2(0.0029) = 0.00145

b1 7 0. t = 3.23;b1 = 0. HA

H0

H0=

b1 7 0. t = 3.48b1 = 0. HA

H0

6 0.0001t = -7.73
b1 Z 0HA

b1 = 0.H0 Scatterplot is straight enough. Regression conditions appear to
be met. With a P-value this
small, we reject the null hypothesis. There is strong evidence that
the effectiveness of the video depends on the player’s initial abil-
ity. The negative slope observed that the method is more effective
for those whose initial performance was poorest and less so for
those whose initial performance was better. This looks like a case
of regression to the mean. Those who were above average ini-
tially tended to be worse after training. Those who were below
average initially tended to improve.

41. a) Data plot looks linear; no overt pattern in residuals; histogram
of residuals roughly symmetric and unimodal.

b) : No linear relationship between Education and Mortality,
; P-value . There is

evidence that cities in which the mean education level is
higher also tend to have a lower mortality rate.

c) No. Data are on cities, not individuals. Also, these are observa-
tional data. We cannot predict causal consequences from them.

d) deaths per 100,000 people.
e) Mortality decreases, on average, between 33.89 and 65.95

deaths per 100,000 for each extra year of average Education.
f) Based on the regression, the average Mortality for cities with

an average of 12 years of Education will be between 874.239
and 914.196 deaths per 100,000 people.

PART VII REVIEW

1. The proportions are as specified by the ratio 1:3:3:9; The
proportions are not as stated. 

, we fail to reject . These data do not provide 
evidence to indicate that the proportions are other than 1:3:3:9.

3. a) Mortality and calcium concentration in water are not linearly
related, They are linearly related, .

b) . There is a significant negative 
relationship between calcium in drinking water and mortality.

c) deaths per 100,000 for each ppm calcium.
d) Based on the regression, we are 95% confident that mortality

(deaths per 100,000) decreases, on average, between 2.27 and
4.19 for each part per million of calcium in drinking water.

5. 404 checks
7. Income and Party are independent. Income and Party are

not independent. . With such a
small P-value, we reject . These data show evidence that in-
come level and party are not independent. Examination of com-
ponents suggests Democrats are most likely to have low incomes;
Independents are most likely to have middle incomes, and
Republicans are most likely to have high incomes.

9.
, we do not reject . These data do not provide

evidence of a difference in musical abilities between right- and
left-handed people.

11. a)
Boxplot of the differences indicates a strong outlier (1958).
With the outlier kept in, the t-stat is 0, with a P-value of 1.00
(two sided). There is no evidence of a difference (on averag of
actual and that predicted by Gallup. With the outlier taken
out, the t-stat is still only with a P-value of 0.4106, so
the conclusion is the same.

b) There is no (linear) relationship between predicted and ac-
tual number of Democratic seats won There is a
relationship . The relationship is very strong, with an

of 97.7%. The t-stat is 22.56. Even with only 12 df, this is
clearly significant (P-value ). There is an outlying
residual (1958), but without it, the regression is even stronger.

13. Conditions are met; ; ; P-value 0.9526. Since
, we do not reject . We do not have evidence that the

way the hospital deals with twin pregnancies has changed.
H0P 7 0.05

=x2
= 0.69df = 4

6 0.0001
R2

(b1 Z 0)
(b1 = 0). HA:

H0:

-0.8525

H0: mD = 0; HA: mD Z 0.

H0Since P 7 0.05
P-value = 0.1683.pL - pR Z 0. z = 1.38;HA:H0: pL - pR = 0;

H0

x2
= 17.19; P-value = 0.0018

HA:H0:

(-4.19, -2.27 )

t = -6.73; P-value 6 0.0001
b1 Z 0b1 = 0; HA:

H0:

H0Since P 7 0.05
P-value = 0.1711.df = 3;x2

= 5.01;
HA:H0:

(-65.95, -33.89)

6 0.001b1 = 0. HA: b1 Z 0. t = -6.24
H0

t = -4.34, df = 19, P-value = 0.004.

BOCK_AppC_SE_0321570448.qxd  12/18/08  3:59 PM  Page 56



APPENDIX C    Part VII Review A-57

15. a) Based on these data, the average annual rainfall in LA is 
between 11.65 and 17.39 inches, with 90% confidence.

b) About 46 years
c) No. The regression equation is 

. For the slope, with P-value .
17. a) Linear regression is meaningless—the data are categorical.

b) This is a two-way table that is appropriate. Eye and 
Hair color are independent. Eye and Hair color are not 
independent. However, four cells have expected counts less
than 5, so the analysis is not valid unless cells are merged.
However, with a value of 223.6 with 16 df and a P-value

, the results are not likely to change if we merge 
appropriate eye colors.

19. a) ; 
P-value . With such a small P-value, we reject . 
We conclude there is evidence of a difference in effectiveness;
it appears the methods are not as good for older women.

b) ; P-value . Same conclusion.
c) The P-values are the same; 

21. a) Positive direction, generally linear trend; moderate scatter.
b) There is no linear relationship between Interval and

Duration. There is a linear relationship, .
c) Yes; histogram is unimodal and roughly symmetric; residuals

plot shows random scatter.
d) ; P-value . With such a small P-value, we reject

. There is evidence of a positive linear relationship between
duration and time to next eruption of Old Faithful.

e) The average time to next eruption after a 2-minute eruption is
between 53.24 and 56.12 minutes, with 95% confidence.

f) Based on this regression, we will have to wait between 63.23 and
87.57 minutes after a 4-minute eruption, with 95% confidence.

23. a) , P-value 0.1574. Since , we do
not reject . There’s no evidence the two groups differed in
ability at the start of the study.

H0

P 7 0.05=df = 459.3,t = 1.42

H0

… 0.001t = 27.1

b1 Z 0b1 = 0. HA:
H0:

z2
= (3.563944)2

= 12.70 = x2.
= 0.0004x2

= 12.70

H0= 0.0004
HA: pY - pO Z 0. z = 3.56H0: pY - pO = 0;

6  0.0001
x2

x2

HA:
H0:

= 0.9029t = 0.12R2
= 0.1%

Rain = -51.684 + 0.033 * Year.

b) ; P-value . The group taught using the accel-
erated Math program showed a significant improvement.

c) ; P-value . The control group showed a 
significant improvement in test scores.

d) ; P-value . The Accelerated Math group had
significantly higher gains than the control group.

25. a) The regression—he wanted to know about association.
b) There is a moderate relationship between cottage cheese and

ice cream sales; for every million pounds of cottage cheese,
1.19 million pounds of ice cream are sold, on average.

c) Testing if the mean difference is 0 (matched t-test). Regression
won’t answer this question.

d) The company sells more cottage cheese than ice cream, on 
average.

e) part (a)—linear relationship; residuals have a Normal distribu-
tion; residuals are independent with equal variation about the
line. (c)—Observations are independent; differences are approx-
imately Normal; less than 10% of all possible months’ data.

f) About 71.32 million pounds. g) (0.09, 2.29)
h) From this regression, every million pounds of cottage cheese

sold is associated with an increase in ice cream sales of be-
tween 0.09 and 2.29 million pounds.

27. Based on these data, the average weight loss for the clinic is be-
tween 8.24 and 10.06 pounds, with 95% confidence. The clinic’s
claim is plausible.

29. ; P-value . There is evidence of an association
between cracker type and bloating. Standardized residuals for the
gum cracker are and 1.58. Prospects for marketing this
cracker are not good.

-1.32

= 0.0414x2
= 8.23

6 0.0001t = 5.78

6 0.0001t = 9.24

6 0.0001t = 15.11
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5-number summary, 56
boxplots and, 81–82, 109

10% Condition
Central Limit Theorem, 422
for chi-square tests, 628
for comparing means, 563
comparing proportions, 506
for confidence intervals, 446
independence and, 391
for paired data, 590
sampling distribution models, 415
for Student’s t-models, 536–537

68-95-99.7 Rule, 113
Central Limit Theorem and, 414
symmetric distribution and, 224
working with, 114FE–115FE

A
ActivStats Multimedia Assistant, 5
Actuaries, 366
Addition Rule, 330–331

applying, 331FE, 393
General Addition Rule, 342–343,

345FE–346FE
for variances, 373

Adjusted R2, 29-16
Agresti-Coull interval, 490FE–491FE
Alpha levels, 486, 486–487, 496–497, 547
Alternative hypothesis, 460, 463

many-sided alternative, 626
one-sided alternative, 466, 481FE, 485
two-sided alternative, 466

Amazon.com, 7–8
American Association for Public Opinion

Research (AAPOR), 350
American Journal of Health Behavior, 354
Analysis of Variance, See ANOVA (Analysis

of Variance)
Annenberg Foundation, 427
ANOVA (Analysis of Variance), 28-1–28-40,

28-6
assumptions and conditions, 28-13–28-15
balance, 28-18
Bonferroni multiple comparisons, 

28-19–28-21
boxplots for, 28-13
common problems, 28-24–28-25
comparing means, 28-18–28-19
comparing means of groups, 28-2–28-3
on the computer, 28-27
Does the Plot Thicken? Condition, 28-14
Equal Variance Assumption, 28-14, 28-20
Error Mean Square, 28-5
F-statistic, 28-5–28-6
F-tables, 28-7–28-8
handwashing methods example, 28-1–28-2
hot beverage containers example, 

28-15FE–28-18FE

Independence Assumption, 28-13
Nearly Normal Condition, 28-15
Normal Population Assumption, 28-15
on observational data, 28-21
Randomization Condition, 28-13
residual standard deviation, 

28-12–28-13
Similar Spread Condition, 28-14
Treatment Mean Square (MST), 28-6
TV watching example, 28-22FE–28-23, 28-24

ANOVA model, 28-9–28-12
ANOVA tables, 28-7, 29-9–29-10
Area codes, 9
Area principle, 22, 33, 48
Armstrong, Lance, 13, 222
Association(s), 147

between categorical variables, 29FE
correlation properties, 156
direction of, 147, 152, 156
linear, 147, 152, 156, 160
looking at, 154FE–155FE
vs. correlation, 160

Assumptions, 112
for ANOVA, 28-13–28-15
checking, 112, 507FE
for chi-square tests, 627–628, 634
common problems, 452
in comparing counts, 619–620, 620FE
comparing proportions, 506
and conditions, 112, 184, 415–416
confidence intervals, 446
counts, 620FE
Equal Variance Assumption, 181, 184, 574,

652, 28-14, 28-20, 29-6
Independence Assumption, 332, 415, 422,

446, 506, 536, 563, 589–590, 619–620,
652, 28-13, 29-5

Independent Groups Assumption, 506,
563–564, 576

Linearity Assumption, 184, 201, 651, 29-5
for means, 563–564, 564FE
Normal Population Assumption, 537, 563,

590, 652–653, 28-15
Normality Assumption, 112, 380, 537,

549–550, 563, 590, 653, 28-15, 
29-6–29-7

for paired data, 589–590, 590FE
Paired Data Assumption, 589
for regression, 184, 651–653, 653FE–654FE
Sample Size Assumption, 415, 422, 446,

620
sampling distribution models, 415–416
Student’s t-models, 536–537, 537FE–538FE

B
Balance, 28-18
Bar charts, 22

area principle, 22

Categorical Data Condition and, 23–24
common problems, 65–66
relative frequency, 23
segmented, 30, 30–33
Titanic example, 22, 28

Batteries, life of, 560
Bayes, Thomas, 358
Bayes’s Rule, 358, 483n
Bernoulli, Daniel, 389
Bernoulli, Jacob, 326, 389
Bernoulli trials, 388

Binomial probability model, 392–394,
395FE–396FE

common problems, 399
geometric probability model, 389
independence and, 390–391

Berra, Yogi, 147, 326, 331
Between Mean Square, 28-5
Bias(es), 269

common problems, 284, 452, 550
nonresponse, 283–284
in samples, 269, 274, 282FE, 283FE
voluntary response, 282

Bill and Melinda Gates Foundation, 427–428
Bimodal distribution, 50, 116, 422, 537, 590
Binomial probability model, 393

in Bernoulli trials, 392–394, 395FE–396FE
calculator tips for, 396
common problems, 399
on the computer, 401
deriving mean and standard deviation,

394
Normal models and, 398
spam example, 395FE, 398FE
Success/Failure Condition, 397
universal blood donor example,

395FE–396FE
Blinding, 301, 302FE
Blocking, 296, 304, 598

paired data and, 588, 598
pet food example, 305FE

Blocking variable, 296
Body fat measurement, 649–650, 29-1, 

29-7FE–29-9FE
Bonferroni method, 28-19–28-21, 28-20
Boxplots, 81

5-number summary and, 81–82, 109
for ANOVA, 28-13
calculator tips for, 86
common problems, 576, 599
comparing groups with, 83–84, 86
handwashing methods, 28-1–28-2
outliers in, 81
plotting, 560–561
re-expressing data, 224–225
wind speed example, 81–84

Bozo the clown as outlier, 161, 207
Buchanan, Pat, 205–206
Burger King menu items, 171–175
Bush, George W., 205, 207

Index

APPENDIX

E
Note: Page numbers in boldface indicate chapter-level topics; page numbers in italics indicate definitions; FE indicates For Example references.
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C
Calculators, See Graphing calculators
Cancer, smoking and, 157–158
Card shuffling, 257
Carnegie Corporation, 427
Carpal tunnel syndrome, 568
Cases, 9
Categorical data, 20–43

area principle, 22
bar charts, 22–23
chi square, 620–640
common problems, 33–35
conditional distributions, 26–29
contingency tables, 24–26, 27, 80
Counted Data condition, 619, 627–628
displaying on computers, 37
frequency tables, 21–22
pie charts, 23–24
proportions and, 419, 422–424
rules of data analysis, 21
segmented bar charts, 30–33

Categorical Data Condition, 24
Categorical variables, 10

bar charts, 22–23
chi-square and, 620–640
correlation and, 160
counting, 11–12
distribution of, 22

Causation
chi-square tests and, 639
common problems, 29-17
correlation and, 157, 160
lurking variables and, 208–209

Ceci, Stephen, 306–307
Cedar Point amusement park, 88FE
Cells of tables, 24, 619
Census, 271, 271–272, 538
Center for Collaborative Education, 427
Center for School Change, 427
Center of distributions, 49, 53

describing, 60FE
flight cancellation example, 56FE–58FE
mean and, 58–60
median and, 52–54
standardizing z-scores, 110

Centers for Disease Control, 107FE
Central Limit Theorem (CLT), 421, 531

10% Condition, 422
assumptions and conditions, 422–423
Independence Assumption, 422
inferences for regression, 668
Large Enough Sample Condition, 422–423
mean and, 531, 531FE–532FE
Normal model and, 428
Randomization Condition, 422
for sample proportions, 412–414
Sample Size Assumption, 422
sampling distribution models, 421,

421–422, 429, 532
standard deviations and, 531

Chi-square components, 631
Chi-square models, 621, 631, 639
Chi-square statistic, 621

calculating, 620–621
hypothesis testing for, 621, 622FE–623FE,

624
P-values, 638FE
process for, 623–624

Chi-square tests
10% Condition, 628
assumptions and conditions, 627–628, 634
calculations, 628–629
calculator tips for, 638
causation and, 639
on the computer, 642
contingency tables and, 642
Counted Data Condition, 627–628

Expected Cell Frequency Condition, 628
for goodness-of-fit, 618–619, 622FE–623FE,

626
of homogeneity, 627, 629FE–630FE, 638
for independence, 632–633, 633FE–636FE,

639
null hypothesis and, 626–640
Randomization Condition, 628
residuals for, 623, 631, 636–637
writing conclusions for, 638FE

Cluster sample, 275, 275–276, 275FE
Coefficient(s)

common problems, 29-17
multiple regression, 29-3–29-4, 29-10–29-11
regression, 273
t-ratios for, 29-10–29-11

Complement Rule, 330, 330FE, 346FE, 371
Completely randomized design, 298FE,

305–306
Completely randomized experiments, 305
Computers

ANOVA, 28-27
checking Nearly Normal Condition, 542
chi-square tests, 642
comparing distributions, 94
confidence intervals for proportions, 454
differences between proportions, 519
displaying categorical data, 37
displaying quantitative data, 71
experiments and, 312
hypothesis tests, 476, 498–499
inference for means, 552–553
linear regression, 192
Normal probability plots, 129
paired t-analyses, 601–602
random variables, 383
re-expressing data, 239
regression analysis, 672, 29-21
regression diagnosis, 213
sampling on, 287
scatterplots and correlation, 163
simulations, 264
statistics packages, 16
two-sample methods, 579

Condition(s), 112
10% Condition, 391, 415, 422, 446, 506,

536–537, 563, 590, 628
for ANOVA, 28-13–28-15
Categorical Data Condition, 24, 31FE
checking, 464FE, 507FE
for chi-square tests, 627–628, 634
common problems, 474
in comparing counts, 619–620, 620FE
comparing proportions, 506
confidence intervals, 446
correlation, 152–153
Counted Data Condition, 619, 627–628
Does the Plot Thicken? Condition, 181,

184, 652, 28-14, 29-6
Expected Cell Frequency Condition, 620,

628
for fitting models, 203
for inference in regression, 651–653,

653FE–654FE, 654
Large Enough Sample Condition, 422–423
for means, 563–564, 564FE
Nearly Normal Condition, 112, 126, 537,

542, 550, 563, 590, 652, 28-15, 29-6–29-7,
29-13

Outlier Condition, 153, 178, 184, 652
for paired data, 589–590, 590FE
Quantitative Data Condition, 49
Quantitative Variables Condition, 152,

178, 184
Randomization Condition, 415, 422, 446,

506, 536, 563, 589–590, 620, 628, 652, 
28-13, 29-5

sampling distribution models, 415–416

Similar Spread Condition, 574, 28-14
Straight Enough Condition, 152, 161, 178,

224, 651, 29-5
Student’s t-models, 536–537, 537FE–538FE
Success/Failure Condition, 397, 415–416,

446, 460, 507
Conditional distribution, 26

and conditional probability, 346–348
finding, 27FE
pie charts of, 27
Titanic example, 26–29

Conditional probability, 347
Bayes’s Rule, 358
common problems, 359
conditional distribution of, 346–348
contingency tables and, 346, 351
DWI test example, 352FE–353FE
examples, 342
food survey example, 348FE
General Addition Rule, 342–343,

345FE–346FE
General Multiplication Rule, 348, 355–356
for independent events, 349–351
independent vs. disjoint events, 350
null hypothesis and, 464
P-value as, 483–484
relative frequencies of, 347
reversing, 356, 357FE–358FE, 359FE
room draw, 353–354
tree diagrams for, 354–356

Confidence interval(s), 439–458, 441
calculator tips for, 448–449, 510, 541,

567–568, 597
census and, 538
choosing sample size, 449–450, 450FE
common problems, 451–452, 551
on the computer, 454
creating, 567–568, 597
critical values, 445
for difference in independent means,

565FE
for difference in proportions, 507
and effect size, 465
hypothesis tests and, 487–488,

488FE–490FE, 547
interpreting, 441, 541–542
making decisions based on, 488FE
margin of error, 442–443
for matched pairs, 594–595
for a mean, 533–535, 541, 542, 575
for mean predicted value, 667
for means of independent groups, 561–563
paired-t confidence interval, 594–595,

595FE–596FE
for predicted values, 667, 667FE
for proportions, 439–458, 447FE–448FE
for regression slope, 660
in sampling distribution models, 440–442
for small samples, 490, 490FE–491FE
in Student’s t-models, 534
for two-proportion z-interval, 508,

508FE–510FE
Confounding, 306

in experiments, 306–308
lurking variable vs., 307–308
pet food example, 307FE

Constants, changing random variables,
372FE–373FE

Consumer Reports, 9FE, 11FE
Context for data, 8
Contingency tables, 24, 633

chi-square tests and, 642
conditional probability and, 346, 351
examining, 31FE–32FE
Titanic example, 24–26, 27
Venn diagrams and, 351

Continuity correction, 399n
Continuous probabilities, 329
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Continuous random variables, 366, 377, 399
Control groups, 301
Controlling sources of variation, 295
Convenience sample, 282, 282–283, 530
Cornell University, 92, 569
Correlation, 152

association vs., 160
calculator tips for, 155
categorizing, 156
causation and, 157, 160
changing scales, 156FE
on computers, 163
conditions, 152–153
least squares line and, 173–174
linear association and, 152, 156
notation for, 273
Outlier Condition, 153
outliers and, 153, 156, 158, 161
Quantitative Variables Condition, 152
and regression, 171
in scatterplots, 150–153
Straight Enough Condition, 152
straightening scatterplots, 158–159

Correlation coefficient, 152
direction of association and, 156
linear association and, 161
outliers and, 161
properties, 156

Correlation tables, 158
Counted Data Condition, 619, 627–628
Counts, 618–648

10% Condition, 628
assumptions and conditions, 619–620,

620FE, 627–628
calculating, 620–621
Categorical Data Condition and, 24
categorical variables and, 11–12
for chi-square model, 621–640,

629FE–630FE
common problems, 639–640
comparing observed distributions,

626–627
Counted Data Condition, 619, 627–628
Expected Cell Frequency Condition, 620,

628
finding expected, 619FE
frequency tables and, 21–22
goodness-of-fit tests, 618–619
Independence Assumption, 619–620
Randomization Condition, 620, 628
Sample Size Assumption, 620

Critical value(s), 445
calculator tips for, 536
from F-model, 28-8
from Normal model, 534
from Student’s t-models, 534, 540

D
Dabilis, Andrew, 87
Data, 7–19, 8

calculator tips for, 14–15
categorical. See Categorical data
characteristics about, 9–11
common problems, 14
context for, 8
counting, 11–12
identifiers for, 12
plotting, 560–561
quantitative. See Quantitative data
rescaling, 108–109
shifting, 107–108

Data analysis
displaying quantitative data, 49
of outliers, 87–88
rules of, 21, 23–24

Data table, 8

De Moivre’s Rule, See 68-95-99.7 Rule
Degrees of freedom (df ), 533

chi-square models and, 621
Error Mean Square and, 28-6
means and, 549
Multiple regression and, 29-2
paired-t and, 591
Regression models and, 657
Student’s t-models and, 533–535
Treatment Mean Square and, 28-6
Two-sample t and, 562, 562n, 563

Delimiters, 16
Dependent variables, 149n, 640
Deviation, 60–61
Diaconis, Persi, 257
Dice games, 259FE–260FE
Direction of association, 147, 152, 156
Discrete random variables, 366,

370FE–371FE
Disjoint events, 330

Addition Rule, 330
common problems, 335
DWI test example, 352FE–353FE
independent vs., 350
Probability Assignment Rule, 331

Distributions, 22, 44
5-number summary, 56
bimodal, 50, 116, 422, 537, 590
of categorical variables, 22
center of. See Center of distributions
chi-square. See Chapter 26
common problems, 92
comparing, 81
comparing groups, 84FE–85FE
comparing groups with boxplots, 83–84
comparing groups with histograms, 82
comparing observed, 626–627
comparing on computers, 94
conditional, 26, 26–29, 346–348
F. See Chapter 28
flight cancellation example, 56FE–58FE
marginal, 24, 26FE
multimodal, 50, 550
Normal. See Chapter 6
outliers in, 87–88
quantitative variables, 44
re-expressing data, 89–91
shapes of. See Shapes of distributions
skewed, 50
spread of. See Spread
summarizing, 63FE–64FE
symmetric, 50, 58–60, 89–91
t. See Chapter 23
tails of, 50
timeplots of, 88–89
uniform, 50
unimodal, 50, 535–537
of variables, 224
wind speed example, 80

Does the Plot Thicken? Condition, 181, 184,
652, 28-14, 29-6

Dotplots, 49
Double-blind, 302

E
Earthquakes, 44–45, 52–56
Education, Department of, 427
Educational Testing Service (ETS), 110
Effect size, 493

confidence intervals and, 465
errors and, 494–495
hypothesis testing and, 492
for paired data, 597, 598FE

Empirical probability, 326
Empirical Rule, See 68-95-99.7 Rule
Equal Variance Assumption

for ANOVA, 28-14, 28-20
for linear regression, 181, 184, 652
for multiple regression, 29-6
for pooled t-tests, 574

Error(s)
in data collection, 87
effect size and, 494–495
in extrapolation, 204
in retrospective studies, 293
sampling, 414
standard. See Standard error(s)
Type I. See Type I error
Type II. See Type II error

Error Mean Square ( ), 28-5
Error Sum of Squares, 28-11–28-12
Events, 325

disjoint, 330–331, 335, 352FE–353FE
probability of, 326

Expected Cell Frequency Condition, 620, 628
Expected value, 367

for chi-square statistic, 623, 628, 631
common problems, 380
of geometric model, 389
of random variables, 366–368,

370FE–371FE, 377
restaurant discount example, 368FE

Experiment(s), 292–316, 294
adding factors, 305–306
blinding in, 301–302
blocking in, 303–304
common problems, 308–309
completely randomized two-factor, 305
computers and, 312
confounding in, 306–308
diagrams in, 297
differences in treatment groups, 299–300
factors in, 294
lurking variables, 307–308
placebos in, 302–303
random assignments in, 294, 296
response variables in, 294
samples and, 300–301

Experimental design
completely randomized, 298FE, 305–306
fertilizer example, 297FE–299FE
pet food example, 297FE
principles of, 295–297

Experimental units, 294, 296
Explanatory variables, 149, 294
Exposed to smoke (ETS), 91
Extrapolation, 203–205, 204, 669

F
F-distribution, 28-6
F-statistic, 28-6, 28-7, 29-9
f/stops, 158–160, 233–234
F-tables, 28-7–28-8
F-test, 28-6, 28-15, 29-9–29-10
Factor(s), 294

adding to experiments, 305–306
confounding and, 307
in experiments, 294
level of, 294

False negative, 357FE, 491. See also
Type II Error

False positive, 357FE. See also Type I Error
Far outliers, 81
Farr, William, 21
FDA (Food and Drug Administration), 295
Fechner, Gustav, 294
Fisher, Ronald Aylmer, 157, 486, 495, 536, 

28-4, 28-6, 29-9
Flight cancellations, 56FE–58FE
Food and Drug Administration (FDA), 295
Frequency tables, 21, 21–22
Friendship affecting price, 569

MSE
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G
Gallup, George, 269
Galton, Francis, 174
Gaps in histograms, 45
Gastric freezing, 300
General Addition Rule, 342–343, 343FE,

345FE–346FE
General Multiplication Rule, 348, 355–356
Geometric probability model, 389

for Bernoulli trials, 389
calculator tips for, 392
common problems, 399
on the computer, 401
spam example, 390FE
universal blood donor example,

391FE–392FE
Ghosts, belief in, 412
Ginkgo biloba, 303
Golden Ratio, 152n
Goodness-of-fit test (chi-square), 618,

618–619, 622FE–623FE, 624–625, 626
Gore, Al, 205–206
Gosset, William S., 532–533
Grading on a curve, 104
Graham, Ronald, 257
Grange, Jean-Baptiste, 113FE
Graphing calculators

button for standard deviation, 549
calculating statistics, 4, 65
checking Nearly Normal Condition, 542
chi-square tests of homogeneity, 638
comparing groups with boxplots, 86
creating confidence interval, 567–568,

597
creating Normal probability plots, 125
creating scatterplots, 149–150
finding Binomial probabilities, 396
finding confidence intervals, 448–449, 

510, 541
finding correlation, 155
finding critical values, 536
finding geometric probabilities, 392
finding mean of random variables,

370–371
finding Normal cutpoints, 119
finding Normal percentages, 117–118
finding standard deviation of random

variables, 370–371
finding t-model probabilities, 535–536
generating random numbers, 262
goodness-of-fit test, 624–625
inference for regression, 664–665
making histograms, 46
re-expressing data to achieve linearity,

232
regression lines, 187–188
residuals plots, 187–188
shortcuts to avoid, 234–236
straightening curves, 160
testing a hypothesis, 468–469, 515,

545–546, 572, 594
using logarithmic re-expressions, 233–234
working with data, 14–15

Groups
bimodal distribution and, 52
calculator tips for, 86
comparing, 82–84, 84FE–85FE
comparing means for, 28-2–28-3
comparing with boxplots, 83–84, 86
comparing with histograms, 82
control, 301
differences in treatment, 299–300
equalizing spread across, 91
Independent Groups Assumption, 506,

563–564, 576
shifting residuals for, 202–203

H
Handwashing methods, 28-1–28-2
Harvard School of Public Health, 354
Harvard University, 427
Harvell, Drew, 439
HDTV performance, 9FE, 11FE
Hepatitis C and tattoos, 633
Histograms, 44

bimodal, 50
calculator tips for, 46
common problems, 65
comparing groups with, 82
describing, 51FE
for displaying quantitative data, 44–46
gaps in, 45
multimodal, 50
Nearly Normal Condition and, 537, 542,

550
re-expressing data, 224
relative frequency, 45
sifting residuals for groups, 202
skewed, 60
symmetric, 50
uniform, 50
unimodal, 50
wind speed example, 82

Homogeneity test (chi-square), 627,
629FE–630FE, 638

Hopkins Memorial Forest, 80, 82
Hurricanes, 146–148, 177FE
Hypotheses, 460

alternative. See Alternative hypothesis
null. See Null hypothesis
writing, 463FE, 481FE

Hypothesis testing, 459–479, 480–503
calculator tips for, 468–469, 515, 

572, 594
with chi-square statistic, 621,

622FE–623FE, 624
common problems, 474, 496–497
on the computer, 476, 498–499
confidence intervals and, 487–488,

488FE–490FE, 547
effect size and, 492
for means, 533, 547
Normal model and, 459–461
one-sample t-test for the mean, 542–543
P-value in, 461–462, 465FE, 469–470
with paired data, 594
power of, 492–494, 493FE, 496FE
reasoning of, 463–465
sampling variability, 467FE–468FE
selecting sex of baby example,

471FE–473FE
on snoring, 511
standard of reasonable certainty, 462–463
Student’s t-models and, 547
threshold value notation, 486
trials as, 461
Type I error, 491–492, 492FE, 494–496
Type II error, 491–492, 494–496

I
Ice breakup times, 661, 662FE–664FE, 664
Identifier variables, 12
Independence, 29, 326, 349

10% Condition, 391
Bernoulli trials and, 390–391
checking for, 349FE
chi-square test for, 632–633, 633FE–636FE,

639
common problems, 335, 452, 550
conditional probability for, 349

depending on, 350–351
disjoint vs., 350
DWI test example, 352FE–353FE
Independent Groups Assumption, 506,

563–564, 576
Multiplication Rule, 331, 332FE
of variables, 29, 373–374, 381

Independence Assumption
for ANOVA, 28-13
for Central Limit Theorem, 422
in comparing counts, 619–620
for comparing means, 563
comparing proportions, 506
for confidence intervals, 446
for multiple regression, 29-5
Multiplication Rule and, 331
for paired data, 589–590
for regression, 652
sampling distribution models, 

415
for Student’s t-models, 536

Independent Groups Assumption, 506,
563–564, 576

Independent samples t-test, 564
Independent variables, 149n
Infant mortality, 29-12–29-15
Influential points, 206, 206–207
Intercept, 176–177, 659
International System of Units, 10
Internet, data on, 14
Interquartile range (IQR), 54–56, 55, 81, 108,

28-14
Intersection symbol, 330

J
Jastrow, J., 296

K
Kantor, W. M., 257
Keno (game), 327
Kentucky Derby, 49
Keynes, John Maynard, 329
Klaussen, Cindy, 587
Klüft, Carolina, 104–106
Kohavi, Ronny, 8
Kostelić , Ivica, 107FE

L
Ladder of Powers, 226–228, 231
Landon, Alf, 269, 284
Laplace, Pierre-Simon, 413, 421–422
Large Enough Sample Condition, 422–423
Law of Averages, 326–327
Law of Large Numbers, 326, 421
Least significant difference (LSD), 28-20
Least Squares method, 172, 179, 649–651, 29-

1
Left skewness, 51
Legionnaires’ disease, 293
Legitimate probability assignment, 331
Level of factor, 294
Leverage in linear regression, 206, 206–207
Ligety, Ted, 107FE
Line of best fit, 172, 175–176
Linear association

common problems, 160
correlation and, 152, 156
correlation coefficient and, 161
in scatterplots, 147
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Linear model, 172, 180–181, 201–202
Linear regression, 171–200, 201–221, 649–692.

See also Regression
assumptions and conditions, 184–185,

651–653
Burger King example, 171–172
calculating coefficients, 178FE–180FE
causation and, 208–209
checking reasonableness, 188
common problems, 189, 211–212, 669, 

29-18
on computers, 192, 213, 672
correlation and the line, 173–174
extrapolation, 203–205
fast food example, 185FE–187FE
hurricane example, 177FE
hurricane’s residual, 180FE
influential points in, 206n
least squares line, 172–175
leverage in, 206–207
lurking variables and causation, 208–209
Outlier Condition, 184
outliers in, 205–206
predicted value sizes, 174

, 182–184, 657, 29-2
residual standard deviation, 181–182, 657
residuals in, 180–181, 201–202, 651–652,

654
sifting residuals for groups, 202–203
subsets in, 203
summary values in, 209
variation in residuals, 182–183
working with multiple methods,

210FE–211FE
Linearity Assumption, 184, 201, 651, 

29-5
Literary Digest, 269, 284
Logarithms, 91, 227, 227n, 233–234, 659FE
Lottery, 328
Lower quartile, 54, 56
Lurking variables, 157, 208, 208–209, 307–308

M
Margin of error, 443

for Bonferroni multiple comparisons, 
28-19

common problems, 452
in confidence intervals, 442–443
for difference in independent 

means, 562
for difference in proportions, 507
finding, 444FE, 445FE
for a mean, 533
for a multiple regression coefficient, 29-10
polls and, 443FE
for a proportion, 531
for a regression coefficient, 660

Marginal distribution, 24, 26FE
Matching, 304

in paired data, 588, 598
in prospective studies, 304
in retrospective studies, 304
samples to populations, 270
subjects, 304

Mean(s), 59, 560–586, 28-1–28-40. See also
Center of distributions; Expected value

assumptions and conditions for, 536–537,
563–564, 564FE

calculator tips for, 370–371, 541, 545–546
cautions about, 542
Central Limit Theorem and, 531,

531FE–532FE
common problems, 549–551, 576
confidence interval for, 534, 534FE,

538FE–540FE, 541

Equal Variance Assumption for, 574
grand, in ANOVA model, 28-9
and hypothesis tests, 547
median compared to, 58–60
one-sample t-interval for the mean, 534,

534FE, 538FE–540FE
one-sample t-test for the mean, 542–543,

543FE–545FE
outliers and, 58–60
of paired differences, 587–608
pooled t-tests, 574–575
of predicted values in regression, 667,

667FE
of random variables, 370–371, 372–374,

376FE–377FE, 377, 390
sample size and, 547–548
sampling distribution models for,

420–421, 423–424, 425FE–426FE
and scaling data, 109
standard deviation and, 173, 423
Student’s t-models, 533, 536–537,

537FE–538FE
symmetric distributions and, 58–60
testing hypothesis about, 545–546
two-sample t-interval for the difference

between means, 562, 564, 565FE–567FE
two-sample t-test for the difference

between means, 569–570, 570FE–572FE
Median, 53. See also Center of distributions

of 5-number summary, 56
less variable than data, 212
resistant, 59

Meir, Jessica, 201
Metadata, 9n
Minimum significant difference (MSD), 28-

20
M&M’s example, 333FE–335FE
Mode(s), 49
Model(s), 172. See also Binomial probability

model; Geometric probability model;
Linear model; Normal model;
Probability models; Sampling distribu-
tion models; Student’s t-models

ANOVA, 28-9–28-12
chi-square, 621, 631, 639
conditions for fitting, 203
looking beyond data, 89
null hypothesis as, 464
parameters in, 112
for patterns, 80
population model, 272
random model for simulation, 257
usefulness of, 112n

Moore, David, 297n
Motor vehicle accidents, 354, 530
Motorcycle accidents, 480
Multimodal distribution, 50, 550
Multiple comparisons, 28-19, 28-25
Multiple regression, 29-1, 29-1–29-27

adjusted , 29-16
ANOVA tables and, 29-9–29-10
assumptions and conditions, 

29-5–29-7
body fat measurement, 29-1, 

29-7FE–29-9FE
coefficients, 29-3–29-4
common problems, 29-17–29-18
comparing multiple models, 29-15–29-16
on the computer, 29-21
Does the Plot Thicken? Condition, 29-6
Equal Variance Assumption, 29-6
functionality, 29-2–29-4
Independence Assumption, 29-5
infant mortality, 29-12–29-15
Linearity Assumption, 29-5
Nearly Normal Condition, 29-6–29-7, 29-13
Normality Assumption, 29-6–29-7
partial regression plot, 29-3–29-4

Randomization Condition, 29-5
sifting residuals for groups, 203n
Straight Enough Condition, 29-5
testing coefficients, 29-10–29-11

Multiplication Rule, 331
applying, 332FE
General Multiplication Rule, 348, 355–356

Multistage sample, 276, 276FE
Mutually exclusive events, See Disjoint

events

N
Nader, Ralph, 205
National Geophysical Data Center (NGDC),

44–45
National Highway Traffic Safety

Administration, 480, 488FE–490FE, 504,
530

National Hurricane Center (NHC), 146–147
National Institutes of Health, 108, 294
National Sleep Foundation, 511
Nearly Normal Condition

for ANOVA, 28-15
common problems, 550
for comparing means, 563
histograms and, 542, 550
for multiple regression, 29-6–29-7, 29-13
Normal models and, 112, 114, 126
for paired data, 590
for regression, 652
for Student’s t-models, 537

New England Journal of Medicine, 481FE,
484FE, 485FE, 492FE

NHANES survey, 107–108
Nightingale, Florence, 21
NOAA (National Oceanic and Atmospheric

Administration), 146
Nonresponse bias, 283, 283–284
Normal model(s), 112

68-95-99.7 Rule, 113
Binomial models and, 398
calculator tips for, 119
Central Limit Theorem and, 428
common problems, 399
critical values from, 534
finding percentiles, 116–118
hypothesis testing and, 459–461
Nearly Normal Condition, 112, 114, 126
Normal probability plots, 124–125, 129
probability and, 329
rules for, 114–116
sampling variability and, 415
sketching Normal curves, 114
standard, 112
standard error and, 532
Success/Failure Condition, 397
working with, 118FE–119FE,

120FE–123FE
z-scores and, 111–112, 119

Normal percentiles, 116, 116–118, 119
Normal Population Assumption

for ANOVA, 28-15
for comparing means, 563
inferences about means, 537
for paired data, 590
for regression, 652–653

Normal probability plots, 124
calculator tips for, 125
on computers, 129, 552
how constructed, 124–125
Nearly Normal Condition and, 537

Normal probability tables
critical values, 445
finding Normal percentiles, 116–117

Normal scores, 125

R2

R2
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Normality Assumption, 112
for ANOVA, 28-15
common problems, 380
inference about means, 549–550
for inference in regression, 653
for means, 563
for multiple regression, 29-6–29-7
for paired data, 590
Student’s t-model, 537

Null hypothesis, 460
accepting is not possible, 486, 626
ANOVA, 28-2
chi-square tests, 621, 622n, 626–640
choosing, 480–481
common problems, 474
conclusion about, 465, 465FE
conditional probability, 464
for difference in proportions, 511–512
for goodness-of-fit test, 626
in hypothesis testing, 463
innocence as the null hypothesis, 462–463
multiple regression and, 29-10–29-11
one-sample t-test, 543
P-values and, 461–462
paired t-test, 591
regression, 659–660, 29-2
rejecting, 463, 486–487
two-sample t-test, 569

O
Observational studies, 292

ANOVA on, 28-21
common problems, 430, 28-24
designing, 293FE
uses for, 293

One-proportion z-interval, 442
One-proportion z-test, 464, 482FE–483FE,

618
One-sample t-interval for the mean, 534,

534FE, 538FE–540FE
One-sample t-test for the mean, 542,

542–543, 543FE–545FE
One-sided (one-tailed) alternative hypothe-

sis, 466, 485, 669
One-way ANOVA F-test, 28-15
Open Society Institute, 427
Ordinary Least Squares, 29-2
Outcomes, 325

in disjoint events, 331
equally likely, 255, 327–328
probability of, 342
of trials, 258

Outlier Condition
for correlation, 153
for linear regression, 178, 184
for regression, 652

Outliers, 51, 81, 148, 204
in ANOVA, 28-13
in boxplots, 81, 561
checking, 88FE
correlation and, 153, 156, 158, 161
data analysis of, 87–88
in distributions, 87–88
far, 81
Outlier Condition, 153, 178, 184, 652
in paired t, 599
prefer median to mean, 59–60
problems, 59, 126, 550, 599, 669, 28-24, 29-18
in regression, 205–206, 654, 29-3–29-4
reporting, 88
rule of thumb for identifying, 81
in scatterplots, 148
and standard deviation, 126
in Student’s t, 537, 550
wind speed example, 87–88

Overestimate, 172

P
P-value, 462

as conditional probability, 483–484
finding, 465FE
high, 484–485
in hypothesis testing, 461–462
hypothesis testing and, 469–470
interpreting, 484FE, 485FE

Paired data, 588
10% Condition, 590
assumptions and conditions, 589–590,

590FE
blocking and, 588, 598
calculator tips for, 594
common problems, 576, 599
differences in means of, 589
effect size for, 597, 598FE
hypothesis testing with, 594
identifying, 588FE
Independence Assumption, 589–590
Nearly Normal Condition, 590
Normal Population Assumption, 590
Paired Data Assumption, 589
paired-t confidence interval, 594–595,

595FE–596FE
paired t-test, 589, 591, 591FE–593FE
Randomization Condition, 589–590

Paired Data Assumption, 589
Paired-t confidence interval, 594–595,

595FE–596FE
Paired t-test, 589

on the computer, 601–602
miles driven by workers, 593FE
for paired data, 591
speedskater example, 591FE–593FE

Parameters, 112, 272–273, See also Model(s)
Partial regression plot, 29-4
Participants, 9, 294, 301–302, 304
Peirce, C. S., 296, 301n
Percentages, 22, 24
Percentiles, 56, 116, 116–117
Personal probability, 328–329, 329
Pew Charitable Trusts, 427
Pew Research Center, 268, 271, 399
Pie charts, 23, 23–24, 27
Pilot study, 281, 284, 309, 450, 548
Placebo, 302–303, 303, 462, 480, 512, 28-18
Placebo effect, 303
Polling methods, 271, 443FE
Ponganis, Paul, 201
Pooled t-intervals, 575
Pooled t methods, 574–576
Pooled t-tests, 574, 574–575
Pooling, 512, 574

in ANOVA, 28-5, 28-15
pooled t-intervals, 575
pooled t-tests, 574–575
of regression residuals, 669, 29-18
two-proportion z-test, 511–512

Population(s), 9, 268
determining for samples, 270–271, 279–280
experiments and random samples,

300–301
finite, 391
matching samples to, 270
parameters, 272–273, 300, 452
representative samples from, 9, 270FE

Population parameters, 272
common problems, 452
sample surveys and, 272–273, 300

Power of hypothesis test, 492–494, 493,
493FE, 496FE

Predicted values, 172
confidence intervals for, 667, 667FE
size considerations, 174
standard errors for, 665–667

Prediction interval for an individual, 667,
667FE

Predictor variable, 149
Preusser Group, 480
Probability, 324–341, 326, 342–365

Addition Rule, 330–331, 331FE
calculator tips for, 535–536
common problems, 335
Complement Rule, 330, 330FE
conditional. See Conditional probability
continuous, 329
empirical, 326
formal, 329–332
Independence Assumption, 332
Law of Large Numbers, 326
legitimate probability assignment, 331
M&M’s example, 333FE–335FE
Multiplication Rule, 331, 332FE
Normal models and, 329
personal, 328–329
Probability Assignment Rule, 330–331
rules for working with, 329–332
theoretical, 327

Probability Assignment Rule, 330, 330–331
Probability models, 366, 388–404

binomial. See Binomial probability model
common problems, 380
on the computer, 401
geometric. See Geometric probability

model
Normal model. See Normal model(s)
random variables and, 366, 399

Proportion(s), 22, 439–458, 459–479, 504–522
10% Condition, 506
Central Limit Theorem for, 412–414
common problems, 516–517, 549
comparing, 504–522
on the computer, 476, 519
confidence intervals for, 439–458,

447FE–448FE
finding standard error of difference,

506FE
hypothesis testing, 459–479
margin of error and, 531
notation for, 273
one-proportion z-interval, 442
one-proportion z-test, 464, 482FE–483FE
pooling, 512
sample considerations, 504
sampling distribution models for,

416–417, 417–419, 507
standard deviation of difference, 505–506
two-proportion z-interval, 508,

508FE–510FE
two-proportion z-test, 512, 513FE–515FE

Prospective studies, 293, 304
Pseudorandom numbers, 256
Pythagorean Theorem of Statistics, 374, 505,

603, 668

Q
Qualitative variable, 10n. See also Categorical

data
Quantitative data, 44–79

5-number summary, 56
center of distributions, 49, 52–54
common problems, 65–68
data analysis considerations, 49
displaying on computers, 71
dotplots, 49
histograms, 44–46
sampling distribution models, 419
shapes of distributions, 49–52
stem-and-leaf displays, 47–48
summarizing, 62–63, 63FE–64FE
symmetric distributions, 58–60
valid surveys and, 280
variation in, 62
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Quantitative Data Condition, 49, 651
Quantitative variables, 10

distribution of, 44
linear association between, 152
scatterplots for, 147

Quantitative Variables Condition, 152,
153FE, 178, 184

Quartiles, 54
5-number summary, 56
finding, 54, 55
lower, 54, 56
upper, 54, 56

Questionnaires, 280–281

R
R2, 182

adjusted, 29-16
interpreting, 183FE
linear regression and, 29-2
not a measure of straightness, 236
and , 657
size considerations, 183–184
variation in residuals, 182–183

Random assignment, 294, 297
Random numbers, 256

calculator tips for, 262
generating, 256–257
to get an SRS, 274FE

Random phenomenon, 324, 324–326, 330
Random sampling, See Sample(s)
Random variables, 366, 366–387

adding a constant, 372FE–373FE
calculator tips for, 370–371
common problems, 380–381
computers for, 383
continuous, 366, 377
discrete, 366
expected value of, 366–368, 370FE–371FE,

377, 390
means and, 370–371, 372–374,

376FE–377FE, 390
packaging stereos example, 378FE–380FE
probability model, 366
Pythagorean Theorem of Statistics, 374
restaurant discount example, 368FE
standard deviation of, 369, 370–371,

370FE–371FE
sum of independent, 373–374, 374FE
variance of, 369, 372–374, 376FE–377FE,

424, 505
Randomization

and Central Limit Theorem, 421–422
and confidence intervals, 446
in experiments, 294, 296
in hypothesis testing, 550–551, 563
for sample surveys, 270
in simulation, 257–259

Randomization Condition
for ANOVA, 28-13
Central Limit Theorem, 422, 425FE
for chi-square tests, 620, 628
in comparing counts, 620
for comparing means, 563
comparing proportions, 506
for confidence intervals, 446
for multiple regression, 29-5
for paired data, 589–590
for regression, 652
sampling distribution models, 415
for Student’s t-models, 536

Randomized block design, 304
Randomness, 255, 255–267

building simulations, 258–259
card shuffling, 257

generating random numbers, 256–257, 262
meaning of, 255
practical, 257
random phenomena, 324–326
simulating dice games, 259FE–260FE
simulation example, 259FE–260FE
simulations on computer, 264

Range, 54
Re-expressing data, 90, 222–244

calculator tips for, 232, 233–234
common problems, 236–237
comparing re-expressions, 228FE–230FE,

231FE
on computers, 239
equalizing spread across groups, 91,

224–225, 28-14
equalizing spread across scatterplots, 226
goals of, 224–226
to improve symmetry, 89–91
Ladder of Powers, 226–228, 228FE
log-log method, 233
recognizing uses, 226FE
residuals in, 222–224
to straighten curved relationships,

201–202, 210FE–211FE, 222–225,
228FE–230FE, 233, 651, 29-6

for symmetry, 89–91, 224, 550
Tour de France example, 222

Regression, 171–200, 201–221, 649–692
assumptions and conditions, 184–185,

651–653, 653FE–654FE
calculator tips for, 664–665
common problems, 669
on computers, 192, 213, 672
conditions and residuals, 654
confidence intervals for predicted values,

667, 667FE
and correlation, 173–174
Does the Plot Thicken? Condition, 181, 652
Equal Variance Assumption, 652
extrapolation, 203–205
fast food example, 185FE–187FE
groups, 202–203
ice breakup guess, 661, 662FE–664FE, 664
Independence Assumption, 652
inferences for, 655FE–656FE, 656–658,

659–660, 664–665
influential points in, 205–207
intercept in, 176–177, 659–660
interpreting model, 660FE
least squares criterion, 172–173
leverage, 206–207
linear model, 172, 650–651
Linearity Assumption, 201, 651
lurking variables and, 208–209
multiple. See Multiple regression
Nearly Normal Condition, 652
Normal Population Assumption, 652–653
Outlier Condition, 652
outliers, 205–206
population and sample, 650–651
R2, 182–184, 183FE
Randomization Condition, 652
re-expressing to straighten, 202
residual standard deviation, , 181–182,

657
residuals, 172, 180–181, 654
sampling distribution model for intercept,

658
sampling distribution model for slope,

658
standard error for predicted values,

665–667
standard error for the slope, 658
Straight Enough Condition, 651
summary variables in, 209
t-statistic for slope, 660

Regression lines, 174, 187–188

Regression to the mean, 174
Relative frequency, 22, 45, 326, 347
Relative frequency bar chart, 23
Relative frequency histogram, 45
Relative frequency table, 22
Replication of experiments, 296
Representative, 9, 269, 270FE, 273
Rescaling data, 108, 108–109, 109FE
Research hypothesis, 570n. See also

Alternative Hypothesis
Residual(s), 172

in ANOVA, 28-5
for chi-square, 619, 623, 631, 632FE, 636–637
groups in, 202–203
hurricane example, 180FE
influential points in, 207
least squares, 172, 29-1
linear models and, 180–181, 201–202, 651,

29-1
in re-expressing data, 201, 222–224
standard deviation of, 181–182
standardized, 631, 632FE
variation in, 182–183

Residual standard deviation se, 181–182, 657,
28-12

Residuals plots, 181, 187–188
Resistant, median as, 59
Respondents, 9, 268, 271, 333
Response bias, 282, 283–284
Response variables, 149, 294

determining, 295FE
in experiments, 294
in simulations, 258–259

Retrospective studies, 292, 304
Reverse conditioning, 356, 357FE–358FE,

359FE
Rho (ρ) for correlation, 273
Richter scale, 44–45, 44n
Right skewness, 51, 60
Roosevelt, Franklin Delano, 269, 284
Rounding, 67, 548n

S
(residual standard deviation), 181–182, 657,

28-12
Sample(s), 9, 268–291, 269

bias, 269, 274, 282FE, 283FE
cluster, 275–276
common problems, 451, 550–551, 640
on the computer, 287
confidence interval for, 490
convenience, 282–283
determining populations, 279–280
experiments and, 300–301
Large Enough Sample Condition, 422–423
matching to populations, 270
multistage, 276, 276FE
paired data, 587–598
random, 270
regression and, 650–651
representative, 270FE, 273
response, 282
Simple Random Sample, 273, 274FE
stratified, 274, 275FE
systematic, 277
voluntary response, 282
watching TV example, 277FE–279FE

Sample size
choosing, 449–450, 450FE
finding, 548FE–549FE
heart attack risk example, 496FE
means and, 547–548
regression inference and, 658
Sample Size Assumption, 415, 422, 446,

620

se

se
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Sample Size Assumption
Central Limit Theorem, 422
for chi-square, 620
for proportions, 446
sampling distribution models, 415

Sample space, 325, 342
Sample statistic, 272, 480
Sample surveys, 268–291

census considerations, 271–272
cluster sampling, 275–276
common problems, 282–284
determining populations, 279–280
examining part of the whole, 268–270
population parameters, 272–273, 300
randomizing, 270
sample size for, 270–271
sampling example, 277FE–279FE
Simple Random Sample, 273
stratified random sampling, 274
systematic samples, 277
valid, 280–281

Sampling distribution models, 412–438, 413
10% Condition, 415, 422
aspergillosis example, 439
assumptions and conditions, 415–416
Central Limit Theorem, 412–414, 421–422,

429, 532
common problems, 429–430
confidence intervals, 440–442
for difference between means, 563
for difference between proportions, 507
hypothesis testing and, 459–461
Independence Assumption, 415
for a mean, 420–421, 423–424, 425FE–426FE
Normal model and, 415, 429
for a proportion, 416–417, 417–419
Randomization Condition, 415, 422
for regression slopes, 658
Sample Size Assumption, 415
Success/Failure Condition, 415–416
summarized, 429
variation in, 427

Sampling error, 274, 414
Sampling frame, 273, 280, 283
Sampling variability, 274, 414, 467FE–468FE
SAT tests, 110FE–111FE, 114FE–115FE,

116–117, 118FE–120FE
Scales

combining data on different scales, 105
f/stop, 222
measurement, 10
no effect on correlation, 156, 156FE
Richter, 44–45, 44n

Scatterplot matrix, 29-12–29-13
Scatterplots, 146–170, 147

association, 147–150
axes, 149
calculator tips for, 149–150
common problems, 160–161
on computers, 163
curved patterns in, 234
direction, 147
emperor penguins example, 202
form of, 147
hurricane example, 146–148, 148FE, 153FE
outliers in, 148
for quantitative variables, 147
re-expressing data, 225–226
of residuals, 181, 187–188
roles for variables, 148–150
standardizing, 151
straightening, 158–159, 228FE–230FE, 231FE
strength, 148
summary values in, 209
variables in, 148–150

Sea fans, 439
Seat-belt use, 504, 508FE–510FE
Segmented bar charts, 30, 30–33

Shapes of distributions, 49
flight cancellation example, 56FE–58FE
gaps in, 52
modes of histograms, 49
outliers, 51
standardizing z-scores, 110
symmetric histograms, 50

Shifting data, 107–108, 108
Significance level, 486, 486–487
Similar Spread Condition, 574, 28-14
Simple Random Sample (SRS), 273, 274FE
Simpson’s paradox, 34–35, 35
Simulation(s), 255–267, 257

building, 258–259
common problems, 263
components of, 258
on computers, 264
of dice games, 259FE–260FE
lottery for dorm room example,

260FE–262FE
response variables in, 258–259
sampling distributions of a mean, 420–421
trials and, 258

Simulation component, 258
Single-blind experiments, 302
Skewed distributions, 50

common problems, 430, 550
re-expressing to improve symmetry,

89–91, 224
Student’s t-models and, 537

Skewed left, 60
Skewed right, 60
Skujyte, Austra, 104–106
Slope, 176–177

inference for, 659–660
and influential points, 207
interpreting, 176–177, 177FE, 649
parameter ( ), 272

Slope-intercept form, 668
Smoking, cancer and, 157–158
Something has to Happen Rule, See

Probability Assignment Rule
Speed skaters, 587
SPLOM, 29-12–29-13
Spread, 49, 54

comparing, 82, 28-2
Does the Plot Thicken? Condition, 181,

652, 29-6
equalizing across groups, 91, 224–225
interquartile range, 54–56
range, 54
regression inference and, 657
of residuals, 657
Similar Spread Condition, 574, 28-14
standard deviation, 60–61, 104n
standardizing, 110

SRS (Simple Random Sample), 273, 274FE
Stacked format for data, 28-27
Standard deviation(s), 60–61, 369

calculator tips for, 370–371, 546
Central Limit Theorem and, 531
common problems, 126
of difference between means, 561, 562FE
of difference between proportions, 505–506
for discrete random variables, 369,

370FE–371FE
finding, 61
of the mean, 423
Normal models, rules of, 114–116
Normal models, working with,

120FE–123FE
Normal models and z-scores, 111–112
of a proportion, 413
of a random variable, 370–371
rescaling data, 108–109
of residuals, 181–182, 657, 28-12–28-13
as ruler, 104–105
spread, 60–61

standardized variables, 110FE–111FE
testing hypothesis about a mean, 546
z-scores, 105–107, 110, 111–112, 119

Standard error(s), 440
calculating, 668
comparing means, 561–563
of difference between means, 561–562
of difference between proportions,

505–506, 511
of a mean, 532
Normal model and, 532
for paired difference, 591
for predicted values, 665–667
for proportion, 440, 487n
for regression slope, 652, 658

Standard Normal distribution, 112
Standard Normal model, 112
Standardized residuals for chi-square, 631,

632FE
Standardized values, 105
Standardized variables, 110FE–111FE
Standardizing

plotting standardized values to find
correlation, 151

skiing times, 106FE
standard deviations and, 105
z-scores, 110

Statistic, 112, 272, 480, 620–621
Statistical significance, 299, 486

common problems, 497
for means, 546
practical significance vs., 487
in treatment group differences, 299–300

Statistics, 2, 2–6, 112
Binomial probability model for Bernouilli

trials, 394
calculator tips for, 4, 65
finding mean of random variables, 390
Florence Nightingale and, 21
line of best fit, 175–176
Normal model considerations, 398
notation in, 58
standard deviation as a ruler, 104–105
statistical inference and, 483n

Stem-and-leaf displays, 47, 47–48
Stemplot, 47–48
Straight Enough Condition, 152

for correlation, 161
for multiple regression, 29-5
for regression, 178, 201, 202, 224, 231, 651

Strata, 274
Stratified random sample, 274, 275FE
Student’s t-models, 533

10% Condition, 536–537
assumptions and conditions, 536–537,

537FE–538FE
calculator tips for, 535–536
critical value from, 534, 540
degrees of freedom and, 533, 535
Gosset and, 533
hypothesis testing and, 547
Independence Assumption, 536
Nearly Normal Condition, 537, 550
paired-t confidence interval, 595FE–596FE
Randomization Condition, 536
standard error and, 533
two-sample t methods, 579

Subjects, 9, 294, 301–302, 304
Subsets in regression, 203
Success/Failure Condition

for Binomial models, 397
comparing proportions, 512–513
confidence interval for small samples, 490
for proportions, 415–416, 446, 460, 507

Symmetric distributions, 50
in Student’s t-models, 536–537
summarizing, 58–60

Systematic sample, 277

b1
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T
t-ratios for regression coefficients, 

29-10–29-11, 29-17
t-tests

one-sample, for mean, 542–543
paired, 591
pooled, 574–575
for regression slope, 29-10
two-sample, for means, 569

Tables
ANOVA, 28-7–28-8
cells of, 24, 619
conditional probability and, 351
contingency. See Contingency tables
frequency, 21, 21–22
organizing values, 8–9
two-way, 619, 633

Tails, of distribution, 50
Tchebycheff, Pafnuty, 116
Theoretical probability, 327
Therapeutic touch, 484–485
TI Tips, See Graphing calculators
Timeplots, 88–89
Titanic example, 20
Transforming data, See Re-expressing data
Treatment(s), 294

assessing effect of, 300
blinding subjects to, 301–302
determining, 295FE
diagrams for, 297
differences in groups, 299–300
randomization of, 294, 296

Treatment Mean Square ( ), 28-5
degrees of freedom and, 28-6
handwashing example, 28-7

Treatment Sum of Squares, 28-11
Tree diagrams, 354, 354–356
Trials, 258, 325, 461. See also Bernoulli trials
Tsunamis, 44, 52–54
Tukey, John W., 47, 82, 441
Two-factor experiments, completely

randomized, 305
Two-proportion z-interval, 508

finding, 508FE–510FE
seat belt use example, 508FE–510FE

Two-proportion z-test, 513
online safety example, 516FE
snoring example, 513FE–515FE

Two-sample t-interval for the difference
between means, 562, 564, 565FE–567FE

Two-sample t methods, 562
common problems, 599
on the computer, 579
two-sample t-interval for the difference

between means, 562, 564, 565FE–567FE
two-sample t-test for the difference

between means, 562, 569–570,
570FE–572FE

Two-sample t-test for the difference
between means, 562, 569, 569–570,
570FE–572FE

Two-sided (two-tailed) alternative hypothe-
sis, 466

Two-way tables, 619, 633
Type I error, 491, 491–492

effect size and, 494–495
heart attack risk example, 492FE, 496FE
reducing, 485–486

Type II error, 491, 491–492
effect size and, 494–495
heart attack risk example, 496FE
reducing, 485–486

U
Undercounting population, 272
Undercoverage, 283
Underestimate, 172
Uniform distribution, 50
Unimodal distribution, 50, 535–537. See also

Nearly Normal Condition
Union symbol, 330
Units, 10, 156
Upper quartile, 54, 56
U.S. Geological Survey, 44n

V
Vague concepts, 52, 156
Variables, 9

associations between, 29FE
blocking, 296
categorical, 10, 10–12, 22
causal relationships, 157
dependent, 149n
distributions of, 224
explanatory, 149, 294
identifier, 12
independence of, 29, 373–374, 381
independent, 149n
lurking, 157, 208–209, 307–308
predictor, 149
quantitative, 10, 44
random. See Random variables
response, 149, 258–259, 294, 295FE
in scatterplots, 148–150
skewed, 60
standardized, 110FE–111FE

Variance, 61, 369
addition rule for. See Pythagorean

Theorem of Statistics
Equal Variance Assumption, 574, 652, 

28-14, 28-20, 29-6

of independent random variables, 381,
424, 505

of random variables, 369, 372–374,
376FE–377FE

Variation
controlling sources of, 295
in quantitative data, 62
in residuals, 182–183
in sampling distribution models, 427

Venn, John, 329
Venn diagrams

contingency tables and, 351
creation of, 329
food survey example, 344FE
General Addition Rule, 343

Voluntary response bias, 282
Voluntary response sample, 282

W
Wainer, Howard, 427
Wind speed, 80
Within Mean Square, 28-5
Women’s Health Initiative, 294
Woods, Tiger, 388–389

X
x-axis, 149
x-variable, 149

Y
y-axis, 149
y-intercept, 176–177
y-variable, 149

Z
z-scores, 105, 112

calculator tips for, 117–118
combining, 107FE
Normal models and, 111–112
Normal percentiles and, 119
in scatterplots, 152
standardizing, 105–107, 110

Zabriskie, Dave, 222
Zodiac signs, 618
Zwerling, Harris, 427

MST
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Index of TI Tips

APPENDIX

F
1-PropZInt, 448, 469
1-Var Stats, 65
2-PropZInt, 510, 515
2-SampTInterval, 545–546
2-SampTTest, 568
add data to a list, 15
binomial probabilities, 396
boxplot, 86
change data, 14
Chi-square

homogeneity, 638
independence, 638

GOF-Test, 624–625
Test, 638

clear a data list, 15
confidence interval for

difference of independent means,
545–546

difference of two proportions, 510
mean of paired differences, 594
one mean, 541
one proportion, 448–449
slope of regression line, 667

correlation, 155
curved models, 234–235
data, 14–15
delete data from a list, 15
DiagnosticOn, 155
edit data, 14
enter data, 14
ERR: DIM MISMATCH, 46, 150

ERR: DOMAIN, 449
expected value, 371–372
ExpReg, 234
five-number summary, 65
frequency table, 46
geometric probabilities, 392
histogram, create a, 46

of residuals, 666–667
hypothesis test for,

difference of independent means,
568

difference of proportions, 515
homogeneity, 638
independence, 638
mean of paired differences, 594
one mean, 545–546
one proportion, 469

insert data into a list, 15
invNorm, 119
invT, 535
LinReg, 155, 187
LinRegTInt, 667
list is missing, 15
LIST NAMES, 150, 155
LnReg, 235
logarithms, 232, 233–234
matrix, 638
mean of,

random variable, 371–372
sample data, 65

median, 65

naming lists, 150
Normal model, 112–113
Normal percentiles, 118, 119
Normal probability plot, 125
numerical summary, 65
PwrReg, 235
QuadReg, 235
quartiles, 65
random numbers, 262
random variables, 371–372
re-expressing data, 160, 232, 233–234
regression line, 187
residuals, 188
restore missing data list, 15
scatterplot, 149–150
slope of regression line, 667
standard deviation of,

random variable, 371–372
sample data, 65

STAT PLOT 5, 86, 125, 149, 188
TInterval, 541, 594
t-models, 535–536
TRACE a,

boxplot, 86
histogram, 46
scatterplot, 150

T-Test, 545–546, 597

x2
x2
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Tables

APPENDIX

G
Row TABLE OF RANDOM DIGITS

1 96299 07196 98642 20639 23185 56282 69929 14125 38872 94168
2 71622 35940 81807 59225 18192 08710 80777 84395 69563 86280
3 03272 41230 81739 74797 70406 18564 69273 72532 78340 36699
4 46376 58596 14365 63685 56555 42974 72944 96463 63533 24152
5 47352 42853 42903 97504 56655 70355 88606 61406 38757 70657
6 20064 04266 74017 79319 70170 96572 08523 56025 89077 57678
7 73184 95907 05179 51002 83374 52297 07769 99792 78365 93487
8 72753 36216 07230 35793 71907 65571 66784 25548 91861 15725
9 03939 30763 06138 80062 02537 23561 93136 61260 77935 93159

10 75998 37203 07959 38264 78120 77525 86481 54986 33042 70648
11 94435 97441 90998 25104 49761 14967 70724 67030 53887 81293
12 04362 40989 69167 38894 00172 02999 97377 33305 60782 29810
13 89059 43528 10547 40115 82234 86902 04121 83889 76208 31076
14 87736 04666 75145 49175 76754 07884 92564 80793 22573 67902
15 76488 88899 15860 07370 13431 84041 69202 18912 83173 11983
16 36460 53772 66634 25045 79007 78518 73580 14191 50353 32064
17 13205 69237 21820 20952 16635 58867 97650 82983 64865 93298
18 51242 12215 90739 36812 00436 31609 80333 96606 30430 31803
19 67819 00354 91439 91073 49258 15992 41277 75111 67496 68430
20 09875 08990 27656 15871 23637 00952 97818 64234 50199 05715
21 18192 95308 72975 01191 29958 09275 89141 19558 50524 32041
22 02763 33701 66188 50226 35813 72951 11638 01876 93664 37001
23 13349 46328 01856 29935 80563 03742 49470 67749 08578 21956
24 69238 92878 80067 80807 45096 22936 64325 19265 37755 69794
25 92207 63527 59398 29818 24789 94309 88380 57000 50171 17891
26 66679 99100 37072 30593 29665 84286 44458 60180 81451 58273
27 31087 42430 60322 34765 15757 53300 97392 98035 05228 68970
28 84432 04916 52949 78533 31666 62350 20584 56367 19701 60584
29 72042 12287 21081 48426 44321 58765 41760 43304 13399 02043
30 94534 73559 82135 70260 87936 85162 11937 18263 54138 69564
31 63971 97198 40974 45301 60177 35604 21580 68107 25184 42810
32 11227 58474 17272 37619 69517 62964 67962 34510 12607 52255
33 28541 02029 08068 96656 17795 21484 57722 76511 27849 61738
34 11282 43632 49531 78981 81980 08530 08629 32279 29478 50228
35 42907 15137 21918 13248 39129 49559 94540 24070 88151 36782
36 47119 76651 21732 32364 58545 50277 57558 30390 18771 72703
37 11232 99884 05087 76839 65142 19994 91397 29350 83852 04905
38 64725 06719 86262 53356 57999 50193 79936 97230 52073 94467
39 77007 26962 55466 12521 48125 12280 54985 26239 76044 54398
40 18375 19310 59796 89832 59417 18553 17238 05474 33259 50595
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Second decimal place in z

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 z

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 23.8
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 23.7
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 23.6
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 23.5

0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 23.4
0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 23.3
0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 23.2
0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 23.1
0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0013 23.0

0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 22.9
0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 22.8
0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 22.7
0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 22.6
0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 22.5

0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 22.4
0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 22.3
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 22.2
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 22.1
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 22.0

0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 21.9
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 21.8
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 21.7
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 21.6
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 21.5

0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 21.4
0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 21.3
0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 21.2
0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 21.1
0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 21.0

0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 20.9
0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 20.8
0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 20.7
0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 20.6
0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 20.5

0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 20.4
0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 20.3
0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 20.2
0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 20.1
0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 20.0

For the areas are 0.0000 to four decimal places.z … -3.90,

Table Z
Areas under the 

standard normal curve 

z 0
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Second decimal place in z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

For the areas are 1.0000 to four decimal places.z Ú 3.90,

Table Z (cont.)
Areas under the 

standard normal curve 

z0
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Two tail probability 0.20 0.10 0.05 0.02 0.01
One tail probability 0.10 0.05 0.025 0.01 0.005

df df

1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4

5 1.476 2.015 2.571 3.365 4.032 5
6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10
11 1.363 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 1.771 2.160 2.650 3.012 13
14 1.345 1.761 2.145 2.624 2.977 14

15 1.341 1.753 2.131 2.602 2.947 15
16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.729 2.093 2.539 2.861 19

20 1.325 1.725 2.086 2.528 2.845 20
21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24

25 1.316 1.708 2.060 2.485 2.787 25
26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29

30 1.310 1.697 2.042 2.457 2.750 30
32 1.309 1.694 2.037 2.449 2.738 32
35 1.306 1.690 2.030 2.438 2.725 35
40 1.303 1.684 2.021 2.423 2.704 40
45 1.301 1.679 2.014 2.412 2.690 45

50 1.299 1.676 2.009 2.403 2.678 50
60 1.296 1.671 2.000 2.390 2.660 60
75 1.293 1.665 1.992 2.377 2.643 75

100 1.290 1.660 1.984 2.364 2.626 100
120 1.289 1.658 1.980 2.358 2.617 120

140 1.288 1.656 1.977 2.353 2.611 140
180 1.286 1.653 1.973 2.347 2.603 180
250 1.285 1.651 1.969 2.341 2.596 250
400 1.284 1.649 1.966 2.336 2.588 400

1000 1.282 1.646 1.962 2.330 2.581 1000

1.282 1.645 1.960 2.326 2.576

Confidence levels 80% 90% 95% 98% 99%

qq

Table T

Values of ta

–ta/2 ta/2

a
2

a
2

0

Two tails

ta

a

0
One tail
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Right tail probability 0.10 0.05 0.025 0.01 0.005

df
1 2.706 3.841 5.024 6.635 7.879
2 4.605 5.991 7.378 9.210 10.597
3 6.251 7.815 9.348 11.345 12.838
4 7.779 9.488 11.143 13.277 14.860

5 9.236 11.070 12.833 15.086 16.750
6 10.645 12.592 14.449 16.812 18.548
7 12.017 14.067 16.013 18.475 20.278
8 13.362 15.507 17.535 20.090 21.955
9 14.684 16.919 19.023 21.666 23.589

10 15.987 18.307 20.483 23.209 25.188
11 17.275 19.675 21.920 24.725 26.757
12 18.549 21.026 23.337 26.217 28.300
13 19.812 22.362 24.736 27.688 29.819
14 21.064 23.685 26.119 29.141 31.319

15 22.307 24.996 27.488 30.578 32.801
16 23.542 26.296 28.845 32.000 34.267
17 24.769 27.587 30.191 33.409 35.718
18 25.989 28.869 31.526 34.805 37.156
19 27.204 30.143 32.852 36.191 38.582

20 28.412 31.410 34.170 37.566 39.997
21 29.615 32.671 35.479 38.932 41.401
22 30.813 33.924 36.781 40.290 42.796
23 32.007 35.172 38.076 41.638 44.181
24 33.196 36.415 39.364 42.980 45.559

25 34.382 37.653 40.647 44.314 46.928
26 35.563 38.885 41.923 45.642 48.290
27 36.741 40.113 43.195 46.963 49.645
28 37.916 41.337 44.461 48.278 50.994
29 39.087 42.557 45.722 59.588 52.336

30 40.256 43.773 46.979 50.892 53.672
40 51.805 55.759 59.342 63.691 66.767
50 63.167 67.505 71.420 76.154 79.490
60 74.397 79.082 83.298 88.381 91.955
70 85.527 90.531 95.023 100.424 104.213

80 96.578 101.879 106.628 112.328 116.320
90 107.565 113.145 118.135 124.115 128.296

100 118.499 124.343 129.563 135.811 140.177

Table x

Values of x2
a

x2

a

a0
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