5.26.20

2D Motion: Circles

Today's Objectives:

- How is turning different than driving in a straight line?
- Net force and acceleration of a circle
- Circular Motion Equations and using them to solve problems

2D Motion: Circles

1. Objects moving in a circle require a Net force acting toward the Center No exuptons.

2. If you remove the net force, (or if you drive too fast around a corner) the car will go in a straight line called

Tangent (

Types of Forces that keep objects in the circle

(also known as Net Centripetal Force)

· Center-Seeking

- 1. Friction (driving)
- 2. Tension (texher ball)
- 3. Gravity (Keeps objects in

When an object is moving in a circle...

the object is always changing Direction
which means that it is constantly Accelerating

Every turn is part of a circle with a radius!

Ferry Rd

Foodle

Circular Equations

EFc: Net Centripetal Foru(N)