CALCULUS 1-NOTES	Name:					
OPTIMIZATION 4.5-1	Date:	Block:				
1. Find two positive numbers whose sum is 20 and whose product is as large as possible.						
<i>Two positive numbers whose sum is 20</i> who	ose product is as large as possible	Maximize (derivative)				
x + y = 20 (write an equation) $f(x)y = 20 - x (solve for x or y) \longrightarrow f(x)f(x)$	$) = xy (define a function)) = x(20 - x)_{(replace so have one variable)}) = 20x - x2 (simplify equation)$	f'(x) = 20 - 2x (take derivative) 0 = 20 - 2x (set derivative = 0) 2x = 20 x = 10 (find critical points)				
	+ – 10 (check to make sure critical point is a max)	y = 20 - x (find other number) = 20 - 10 = 10				

2. The product of two numbers is 210 and the sum of the first plus three times the second yields a minimum sum.

The product of two numbers is 210		the sum of the first plus three times the second yields a minimum sum	<i>Minimize (derivative)</i>	
x y = 210	(write an equation)	f(x) = x+3y (define a function)	$f'(x) = 1 - 630x^{-2}$ (take derivative)	
$y = \frac{210}{x}$	(solve for x or y)	$f(x) = x + 3\left(\frac{210}{x}\right)$ (replace so have one variable)	$0 = 1 - 630x^{-2}$ (set derivative = 0)	
		$f(x) = x + 630x^{-1}$ (simplify equation)	$\frac{630}{x^2} = 1$	
			$x^2 = 630$ (find critical points)	
			$\mathbf{x} = \sqrt{630} = 3\sqrt{70}$	
		$\frac{-}{3\sqrt{70}}$ (check to make sure critical point is a min)	$y = \frac{210}{x} \text{ (find other number)}$ $= \frac{210}{3\sqrt{70}} = \frac{70}{\sqrt{70}} = \frac{70\sqrt{70}}{70} = \sqrt{70}$	

3. The area of a rectangle is 100 m². Find the dimensions if the perimeter is to be a minimum.

$A = length \cdot width$	P = 2(length) + 2(width)	$P' = 2 - 200x^{-2}$	
100 = xy	P = 2x + 2y	$0 = 2 - 200x^{-2}$	- +
$y = \frac{100}{x}$	$P = 2x + 2\left(\frac{100}{x}\right)$ $P = 2x + 200x^{-1}$	$\frac{200}{x^2} = 2$ $x^2 = 100$ $x = \sqrt{100} = 10$ $y = \frac{100}{x}$ (find other nu $= \frac{100}{10} = 10$	10 (check to make sure critical point is a min) umber)

4. A family has 2400 feet of fencing to close off a rectangular field that borders a river. What dimensions would yield the maximum area?

$$y \xrightarrow{x} y \xrightarrow{P = x + 2y} A(x) = xy \qquad A'(x) = 2400 - 4y$$

$$2400 = x + 2y \qquad A(x) = (2400 - 2y)y \qquad 0 = 2400 - 4y$$

$$2400 - 2y = x \qquad A(x) = 2400y - 2y^{2} \qquad 4y = 2400 \qquad + -$$

$$y = 600 \qquad 600$$

$$x = 2400 - 2(600) = 1200$$

The dimensions are 600 ft by 1200 ft. The maximum area would be 720,000 ft².

5. Fence off 3 adjoining rectangular pens with equal areas. There is 500 feet of fencing. Find the dimensions of the entire enclosure to maximize the area.

The dimensions of each pen is $\frac{125}{3}$ ft by $\frac{125}{2}$ ft. The dimension of the <u>entire enclosure</u> would be 125 ft. by 62.5 ft (3x by y). The maximum area would be 7812.5 ft².

7. A poster is to contain a printed area of 150 in², with clear margins of 3 inches on the top and bottom and 2 inches on each side. What overall dimensions would minimize the paper used for the poster?

