
UNIT 5:  Rules Integration / Integration Concepts Highlights 
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As a Concept:   Integration is referred to as the “anti-derivative” or the inverse process of the finding the   

derivative.  It provides us a way to get from a function calculating change back to the original. 
    

An indefinite integral refers to an integral in its general form that represents a family of functions.   
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Basic Integration Rules 
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Trigonometric Integration Rules 

 Basic Trig Integrals 

 
 

Eliminating the Constant (+C)   

When given initial condition, the value of the constant (+C) can be determined after the integration by 

substituting the given into the result. 

 Working backwards from f  with initial conditions 

 Working backwards from )(ta with initial conditions 
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Integrating with U-Substitution 

 Algebraic (Quantity raised to power)   
Procedure: 

1.  Let “u” equal the algebraic quantity on the inside. 

2.  Find 

dx

du . 

3.  Match 

dx

du  to the original function. 

4.  Substitute. 

5.  Find the antiderivative in terms of “u”. 

6.  Re-substitute for u in terms of  x. 

--------------------------------------------------------------------------------------------------------------------------------------- 

 Trigonometric (Quantity raised to a Power) 
Procedure: 

1. Let “u” equal the trigonometric ratio being raised to the power (inside quantity). 

2. Find 

dx

du . 

3. Match 

dx

du  to the original function.  

4. Substitute. 

5. Find the antiderivative in terms of “u”. 

6. Re-substitute for u in terms of  x. 

--------------------------------------------------------------------------------------------------------------------------------------- 

 Trigonometric (Unusual Angle) 
Procedure: 

1.  Let “u” equal the unusual angle. 

2.  Find 

dx

du . 

3.  Match 

dx

du  to the original function. 

4. Substitute. 

5. Find the antiderivative in terms for trig(u). 

6. Re-substitute for u in terms of  x. 

--------------------------------------------------------------------------------------------------------------------------------------- 

 

Evaluating Definite Integrals 

 
A definite integral refers to an integral that has a lower limit and an upper limit which can be evaluated to a specific value. 
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Properties of Definite Integrals 

 
I.  Addition Property:       II.  Coefficient Property: 
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  III.  Bounds Property:      IV.  Integral Sum/Difference Property:    
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 Separation of Variables (Differential Equations)  
Procedure: 

 1.  Use differentials to get like variables on the same side.  
 2.  Find the antiderivative of each side. 

 3.  Put into y – form, if possible. 

 

 

 Approximation Methods involving Summation 

 

 
 

NOTE:  Most commonly will be applied to draw conclusions from a table OR graph of data 

where the function is unknown. 

 

  

 


