UNIT 5: Rules Integration / Integration Concepts Highlights

As a Concept: Integration is referred to as the "anti-derivative" or the inverse process of the finding the derivative. It provides us a way to get from a function calculating change back to the original.

An indefinite integral refers to an integral in its general form that represents a family of functions.

$$\int f(x)dx = F(x) + C$$

Basic Integration Rules

$$\int x^{n} dx \qquad \Rightarrow \qquad y = \frac{x^{n+1}}{n+1} + C \qquad \qquad \int v(t) dt \qquad \Rightarrow \qquad s(t) + C$$

$$\int \frac{1}{x} dx \qquad \Rightarrow \qquad y = \ln|x| + C \qquad \qquad \int a(t) dt \qquad \Rightarrow \qquad v(t) + C$$

$$\int e^{x} dx \qquad \Rightarrow \qquad y = e^{x} + C \qquad \qquad \int a^{x} dx \qquad \Rightarrow \qquad y = \frac{a^{x}}{\ln a} + C$$

Trigonometric Integration Rules

✓ Basic Trig Integrals

Function	<u>Antiderivative</u>
$f(x) = \sin x \text{or} \int \sin x dx$	$F(x) = -\cos x + C$
$f(x) = \cos x$ or $\int \cos x dx$	$F(x) = \sin x + C$
$f(x) = \sec^2 x \text{or} \int \sec^2 x dx$	$F(x) = \tan x + C$
$f(x) = \csc^2 x \text{or} \int \csc^2 x dx$	$F(x) = -\cot x + C$
$f(x) = \sec x \tan x$ or $\int \sec x \tan x dx$	$F(x) = \sec x + C$
$f(x) = \csc x \cot x$ or $\int \csc x \cot x dx$	$F(x) = -\csc x + C$

Eliminating the Constant (+C)

When given initial condition, the value of the constant (+C) can be determined after the integration by substituting the given into the result.

- \checkmark Working backwards from f'' with initial conditions
- \checkmark Working backwards from a(t) with initial conditions

Ex:
$$f''(x) = 24x^2 - 18x + 2$$
, $f'(1) = 6$ and $f(1) = 3$
 $f'(x) = 8x^3 - 9x^2 + 2x + 5$
 $f(x) = 2x^4 - 3x^3 + x^2 + 5x - 2$

Integrating with U-Substitution

✓ Algebraic (Quantity raised to power)

Procedure:

1. Let "u" equal the algebraic quantity on the inside.

2. Find *du*.

3. Match du to the original function.

$$\frac{du}{dx}$$
 to the original function

- 4. Substitute.
- 5. Find the antiderivative in terms of "u".
- 6. Re-substitute for u in terms of x.

✓ Trigonometric (Quantity raised to a Power)

Procedure:

- 1. Let "u" equal the trigonometric ratio being raised to the power (inside quantity).
- Find du2.

Match du to the original function.

$$\int \sin^6 x \cos x dx = \frac{\sin^7 x}{7} + C$$

 $\int x^3 (x^4 + 3)^2 dx = \frac{(x^4 + 3)^3}{12} + C$

- 4. Substitute.
- 5. Find the antiderivative in terms of "u".
- Re-substitute for u in terms of x.

✓ Trigonometric (Unusual Angle)

Procedure:

- 1. Let "u" equal the unusual angle.
- 2. Find du.

$$\int 2x \cos(x^2 + 3) dx = \sin(x^2 + 3) + C$$

- Match du to the original function.
- Substitute.
- 5. Find the antiderivative in terms for trig(u).
- 6. Re-substitute for u in terms of x.

Evaluating Definite Integrals

A definite integral refers to an integral that has a lower limit and an upper limit which can be evaluated to a specific value.

$$\int_{a}^{b} f(x)dx = [F(b) + C] - [F(a) + C] = F(b) - F(a)$$
 *[Upper – Lower]!

Properties of Definite Integrals

I. Addition Property:

If
$$a < b < c$$
, then $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$

III. Bounds Property:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

II. Coefficient Property:

For any Real Number c,
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

IV. Integral Sum/Difference Property:

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

Separation of Variables (Differential Equations)

Procedure:

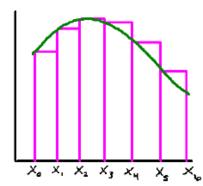
- 1. Use differentials to get like variables on the same side.
- 2. Find the antiderivative of each side.
- 3. Put into y form, if possible.

$$\frac{dy}{dx} = \frac{-2x}{y^2} \qquad \to \qquad y = \sqrt[3]{-3x^2 + C}$$

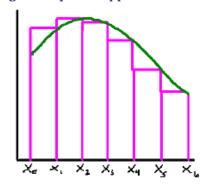
Approximation Methods involving Summation

Approximation Summary

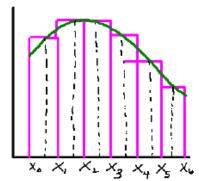
Left Endpoint Approximation



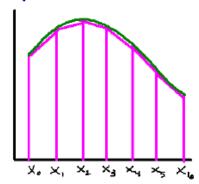
tight Endpoint Approximation



Midpoint Rule



Trapezoid Rule



NOTE: Most commonly will be applied to draw conclusions from <u>a table OR graph of data</u> where the function is unknown.