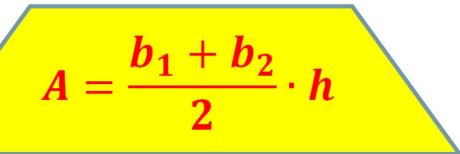
SECTION 10

Trapezoidal Rule for Approximation

- Mow can we approximate the area under the curve using trapezoids?
- Mow is summation notation used to approximate the area under the curve?

REVIEW: AREA OF A TRAPEZOID

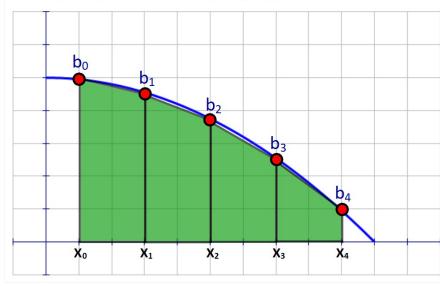


b₁ & b₂ Bases of the trapezoidh Height of the trapezoid

TRAPEZOIDAL RULE

$$h = \Delta x$$

$$b_0, b_1, ... = f(x_1), f(x_2)...$$



$$b_0 = f(x_0)$$

$$h = \Delta x$$

$$b_1 = f(x_2)$$

TRAPEZOIDAL RULE

$$A = \frac{\Delta x}{2} [f(x_1) + f(x_2)] + \frac{\Delta x}{2} [f(x_2) + f(x_3)] + \frac{\Delta x}{2} [f(x_3) + f(x_4)] + \frac{\Delta x}{2} [f(x_4) + f(x_5)]$$

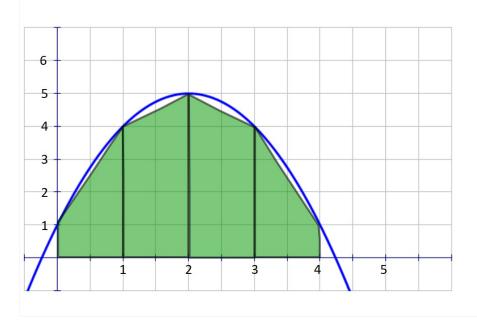
$$A = \frac{\Delta x}{2} [f(x_1) + f(x_2) + f(x_2) + f(x_3) + f(x_3) + f(x_4) + f(x_4) + f(x_5)]$$

$$A = \frac{\Delta x}{2} [f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + f(x_5)]$$

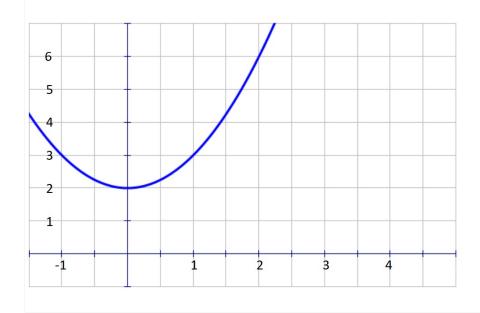
Generalize to any n, where n is the number of trapezoids.

$$A = \frac{\Delta x}{2} [f(x_1) + 2f(x_2) + \dots + 2f(x_n) + f(x_{n+1})]$$

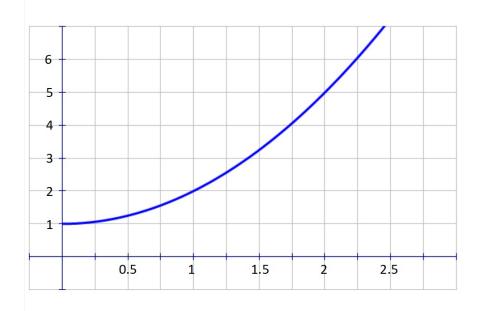
EXAMPLE 1: $f(x) = -x^2 + 4x$ 1 [0, 4] n = 4

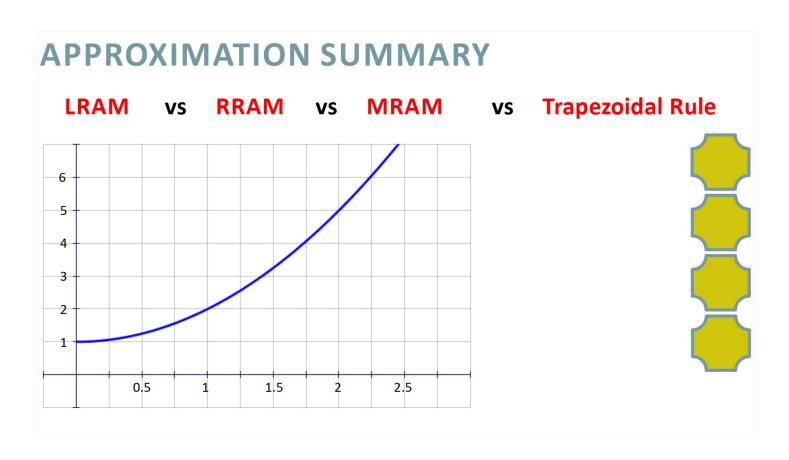


EXAMPLE 2: $f(x) = x^2 + 2$ [-1, 2] n = 3



EXAMPLE 3: $f(x) = x^2 + 1$ [0, 2] n = 4





SELF CHECK: Trapezoidal Rule

- How can we approximate the area under the curve using trapezoids?
- ✓ How is summation notation used to approximate the area under the curve?

