Determine the domain of the following functions. Draw a sketch of the graph.

1. $y = \frac{1}{x}$ 2. $y = \frac{1}{x-2}$ 3. $y = \frac{x^2-4}{x-2}$

1.
$$y = \frac{1}{x}$$

2.
$$y = \frac{1}{x-2}$$

3.
$$y = \frac{x^2 - 4}{x - 2}$$

Discontinuities

Holes

(removable discontinuity)

- occur when there is a value of x that makes the denominator equal to zero, but we can cancel out the factor
- 1. Set the canceled factor equal to 0.

- 2. Solve for x.
- 3. Plug the answer into the simplified equation to get y.
- 4. (x, y) is the hole

Examples of functions with holes:

2. $g(x) = \frac{1}{2}$

Vertical Asymptotes

(non-removable discontinuity)

 \bullet occur when there is a value of \times that would make the denominator equal to zero, but we can't get rid of the factor

Examples of functions with vertical asymptotes:

1.
$$y = \frac{x}{2x - 6}$$

2. $y = \frac{10}{x^2 - 4}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

3. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

4. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

4. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

5. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

7. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

7. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

8. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

9. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

9. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

19. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

19. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

19. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

19. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

19. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

19. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

20. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

21. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

22. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

23. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

24. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

25. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

26. $y = \frac{x + 5}{x^3 + 5x^2 + 6x}$

Horizontal Asymptote - occur in 2 out of the 3 cases

· to find a horizontal asymptote, examine what happens to the function as

x approaches infinity

Case 1:

Conclusion (short cut)

→ Denominator exponent is larger/higher

Case 2:

→ Exponents are equal

Case 3:

→ Numerator exponent is larger/higher

1.
$$y = \frac{1}{x+1}$$

$$2. \ \ y = \frac{5x^2 + 4x}{x^2 - 7}$$

$$3. \ y = \frac{x^3 - 2}{x^2 - 4}$$

Graphing and	Evaluating	Piecewise	Functions
--------------	------------	-----------	-----------

Block_____Date___

1)
$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ x+4 & \text{if } x > 3 \end{cases}$$

$$f(0) =$$

$$f(3) =$$

$$f(-2) =$$

$$f(1) = f\left(\frac{1}{2}\right) =$$

$$f(-1) = f(-2) =$$

