s 1

for the Constant of Integration

ate and solve for the constant of integration ne following point that the original function through.

$$(x^2+2x)dx$$
 through $(-1,2)$

$$=3x^2+1$$
 through $(1,4)$

$$v = xdx$$
 if $f(2) = 3$

$$=4x^3y^2 \qquad through \quad (1,3)$$

$$f(0) = x$$
 where $f'(0) = 4$ and $f(0) = 6$

1)
$$dy = (x^2 + 2x) dx$$
 through $(-1,2)$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

$$y = \frac{3}{4} x^3 + x^2 + c$$

$$2 = \frac{1}{3}(-1)^3 + (-1)^2 + C$$

$$2 = -\frac{1}{3} + 1 + C$$

$$y = \frac{1}{3} x^3 + x^2 + \frac{1}{3}$$

2)
$$\frac{dy}{dx} = 3x^2 + 1$$
 through $(1,4)$

$$\int \int y = \int (3x^2 + 1) dx$$

$$y = \chi^3 + \chi + \zeta$$

$$\chi^3 + \chi + \zeta$$

$$\chi$$

3)
$$2ydy = xdx$$
 if $f(2) = 3$

$$\int \frac{\partial y}{\partial y} y = \int \frac{1}{x} x dx$$

$$y^{2} = \frac{1}{x} x^{2} + C$$

$$3^{2} z = \frac{1}{x} (z)^{2} + C$$

$$9 = 2 + C$$

$$7 = C$$

$$\sqrt{2} = \frac{1}{2} \times \frac{2}{7}$$

4)
$$\frac{dy}{dx} = 4x^3y^2$$
 through (1,3)

$$\int_{y^{3}}^{1} dy = 4x^{3} dx$$

$$\int_{y^{3}}^{1} dy = \int_{x^{3}}^{1} 4x^{3} dx$$

$$-y^{-1} = x^{4} + c$$

$$-y^{2} = 1^{4} + c$$

$$-y^{-1} = 1 + c$$

$$-y^{-1} = 1 + c$$

$$-y^{-1} = x^{4} - \frac{4}{3}$$

ax

f)
$$f''(x) = x$$
 where $f'(0) = 4$ and $f(0) = 6$

$$\int f''(x) = \int x^2 + C$$

 $f''(x) = \int x^2 + C$
 $f''(x) = \int x^2 + C$
 $f''(x) = \int x^2 + C$

$$f(x) = \frac{1}{6}x^{3} + 4x + C$$

$$f(x) = \frac{1}{6}(x^{3} + 4x) + C$$

$$f(x) = \frac{1}{6}(x^{3} + 4x) + C$$

$$f(x) = \frac{1}{6}(x^{3} + 4x) + C$$