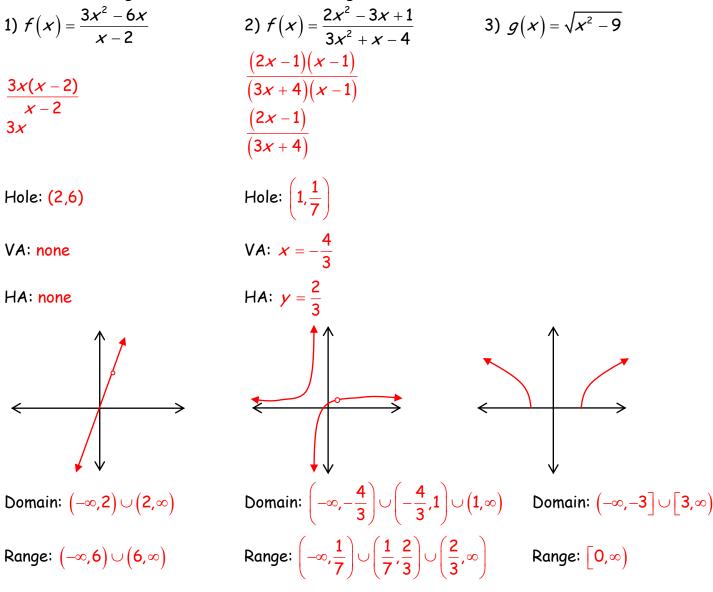
Calculus 1

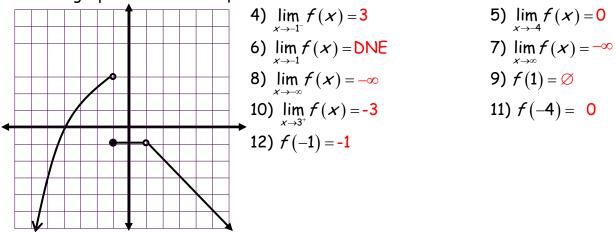
Review: Domain, Range, Piecewise and Limits (ans)

Name_____ Block _____Date_____

Fill in the missing information for the following functions.



Use the graph to find the requested values.



Using the given piecewise function, find the requested values and justify your answers.

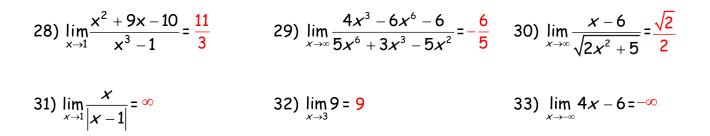
$$f(x) = \begin{cases} x^2 - 6x - 2 & \text{if } x \le -1 \\ \frac{x^2 + 4}{x + 2} & \text{if } -1 < x \le 3 \\ -2x + 5 & \text{if } x > 3 \end{cases}$$

_4

- 13) $\lim_{x \to -1^-} f(x) = 5$ (-1)² - 6(-1) -2 14) $\lim_{x \to -1^+} f(x) = 5$ 15) $\lim_{x \to -1} f(x) = 5$ (-1)² + 4 -1 + 2 = 5
- 16) $\lim_{x \to 3} f(x) = \text{DNE}$ 17) f(2) = 218) f(4) = -318) f(4) = -319) $\lim_{x \to 4.5} f(x) = -4$ -2(4.5) + 5 -2(4.5) + 5 -9 + 5 17) f(2) = 218) f(4) = -3-2(4) + 5 -3 20) f(-1) = 5(-1)² - 6(-1) -2 -2(4.5) + 5 -9 + 5 21) $f(3) = \frac{13}{5}$ (-1)² - 6(-1) -2 (3)² + 4 -3 21) $f(3) = \frac{13}{5}$ (-1)² - 6(-1) -2 (3)² + 4 -3 21) $f(3) = \frac{13}{5}$

Find the following limits. If a graphing calculator was used, write how it was used.

22)
$$\lim_{x \to \infty} \frac{x^2 - 2x - 8}{x - 4} = -\infty$$
23)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = 6$$
24)
$$\lim_{x \to 3} \frac{5x - 9}{x^2 - 5} = \frac{3}{2}$$
25)
$$\lim_{x \to \infty} \frac{2 - 6x - 3x^2}{2x^3 + 8x - 2} = 0$$
26)
$$\lim_{x \to 2} \frac{5x}{x^2 + 3x - 10} = \text{DNE}$$
27)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$



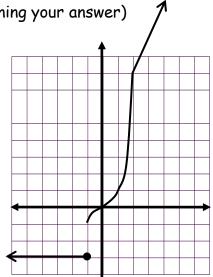
Determine if the following functions are continuous or not. If not, state its type discontinuity and where it occurs. If it is removable, then create a new function that is continuous.

34)
$$f(x) = \frac{x^3 + 27}{x + 3}$$

-3 1 0 0 27
-3 9 -27
1 -3 9 0
 $f(x) = \frac{x - 6}{x^2 - x - 6}$
36) $f(x) = \frac{2x - 6}{|x - 3|}$
Discontinuous
Jump at x = 3
 $f(x) = \frac{x - 6}{(x - 3)(x + 2)}$
Discontinuous
 $f(x) = \frac{(x + 3)(x^2 - 3x + 9)}{(x + 3)}$
 $f(x) = x^2 - 3x + 9$
Discontinuous
 $Asymptote at x = 3 and x = -2$

Determine whether the following piecewise function is continuous. Show all work that leads to you decision. (A sketch may be helpful in determining your answer) 737)

$\begin{bmatrix} -3 & x \leq -1 \end{bmatrix}$		
$f(x) = \begin{cases} x^3 & -1 < x < 2 \end{cases}$		
$f(x) = \begin{cases} -3 & x \le -1 \\ x^3 & -1 < x < 2 \\ 2x + 4 & x \ge 2 \end{cases}$		
at $x = -1$	<i>at x</i> = 2	
1st Eqn 2nd Eqn	2nd Eqn	3rd Eqn
$(-1, -3)$ $(-1)^3$, 2(2) + 4
(-1,-1)	(2,8)	
Discontinuous (iump) at $x = -1$		



Discontinuous (jump) at x = -1

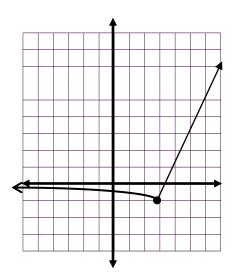
 $g(x) \begin{cases} \frac{x^{3}+27}{x+3}, & x \neq -3 \\ 27, & x = -3 \end{cases}$

Note: In addition to the y-values being equal, one (and only one) of the inequalities must contain an equal sign in order for the graph to be continuous at both x = -1 and x = 2.

38)
$$f(x) = \begin{cases} \frac{1}{x-4} & x < 3\\ 2x-7 & x \ge 3 \end{cases}$$

The first equation is continuous everywhere but x=4, however since the domain is x<3, the graph is continuous everyone on its domain.

at x=3 1st eqn $\frac{1}{3-4} = \frac{1}{-1} = -1$ 2(3) -7 = 6 -7 = -1



Note: In addition to the y-values being equal, one (and only one) of the inequalities must contain an equal sign in order for the graph to be continuous at x = 3.

For each of the following, find the value of 'a' that will make f(x) continuous for all values of x.

39) $f(x) = \begin{cases} ax + 1 & x < 2 \\ a + \sqrt{x + 14} & x \ge 2 \end{cases}$	40) $f(x) = \begin{cases} ax^2 - 2 & x \le -6 \\ -5x - 8 & x > -6 \end{cases}$
$a(2) + 1$ $a + \sqrt{2 + 14}$	$a(-6)^2 - 2 - 5(-6) - 8$ 36a - 2 30 - 8
$2a+1 \qquad a+\sqrt{16} \\ a+4$	36a - 2 = 22
2a + 1 = a + 4	36 <i>a</i> = 24
<i>a</i> = 3	$a = \frac{24}{36}$ $a = \frac{2}{3}$