Unit 8: Factors, Fractions, Exponents

- Why is it necessary to understand number relationships?
- Why is there more than one way to represent a fraction?
- When is scientific notation useful?
- Why would you use an exponent?
- Are the rules of exponents necessary?

Factors and Prime Factorization

Goal: Write the prime factorization of a number.

	Vocabulary
	Prime number:
	Composite number:
	Prime factorization:
	Factor tree:
	Monomial:
	Example 1 Writing Factors A rectangle has an area of 18 square feet. Find all possible whole number dimensions of the rectangle. 1. Write 18 as a product of two whole numbers in all possible ways
	The factors of 18 are
The area of a rectangle can be found using the formula, Area = length × width.	2. Use the factors to find all rectangles with an area of 18 square feet that have whole number dimensions. Then label the given rectangles.
length	

Example 2

Writing a Prime Factorization

Write the prime factorization of 420.

One possible factor tree:

Write original number.

Write 420 as 10 •

Write 10 as . Write as

Write 6 as •

Another possible factor tree:

Write original number.

Write 420 as 6 •

Write 6 as . Write as

Write 10 as

Both trees give the same result: 420 =

Answer: The prime factorization of 420 is

Example 3 Factoring a Monomial

Factor the monomial $24x^4y$.

$$24x^4y = \boxed{ \cdot x^4y}$$

$$= \boxed{ }$$

Write 24 as

• y Write x⁴ as

1. 28	2. 48
ell whether the numb rite its prime factoriz 3. 97	per is <i>prime</i> or <i>composite</i> . If it is composite zation. 4. 117
actor the monomial.	6 10 v2 v3
5. 21 <i>n</i> ⁵	6. $18x^2y^3$

Checkpoint Write all factors of the number.

Greatest Common Factor

Goal: Find the greatest common factor of two or more numbers.

Vocabulary		
Common fac	etor:	
Greatest common factor (GCF)		
Relatively prime:		
Example 1	Finding the Greatest Common F	actor
local highwa volunteers h 45 seniors. formed if ea	A high school asks for volunteens on one Saturday each month as 27 freshman, 18 sophomores. What is the greatest number of a ch group is to have the same now many freshman, sophomores, ch group?	. The group of s, 36 juniors, and groups that can be umber of each type of
1	ist the factors of each number. is on every list.	Identify the greatest
Factors of	27:	The common
Factors of	18:	factors are .
Factors of	36:	The GCF is
Factors of	45:	J

Method 2 Write the prime factorization of each number. The GCF is the product of the prime factors.
27 =
Answer: The greatest number of groups that can be formed is Each group will have $27 \div \boxed{} = \boxed{}$ freshman, $18 \div \boxed{} = \boxed{}$ sophomores, $36 \div \boxed{} = \boxed{}$ juniors, and $45 \div \boxed{} = \boxed{}$ seniors. Checkpoint Find the greatest common factor of the numbers.
1. 54, 81 2. 12, 48, 66
Find the greatest common factor of the numbers. Then tell whether the numbers are relatively prime.
a. 28, 63 b. 42, 55
Solution
a. List the factors of each number. Identify the greatest number that the lists have in common.
Factors of 28:
Factors of 63:
The GCF is . So, the numbers relatively prime.
b. Write the prime factorization of each number.
42 = 55 =
The GCF is So, the numbers relatively prime.

Checkpoint	Find the greatest common factor of the number	'S.
Then tell wil	ather the numbers are relatively prime	

Example 3 F

Finding the GCF of Monomials

Find the greatest common factor of $16x^2y$ and $26x^2y^3$.

Solution

Factor the monomials. The GCF is the product of the common factors.

$$16x^2y = \boxed{ }$$

$$26x^2y^3 = \boxed{ }$$

Answer: The GCF is ...

Checkpoint Find the greatest common factor of the monomials.

5. 12x³, 18x²
6. 40xy³, 24xy

Goal: Write equivalent fractions.

Vocabulary

Equivalent fractions:

Simplest form:

Equivalent Fractions

Words To write equivalent fractions, multiply or divide the numerator and the denominator by the same nonzero number.

Algebra For all numbers a, b, and c, where $b \neq 0$ and $c \neq 0$,

$$\frac{a}{b} = \frac{a \cdot c}{b \cdot c}$$
 and $\frac{a}{b} = \frac{a \div c}{b \div c}$.

Numbers $\frac{1}{3} = \frac{1 \cdot 2}{3 \cdot 2} = \frac{2}{6}$ $\frac{2}{6} = \frac{2 \div 2}{6 \div 2} = \frac{1}{3}$

$$\frac{2}{6} = \frac{2 \div 2}{6 \div 2} = \frac{1}{3}$$

Writing Equivalent Fractions Example 1

Write two fractions that are equivalent to $\frac{6}{18}$.

Multiply or divide the numerator and the denominator by the

$$\frac{6}{18} = \frac{6 \cdot 2}{18 \cdot 2} =$$

Multiply numerator and denominator by 2.

$$\frac{6}{18} = \frac{6 \div 3}{18 \div 3} =$$

Divide numerator and denominator by 3.

Answer: The fractions

are equivalent to $\frac{6}{18}$.

0	Checkpoint	Write two	fractions	that	are	equivalent	to	the
	given fraction	on.						

1. $\frac{7}{14}$	2. $\frac{4}{16}$	3. $\frac{10}{25}$

Example 2 Writing a Fraction in Simplest Form

Write $\frac{8}{36}$ in simplest form.

Write the prime factorizations of the numerator and denominator.

The GCF of 8 and 36 is

$$\frac{8}{36} = \frac{8 \div \boxed{}}{36 \div \boxed{}}$$

Divide numerator and denominator by GCF.

Simplify.

Checkpoint Write the fraction in simplest form.

4. 3 18	5. $\frac{12}{32}$	6. $\frac{24}{42}$
	·	

Example 3 Simplifying a Variable Expression

Write $\frac{14x^2y}{35x^3}$ in simplest form.

$$\frac{14x^2y}{35x^3} = \boxed{ }$$

Factor numerator and denominator.

Divide out common factors.

Simplify.

Checkpoint Write the variable expression in simplest form.

7. $\frac{9a}{15a^2}$	8. \frac{16mn^2}{28n}	 9. $\frac{39st^2}{3s^2t}$	
			·

Least Common Multiple

Goal: Find the least common multiple of two numbers.

Vocabulary
Multiple:
Common multiple:
Least common multiple (LCM):
Least common denominator (LCD):
Example 1 Finding the Least Common Multiple
Find the least common multiple of 6 and 14.
Solution
You can use one of two methods to find the LCM.
Method 1 List the multiples of each number. Identify the least number that is on both lists.
Multiples of 6: The LCM of 6 and 14 is
Multiples of 14:
Method 2 Find the common factors of the numbers.
6 = The common
$14 = \boxed{} \int \mathbf{factor} \mathbf{is} \boxed{}.$
Multiply all of the factors, using each common factor only once.
LCM = =
Answer: Both methods get the same result. The LCM is

Finding the Least Common Multiple of Monomials Example 2

Find the least common multiple 6xy and $16x^2$.

$$6xy =$$

$$16x^2 =$$

Answer: The least common multiple of 6xy and $16x^2$ is

Checkpoint Find the least common multiple of the numbers or the monomials.

1. 8, 18	2. 4, 5, <u>1</u> 5
3. 12x, 18x ²	4. 4xy, 10xz ²

Comparing Fractions Using the LCD Example 3

Summer Sports Last year, a summer resort had 165,000 visitors, including 44,000 water skiers. This year, the resort had 180,000 visitors, including 63,000 water skiers. In which year was the fraction of water skiers greater?

Solution

1. Write the fractions and simplify.

. The LCM of 2. Find the LCD of İS and

		So,	the	LCD	of	the	fractions	is		,
--	--	-----	-----	-----	----	-----	-----------	----	--	---

3.	Write	equivalent	fractions	using	the	LCD
----	-------	------------	-----------	-------	-----	-----

Answer: The fraction of water skiers was greater

Example 4 Ordering Fractions and Mixed Numbers

Order the numbers $4\frac{5}{12}, \frac{9}{2}$, and $\frac{33}{8}$ from least to greatest.

1. Write the mixed number as an improper fraction.

$$4\frac{5}{12} = \frac{12}{12} = \frac{12}{12}$$

- 2. Find the LCD of $\frac{\boxed{}}{12}$, $\frac{9}{2}$, and $\frac{33}{8}$. The LCM of 12, 2, and 8 is $\boxed{}$. So, the LCD is $\boxed{}$.
- 3. Write equivalent fractions using the LCD.

$$\frac{\boxed{}}{12} = \frac{\boxed{} \cdot \boxed{}}{12 \cdot \boxed{}} = \boxed{} \frac{9}{2} = \frac{9 \cdot \boxed{}}{2 \cdot \boxed{}} = \boxed{}$$

$$\frac{33}{8} = \frac{33 \cdot }{8 \cdot } = \boxed{}$$

Answer: From least to greatest, the numbers are

,	, and	 •

Goal: Multiply and divide powers.

Product of Powers Property

Words To multiply powers with the same base, add their exponents.

Algebra
$$a^m \cdot a^n = a^{m+n}$$

Numbers
$$4^3 \cdot 4^2 = 4^{-} = 4^{-}$$

Example 1 Using the Product of Powers Property

a.
$$4^7 \cdot 4^{11} = 4$$

Product of powers property

b.
$$2x^2 \cdot 7x^6 = 2 \cdot 7 \cdot x^2 \cdot x^6$$

$$= 2 \cdot 7 \cdot x$$

$$= 2 \cdot 7 \cdot x$$

Add exponents.

Commutative property of multiplication

Product of powers property

Add exponents.

Multiply.

Checkpoint Find the product. Write your answer using exponents.

1.
$$2^5 \cdot 2^{12}$$
 2. $5^6 \cdot 5^2 \cdot 5^3$

 3. $x^6 \cdot x^{13}$
 4. $b^2 \cdot b^4 \cdot b$

Quotient of Powers Property

Words To divide powers with the same base, subtract the exponent of the denominator from the exponent of the numerator.

Algebra
$$\frac{a^m}{a^n} = a^{m-n}$$
, where $a \neq 0$

Numbers
$$\frac{5^7}{5^4} = 5^{2} = 5^{2}$$

Example 2 Using the Quotient of Powers Property

a.
$$\frac{6^8}{6^3} = 6$$

Quotient of powers property

Subtract exponents.

b.
$$\frac{3x^7}{12\bar{x}^3} = \frac{3x}{12}$$

Quotient of powers property

$$=\frac{3x}{12}$$

Subtract exponents.

	E .
-	
Accorded to	l .

Divide numerator and denominator by

Checkpoint Find the quotient. Write your answer using exponents.

5.
$$\frac{5^9}{5^2}$$

6. $\frac{12^{7}}{12^{4}}$

7.
$$\frac{4x^{13}}{24x^9}$$

8. $\frac{14x^{16}}{6x^{11}}$

Simplify $\frac{4m^3 \cdot m^4}{12m^2}$

$$\frac{4m^3 \cdot m^4}{12m^2} = \frac{4m}{12m^2}$$

Product of powers property

$$=\frac{4m}{12m^2}$$

Add exponents.

$$=\frac{4m}{12}$$

Quotient of powers property

$$=\frac{4m}{12}$$

Subtract exponents.

Divide numerator and denominator

Checkpoint	Simplify.
,	

9.
$$\frac{6m^5 \cdot m}{15m^3}$$

10. $\frac{n^2 \cdot 10n^6}{5n^3}$

Goal: Work with negative and zero exponents.

Negative and Zero Exponents

For any nonzero number a, $a^0 = 1$.

For any nonzero number a and any integer n, $a^{-n} = \frac{1}{a^n}$.

Powers with Negative and Zero Exponents Example 1

Write the expression using only positive exponents.

a.
$$4^{-3} =$$

Definition of negative exponent

a.
$$4^{-3} =$$
 Definition of negative exponent

b. $m^{-5}n^0 = m^{-5}$ Definition of zero exponent

Definition of negative exponent

c.
$$13xy^{-8} =$$

Definition of negative exponent

Checkpoint Write the expression using only positive exponents.

4. $3x^{-4}y$ **2.** 7^{-3} **1.** 33,333⁰

Example 2 Rewriting Fractions

Write the expression without using a fraction bar.

a.
$$\frac{1}{15} =$$

Definition of negative exponent

b.
$$\frac{a^3}{c^5} =$$

Definition of negative exponent

Checkpoint Write the expression without using a fraction bar.

E	1
J.	18

6.
$$\frac{1}{100}$$

7.
$$\frac{3}{c^2}$$

8.
$$\frac{x^5}{y^7}$$

Example 3 Using Powers Properties with Negative Exponents

Find the product or quotient. Write your answer using only positive exponents.

$$a. 6^{12} \cdot 6^{-4}$$

b.
$$\frac{7n^{-4}}{n}$$

Solution

a.
$$6^{12} \cdot 6^{-4} = 6$$

Product of powers property

Add exponents.

b.
$$\frac{7n^{-4}}{n} = 7n^{-4}$$

Quotient of powers property

$$=7n$$

Subtract exponents.

Marining .

Definition of negative exponent

Checkpoint Find the product or quotient. Write your answer using only positive exponents.

9.
$$3^{10} \cdot 3^{-7}$$

10.
$$\frac{7d^{-4}}{d^2}$$

Scientific Notation

Goal: Write numbers using scientific notation.

Using Scientific N	lotation	
A number is written where $1 \le c < 10$ a		f it has the form $c \times 10^r$
Standard form	Product form	Scientific notation
725,000	$7.25 \times 100,000$	7.25×10^5
0.006	6×0.001	6×10^{-3}
a. The average dis	ng Numbers in Scientific tance Mars is from the number in scientific n	sun is 141,600,000
Standard form		Scientific notation
	a quarter-ounce gold A rite this number in scie	
Standard form	Product form	Scientific notation
Example 2 Writin	ng Numbers in Standard	Form
a. Write 4.1×10^4	in standard form.	
Scientific notat	ion Product form	Standard form
b. Write 7.23 × 10		

Product form

Scientific notation

Standard form

1. 3,050,000,000	2. 0.000082
Vrite the number in standar	'd form.
3. 6.53×10^7	4. 9.2×10^{-4}
	mbers Using Scientific Notation
Order 5.3×10^5 , $520,000$	0, and 7.5 $ imes$ 10 4 from least to greatest
1. Write each number in	scientific notation if necessary.
520,000 =	
2. Order the numbers with	h different powers of 10.
Because 10 < 10	and
<	
3. Order the numbers with	h the same power of 10.
Because <	, <
4. Write the original num	bers in order from least to greatest.
;	5
•	
	ımbers from least to greatest.
5. 23,000; 3.4×10^3 ; 2.2×10^3	104
6. 4.5×10^{-4} ; 0.000047 ; 4.5×10^{-4}	8 × 10 ⁻⁵
or the new joines in, i.	

Example 4 | | | | | | | | | | | |

Multiplying Numbers in Scientific Notation

Oxygen Atoms The density of an oxygen atom is about 1.429×10^{-3} grams per milliliter. Find the density of 1.5×10^4 oxygen atoms.

Solution

Checkpoint Find the product. Write your answer in scientific notation.

7. $(2.5 \times 10^3)(2 \times 10^5)$	8. $(1.5 \times 10^{-2})(4 \times 10^{-4})$