Unit 5: Area and Volume

- Why does are apply to two dimensional figures?
- Why does volume apply to three dimensional figures?
- •How are area and volume used outside of the classroom?

Areas of Parallelograms and Trapezoids

Goal: Find the areas of parallelograms and trapezoids.

Vocabulary		
Base of a parallelogram:		
Height of a parallelogram:		
Base of a trapezoid:		
Height of a trapezoid:		

Area of a Parallelogram

Words The area A of a parallelogram is the product of the base b and the height h.

Algebra A = bh

Numbers A =

Example 1

Finding the Area of a Parallelogram

The base of a parallelogram is 8 yards. The height is three times the base. Find the area of the parallelogram.

1. Find the height.

$$h = 3b$$

$$= 3(\boxed{)}$$

$$= \boxed{}$$

2. Find the area.

Answer: The parallelogram has an area of

Area of a Trapezoid

Words The area A of a trapezoid is one half of the product of the sum of the bases, b_1 and b_2 , and the height h.

Algebra
$$A = \frac{1}{2}(b_1 + b_2)h$$

Numbers *A* = (+ () = ()

Example 2 Finding the Area of a Trapezoid

The diagram shows one of the trapezoids in a floor design. Find the area of the trapezoid.

Solution

$$A = \frac{1}{2}(b_1 + b_2)h$$
 Write formula for area of a trapezoid.
 $= \boxed{ (\boxed{ + \boxed{ })} }$ Substitute values.
 $= \boxed{ }$ Simplify.

Answer: The trapezoid has an area of

Checkpoint Find the area of the parallelogram or trapezoid.

Example § Finding an Unknown Length

The height of a trapezoid is 8 feet. One of its bases is 12 feet. The area of the trapezoid is 108 square feet. Find the other base.

$$A=\frac{1}{2}(b_1+b_2)h$$

Write formula for area of a trapezoid.

Substitute values.

Multiply.

Distributive property

Subtract from each side.

Divide each side by

Answer: The other base is _____.

Circumference and Area of a Circle

Goal: Find the circumferences and areas of circles.

Vocabulary	
Circle:	
Center:	
Radius:	
Diameter:	
Circumference:	

Circumference of a Circle

Words The circumference C of a circle is the product of π and the diameter d, or twice the product of π and the radius r.

Algebra $C = \pi d$ $C = 2\pi r$

Example 1 Finding the Circumference of a Circle

Labels A circular label has a diameter of 3.33 inches. Approximate the distance around the label to the nearest inch.

Solution

When the radius or diameter of a circle is divisible by 7, use $\frac{22}{7}$ to approximate π . Otherwise, use 3.14 to approximate π .

 $C = \pi d$

Write formula for circumference of a circle.

Substitute for π and for d.

Multiply.

Answer: The distance around the label is about

Example 2	Finding	the	Radius	of a	Circle

The circumference of a circle is 56 feet. Find the radius of the circle to the nearest foot.

$$C=2\pi r$$

Write formula for circumference of a circle.

$$\sim$$
 $()$

Substitute for C and for π .

≈	r

Multiply.

	≈ r
--	-----

Divide each side by

Use a calculator.

Answer: The radius of the circle is about

Area of a Circle

Words The area A of a circle is the product of π and the square of the radius r.

Algebra $A = \pi r^2$

Find the area of the circle to the nearest square meter.

1. Find the radius.

$$r = \frac{d}{2} = \frac{ }{2} = \frac{ }{2}$$

2. Find the area.

$$A = \pi r^2$$

Write formula for area of a circle.

Substitute for π and for r.

DATE	

Simplify.

Answer: The area of the circle is about

about	=
-------	---

Example 4

Finding the Radius of a Circle

The area of a circle is 39.25 square yards. Find the radius of the circle to the nearest tenth of a yard.

$$A = \pi r^2$$

Write formula for area of a circle.

$$\approx$$
 r^2

Substitute for A and for π .

F	- 1		_
	- 1		٠,
1	- 1		u ~
	- 1	\approx	•
E .	- 1	. –	

Divide each side by

	14
\approx	I

Take positive square root of each side.

	- 1	
1	- 1	
1	- 1 ≃	r

Use a calculator to approximate square root.

Answer: To the nearest tenth of a yard, the radius of the circle is about .

O Checkpoint Find the circumference and the area of the circle. Round to the nearest whole number.

1.

2.

Surface Areas of Prisms and Cylinders

Goal: Find the surface areas of prisms and cylinders.

Vocabulary Surface area of a solid: Net: In your textbook, every prism is a right Lateral faces prism, which means of a prism: that the edges connecting the bases are perpendicular to Lateral area the bases. of a prism: Lateral surface of a cylinder: Lateral area of a cylinder: Using a Net to Find Surface Area Example 1 A storage chest has the shape 3 ft of a rectangular prism. The net 3 ft represents the storage chest. Use the net to find the surface 4ft 3ft 3 ft area of the storage chest. 4 ft 1. Find the area of each face. Area of a rectangular face: Area of a square face: 2. Find the sum of the areas of the faces. Answer: The surface area of the storage chest is

The formula applies to any prism. When finding the surface area of a rectangular prism, you can substitute ℓw for B and $2\ell + 2w$ for P. So, the formula becomes $S = 2\ell w + (2\ell + 2w)h$.

Surface Area of a Prism

Words The surface area S of a prism is the sum of twice the base area B and the product of the base perimeter P and the height h.

Algebra S = 2B + Ph

Numbers $S = 2(6 \cdot 4) + [2(6) + 2(4)]10 = 148$ square units

Example 2 Using a Formula to Find Surface Area

Find the surface area of the prism.

The bases of the prism are right triangles.

$$S = 2B + Ph$$

$$= 2 \left(\right) + \left(\right) \left(\right)$$

Write formula for surface area.

Substitute.

Simplify.

Answer: The surface area of the prism is

s

In your textbook, all cylinders are right cylinders, which means that the segment connecting the centers of the bases is perpendicular to the bases.

Surface Area of a Cylinder

Words The surface area S of a cylinder is the sum of twice the base area B and the product of the base circumference C and the height h.

Algebra
$$S = 2B + Ch = 2\pi r^2 + 2\pi rh$$

Numbers $S = 2\pi(4)^2 + 2\pi(4)(10) \approx 352$ square units

Soup Can Find the surface area of the can of soup. Round your answer to the nearest tenth of an inch.

Solution

Although you used 3.14 as an approximation for π previously, you can obtain a more accurate approximation by using the π key on a calculator.

The radius is one half of the diameter, so r = 1.5 inches.

$$S = 2\pi r^{2} + 2\pi rh$$

$$= 2\pi \left(\right)^{2} + 2\pi \left(\right) \left(\right)$$

$$= \left(\right)^{\pi}$$

Write formula for surface area of a cylinder.

Substitute.

Simplify.

Evaluate. Use a calculator.

Answer: The surface area of the can of soup is about

© Checkpoint Find the surface area of the prism or cylinder. Round to the nearest whole number.

Volumes of Prisms and Cylinders

Goal: Find the volumes of prisms and cylinders.

Volume of a Prism

Words The volume V of a prism is the product of the base area B and the height h.

Algebra V = Bh

This formula applies to any prism.

Example 1 Finding the Volume of a Prism

Find the volume of the prism shown.

The bases of the prism are triangles, so use the formula for the area of a triangle to find *B*.

Answer: The volume of the prism is

Volume of a Cylinder

Words The volume V of a cylinder is the product of the base area B and the height h.

Algebra $V = Bh = \pi r^2 h$

Find the capacity (in gallons) of the recycling bin shown. Round to the nearest whole number. (Use the fact that 1 in. $^3 \approx 0.004$ gal.)

Solution

1. The radius is one half of the diameter. So, r = 10.

$$V = \pi r^2 h$$

$$= \pi \left(\right)^2 \left(\right)$$

$$=$$

Write formula for volume of a cylinder. Substitute values. Simplify. Leave in terms of π .

2. Use a conversion factor that converts cubic inches to gallons.

•	≈	Evaluate.	Use a	calculator
---	---	-----------	-------	------------

Answer: The capacity of the recycling bin is about _____.

Checkpoint Find the volume of the prism or cylinder.
Round to the nearest whole number.

Example 3

Finding the Volume of a Solid

The solid shown is composed of a rectangular prism and two half cylinders. Find the volume of the solid. Round to the nearest cubic meter.

Solution

1. Find the area of a base. Each end of a base is a half circle with a . Together, the ends form a complete circle. radius of

$$B = \frac{\text{Area of}}{\text{rectangle}} + \frac{\text{Area of}}{\text{circle}}$$

$$= \ell w + \pi r^2$$

$$= \boxed{(\boxed{)} + \pi(\boxed{)}^2}$$

۷.	V = E	sn -
	= (

≈	

Use formulas for area of a rectangle and area of a circle.

Substitute values.

Simplify. Leave in terms of π .

Write formula for volume of a prism.

Substitute values.

Use distributive property.

Evaluate. Use a calculator.

Answer: The volume of the solid is about

Volumes of Pyramids and Cones

Goal: Find the volumes of pyramids and cones.

Volume of a Pyramid or a Cone

Words The volume V of a pyramid or a cone is one third of the product of the base area B and the height h.

Algebra $V = \frac{1}{3}Bh$

Unlike the formula for the surface area of a pyramid, the formula for the volume of a pyramid can also be used for pyramids whose bases are not regular.

Example 1 Finding the Volume of a Pyramid

Find the volume of the pyramid.

$$V = \frac{1}{3}Bh$$
 Write formula for volume of a pyramid.
 $= \frac{1}{3}(\boxed{})(\boxed{})$ Substitute.
 $= \boxed{}$ Simplify.

Answer: The volume of the pyramid is .

Checkpoint

1. Find the volume of the pyramid.

Find the volume of the cone. Round to the nearest cubic foot.

The radius is one half of the diameter, feet. so r =

$$V = \frac{1}{3}Bh$$

$$V = \frac{1}{3}Bh$$

$$=\frac{1}{3} \boxed{(\boxed{})(\boxed{})}$$

Substitute.

Evaluate. Use a calculator.

Answer: The volume of the cone is about

Checkpoint

2. Find the volume of the cone. Round to the nearest cubic centimeter.

Example 3

Finding the Volume of a Solid

Award The shape of an award is a pyramid. Find the volume of the award to the nearest tenth of a cubic inch.

Solution

$$V = \frac{1}{3}Bh$$

Write formula for volume of a pyramid.

$$=\frac{1}{3}(\boxed{})(\boxed{}$$

Substitute.

Simplify.

Answer: The volume of the award is about