Unit 3: Ratios, Proportions and Probability

- How are ratios and rates similar and different?
- Why are proportions defined as two equivalent ratios?
- When is it mathematically appropriate to use a proportion?
- Why is it important to calculate probability and odds?
- How could probability be used to predict future outcomes?

Ratios and Rates

Goal: Find ratios and unit rates.

Vocabulary		
Ratio:	*	·
Equivalent ratios:		

Writing Ratios

You can write the ratio of two quantities, a and b, where b is not equal to 0, in three ways.

a to b

a : b

 $\frac{a}{b}$

Each ratio is read "the ratio of a to b." You should write the ratio in simplest form.

Example 1 Writing Ratios

In a recent baseball season, the Anaheim Angels played 81 home games. Anaheim won 54 of those games and lost 27. Write the ratio in three ways.

- a. The number of losses to the number of wins
- b. The number of losses to the number of games

Solution

Three ways to write the ratio are , and .

9	Checkpoint
	@410@1160011C

1.	Use the information given in Example 1. Compare the number of wins to the number of games using a ratio. Write the ratio in three ways.

Example 2 Finding a Unit Rate						
Vacation On the first day of a family vacation, you and your family drive 392 miles. The amount of gasoline used is 16 gallons. What is the average mileage per gallon of gasoline?						
Solution						
First, write a rate comparing the	to the					
. Then write the rate so the der	nominator					
is .						
Divide numerator an	d					
denominator by	F					
= Simplify.						
Answer: The average mileage per gallon of gasoline is						

Checkpoint Find the unit rate.

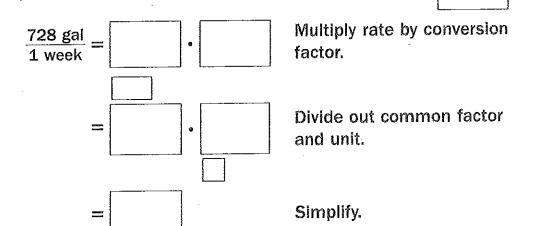
2. 220 mi 4 h	3. <u>\$115</u> 5 people

xample	e 3	Writing	an	Equi	valent	Rate	e
		mount o					

Water The amount of water used in a certain home is 728 gallons per week. Write this rate in gallons per day.

Solution

To convert from gallons per week to gallons per day, multiply the rate by a conversion factor. There are 7 days in 1 week, so = 1.



Answer: The amount of water used is

Example 4

Using Equivalent Rates

Weather Lightning strikes occur about 100 times per second around the world. About how many lightning strikes occur in 3 minutes?

Solution

1. Express the rate 100 times per second in times per minute.

2. Find the number of times lightning strikes occur around the world in 3 minutes.

Number of times = Rate • Time

Substitute values.

Divide out common unit.

Multiply.

Answer: In 3 minutes, about lightning strikes occur around the world.

Solving Proportions Using Cross Products

Goal: Solve proportions using cross products.

Vocabul	ary				
Cross product:					

Example 1 Determining if Ratios Form a Proportion

Tell whether the ratios form a proportion.

a.
$$\frac{4}{26}$$
, $\frac{8}{42}$

b.
$$\frac{12}{21}$$
, $\frac{20}{35}$

Solution

$$\frac{4}{26} \stackrel{?}{=} \frac{8}{42}$$

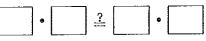
Form cross products.

Multiply.

Answer: The ratios a proportion.

$$\frac{12}{21} \stackrel{?}{=} \frac{20}{35}$$

Write proportion.



Form cross products.

Multiply.

Answer: The ratios a proportion.

Cross Products Property

Words The cross products of a proportion are equal.

Numbers Given that $\frac{2}{5} = \frac{6}{15}$, you know that $\boxed{}$

Algebra If
$$\frac{a}{b} = \frac{c}{d}$$
, where $b \neq 0$ and $d \neq 0$, then $\boxed{} = \boxed{}$.

Earnings You earn \$68 mowing 4 lawns. How much would you earn if you mowed 7 lawns?

Solution

Checkpoint Tell whether the ratios form a proportion.

1.
$$\frac{9}{39} = \frac{15}{65}$$
2. $\frac{12}{45} = \frac{6}{28}$

Use the cross products property to solve the proportion.

3.
$$\frac{14}{42} = \frac{x}{6}$$
4. $\frac{4}{9} = \frac{16}{x}$

Similar and Congruent Figures

Goal: Identify similar and congruent figures.

Vocabulary		
Similar figures:		
Corresponding parts:		
Congruent figures:		

When naming similar figures, list the letters of the corresponding vertices in the same order. For the diagram at the right, it is not correct to say $\triangle CBA \sim \triangle EFD$, because $\angle C$ and $\angle E$ are not corresponding angles.

Properties of Similar Figures

 $\triangle ABC \sim \triangle DEF$

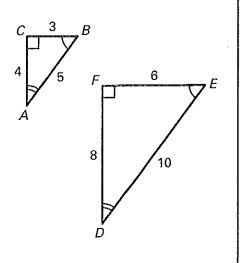
The symbol \sim indicates that two figures are similar.

1. Corresponding angles of similar figures are congruent.

$$\angle A \cong \angle D$$
, $\angle B \cong \angle E$, $\angle C \cong \angle F$

2. The ratios of the lengths of corresponding sides of similar figures are equal.

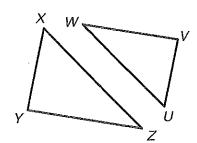
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = \frac{1}{2}$$



109

Example 1 Identifying Corresponding Parts of Similar Figures

Given $\triangle XYZ \sim \triangle UVW$, name the corresponding angles and the corresponding sides.



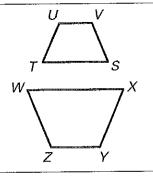
Solution

Corresponding angles:

Corresponding sides:

O Checkpoint

1. Given $STUV \sim WXYZ$, name the corresponding angles and the corresponding sides.



Example 2

Finding the Ratio of Corresponding Side Lengths

Given $ABCD \sim QRST$, find the ratio of the lengths of the corresponding sides of ABCD to QRST.

Write a ratio comparing the lengths of a pair of corresponding sides. Then substitute the lengths of the sides and simplify.

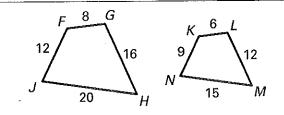
$$Q = \begin{array}{c|c} 12 & R \\ 10 & 10 \\ \hline T & 8 & S \end{array}$$

$$\frac{AD}{QT} = \boxed{}$$

Answer: The ratio of the lengths of the corresponding sides is

Because all the ratios of the lengths of corresponding sides of the figure in Example 2 are equal, you can use any pair of lengths of corresponding sides to write the ratio. To check the solution, choose another pair of lengths of corresponding sides.

2. Given $FGHJ \sim KLMN$, find the ratio of the lengths of the corresponding sides of FGHJ to KLMN.



Example 3

Finding Measures of Congruent Figures

Given $DEFG \cong KLMN$, find the indicated measure.

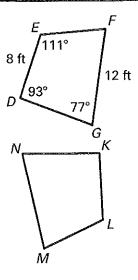
a. KL

b. $\angle L$

Solution

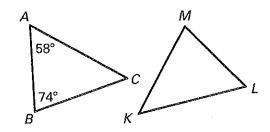
Because the quadrilaterals are congruent, the corresponding angles are congruent and the corresponding sides are congruent.

a.
$$\overline{\mathit{KL}}\cong$$
 So, $\mathit{KL}=$ =



Checkpoint

3. Given $\triangle ABC \cong \triangle LMK$, find $m \angle L$.



Goal: Find unknown side lengths of similar figures.

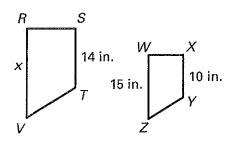
Example 1

Finding an Unknown Side Length in Similar Figures

Given RSTV \sim WXYZ, find VR.

Solution

Use the ratios of the lengths of corresponding sides to write a proportion involving the unknown length, *VR*.



$$\frac{XY}{ST} =$$

Write proportion involving $\emph{VR}.$

Substitute.

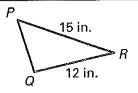
Cross products property

Multiply.

Divide each side by

Answer: The length of \overline{VR} is inches.

1. Given $\triangle PQR \sim \triangle VTS$, find TS.

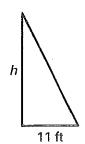


$$S \underbrace{\begin{array}{c} x \\ 10 \text{ in.} \end{array}}_{V}^{T}$$

Example 2

Using Indirect Measurement

Height At a certain time of day, a person who is 6 feet tall casts a 3-foot shadow. At the same time, a tree casts an 11-foot shadow. The triangles formed are similar. Find the height of the tree.



Solution

 $6 \text{ ft} \sum_{\text{3 ft}}$

Write and solve a proportion to find the height *h* of the tree.

	=	
--	---	--

Substitute values.

9	=	0	

Cross products property

Multiply.

Divide each side by

30 in.

Ε

16 in.

В

24 in.

Answer: The tree has a height of feet.

Example 3 Using Algebra and Similar Triangles

Given $\triangle ABC \sim \triangle DEC$, find BE.

To find BE, write and solve a proportion.

$$\frac{AB}{DE} =$$

Write proportion.

Use fact that BC =

Substitute.

 ı	

 :	 _

Cross products property

Multiply.

Subtract from each side.

$$= x$$

Divide each side by .

Answer: The length of \overline{BE} is inches.

Scale Drawings

Goal: Use proportions with scale drawings.

Vocabulary	
Scale drawing:	
Scale model:	
Scale:	·
Stample 1 Using a Scale Draw	ving
• <i>,</i>	n two cities is 3 inches. What is the een the two cities if the map's scale
Solution	
•	ance between the two cities to the scale of the map. Write and solve
=	Map distance Actual distance
	Cross products property
$\chi = $	Multiply.
Answer: The actual distance is	

Checkpoint

1. On a map, the distance between two cities is 4 inches. What is the actual distance (in miles) between the two cities if the map's scale is 1 in.: 80 mi?

Example 2 F

Finding the Scale of a Drawing

Architecture In a scale drawing, a wall is 2 inches long. The actual wall is 12 feet long. Find the scale of the drawing.

Solution

Write a ratio using corresponding side lengths of the scale drawing and the actual wall. Then simplify the ratio so that the numerator is \square.

Answer: The drawing's scale is

The scale of a scale drawing or scale model can be written without units if the measurements have the same unit. For example, the scale 1 cm: 2 m can be written without units as follows.

1 cm : 2 m	Scale with units
<u>1 cm</u>	
2 m	
(7/2) seement	
1 cm	
200 cm	
**	Scale
1:200	without
	units

Example 3 Finding a Dimension of a Scale Model

A model of the Sears Tower in Chicago has a scale of 1:103. The height of the Sears Tower's observation deck is about 412 meters. Find the height of the observation deck of the model.

Solution

Write a proportion using the scale.

= Cross products property

$$= x$$
 Divide each side by

Answer: The height of the model's observation deck is

Checkpoint

2. The height of one antenna on the Sears Tower is about 521.1 meters. Find the height of the antenna on the model to the nearest tenth of a meter.

Probability and Odds

Goal: Find probabilities.

Vocabulary
Outcomes:
Event:
Favorable outcomes:
Probability:
Theoretical probability:
Experimental probability:
Odds in favor:
Odds against:

The probability of an event when all outcomes are equally likely is:

 $P(\text{event}) = \frac{\text{Number of favorable outcomes}}{\text{Number of possible outcomes}}$

Example 1 Finding a Probability
Suppose you roll a number cube. What is the probability that you roll an odd number?
Solution
Rolls of are odd, so there are favorable outcomes.
There are possible outcomes.
P() =
=

Checkpoint

1.	Suppose you roll a number of	cube.	What i	is the	probability	that	you
	roll a number less than 5?						

2. Suppose you roll a number cube. What is the probability that you roll a number that is a multiple of 3?

	$P(\text{event}) = \frac{\text{Number of successes}}{\text{Number of trials}}$					
	Example 2 Finding Experimental Probability					
	You plant 32 seeds of a certain flower and 18 of them sprout. Find the experimental probability that the next flower seed planted will sprout.					
	Solution P(flower seed will sprout) = Number of successes Number of trials					
	= Simplify.					
	Answer: The experimental probability that a flower seed will sprout is, or					
72900	Suppose you randomly choose a number between 1 and 16.					
	a. What are the odds in favor of choosing a prime number?b. What are the odds against choosing a prime number?Solution					
	a. There are favorable outcomes () and 16 - unfavorable outcomes.					
	Odds in favor = $\frac{\text{Number of favorable outcomes}}{\text{Number of unfavorable outcomes}} = \boxed{} = \boxed{}$					
	The odds are, or to, that you choose a prime number.					
	b. The odds against choose a prime number are, or to					

Experimental Probability

The experimental probability of an event is:

The Counting Principle

Goal: Use the counting principle to find probabilities.

Vocabulary		
Tree diagram:		
Counting principle:		
Example 1 Ma	iking a Tree Diagram	
The choices inclu	, you can choose one san ude the following: veggie arden salad, and fruit sal e possible?	burger, hamburger,
To count the nuntree diagram.	nber of possible picnic lur	nches, you can make a
List the sandwiches.	List the salads for each sandwich.	List the possibilities for each picnic lunch
Answer:	different picnic lunches ar	e possible.

	one fruit. The choices include the following: apple, banana, orange, and grapefruit. Copy the tree diagram in Example 1 and add the new choices. How many possible picnic lunch choices are there?
1	
	The Counting Principle
	If one event can occur in m ways, and for each of these ways a second event can occur in n ways, then the number of ways that the two events can occur together is $m \cdot n$.
	The counting principle can be extended to three or more events.
	Use the Counting Principle
J	You roll a number cube and randomly draw a marble from a bag.

for the marble

different possible outcomes.

Number of outcomes Number of outcomes

for the number cube

Answer: There are

1. Suppose for each picnic lunch in Example 1 you also get to choose

Total number of

possible outcomes

🕜 Checkpoint

2.	You roll a number cube, randomly draw a marble from a bag, and flip a coin. There is one marble for each of the following colors: red, blue, and yellow. Use the counting principle to find the number of different outcomes that are possible.

Example 3 Finding a Probability

Car Security The access code for a car's security system consists of 4 digits. You randomly enter 4 digits. What is the probability that you choose the correct code?

Solution

First find the	number of	different	codes.		•
			Use the	counting	principle

Then find the probability that you choose the correct code.

Answer: The probability that you choose the correct code

is		
----	--	--

Checkpoint

3. Your computer password has 2 lowercase letters followed by 6 digits. Your friend randomly chooses 2 lowercase letters and 6 digits. Use a calculator to find the probability that your friend chooses your password.