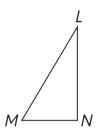
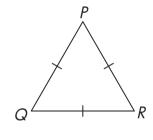
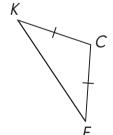
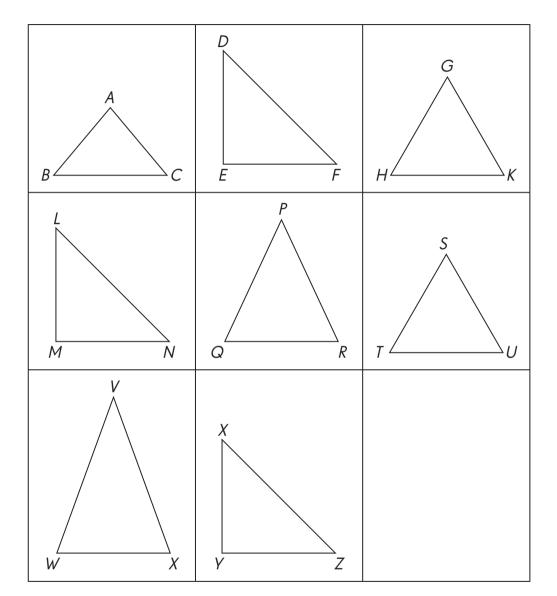

Properties of Triangles and Four-Sided Figures


Lesson 13.1 Classifying Triangles

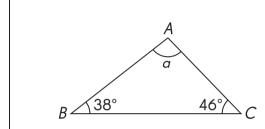

1. Classify the following triangles by sides as a scalene triangle, an isosceles triangle, or an equilateral triangle.





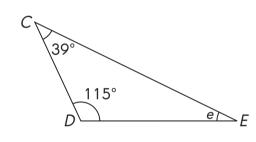
Scalene Triangles	Equilateral Triangles	Isosceles Triangles

2. Classify the following triangles by angles as a right triangle, an isosceles triangle, or an equilateral triangle. Use a protractor to help you classify the triangles.

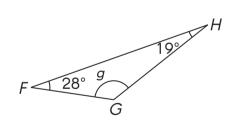


Right Triangles	Equilateral Triangles	Isosceles Triangles

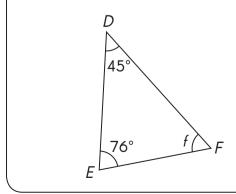
Lesson 13.2 Measures of Angles of a Triangle


Find the unknown angle measures. The figures are not drawn to scale.

1.

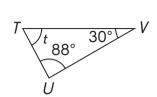

$$m \angle a =$$

2.

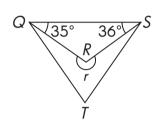


$$m\angle e =$$

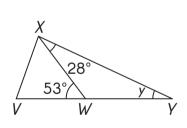
3.



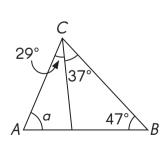
4.


$$m \angle f =$$

5.


$$m \angle t =$$

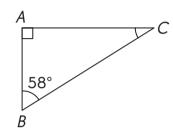
6.


$$m \angle r =$$

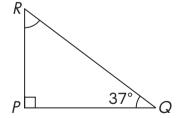
7.

$$m \angle y =$$

8.

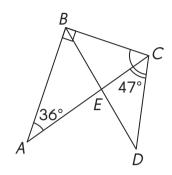


$$m \angle a =$$

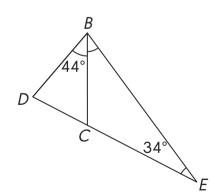

Lesson 13.3 Right, Isosceles, and Equilateral Triangles

Find the unknown angle measures in each right triangle. The figures are not drawn to scale.

1. ABC is a right triangle. Find the measure of $\angle ACB$.

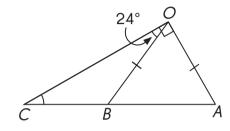


2. PQR is a right triangle. Find the measure of $\angle PRQ$.

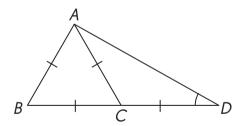


Find the unknown angle measures. The figures are not drawn to scale.

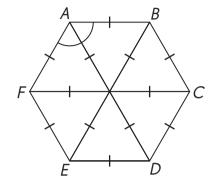
3. ABC is a right triangle. Find the measure of $\angle BCD$.

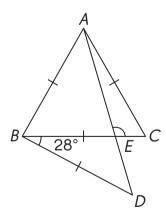


4. *EBD* is an isosceles triangle with ED = EB, $m \angle BEC = 34^\circ$, and $m \angle CBD = 44^\circ$. Find the measure of $\angle EBC$.

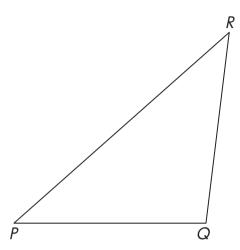


Find the unknown angle measures in each figure. The figures are not drawn to scale.


5. AOB is an isosceles triangle. OA = OB. AOC is a right triangle. Find the measure of $\angle OCB$


6. ABC is an equilateral triangle and ACD is an isosceles triangle. Find the measure of $\angle ADC$.

7. ABCDEF is a 6-sided figure. All the triangles are equilateral triangles. Find the measure of $\angle FAB$.



8. ABC is an equilateral triangle. BA = BD. Find the measure of $\angle AEC$.

Lesson 13.4 Triangle Inequalities

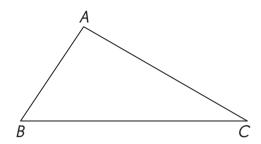
Complete. Measure the sides of the triangle to the nearest inch.

1.
$$PQ =$$
_____ in. $QR =$ _____ in. $PR =$ _____ in.

2.
$$PQ + QR =$$
 _____ in.

3.
$$PQ + PR =$$
_____ in.

4.
$$PR + QR =$$
 ______ in.


Use your answers in Exercises 1 to 4. Fill in the blanks with Yes or No.

5. Is
$$PQ + QR > PR$$
?

6. Is
$$PQ + PR > QR$$
?

7. Is
$$PR + QR > PQ$$
?

Complete. Measure the sides of the triangle to the nearest centimeter.

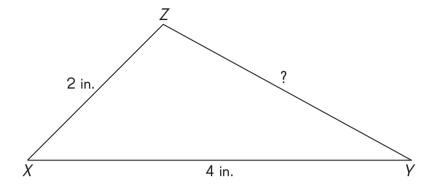
8.
$$BC =$$
_____ cm $AB =$ ____ cm $AC =$ ____ cm

9.
$$AB + BC =$$
_____ cm

10.
$$AB + AC =$$
_____ cm

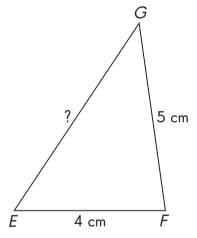
11.
$$BC + AC =$$
_____ cm

Use your answers in Exercises 8 to 11. Write the sides of the triangle to make the inequalities true.


12.
$$AB + BC >$$

13.
$$AB + AC >$$

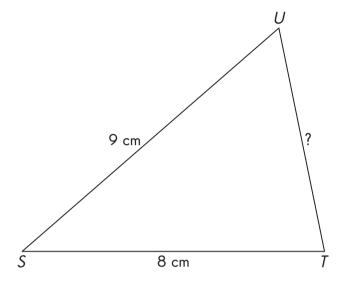
14.
$$BC + AC >$$


The lengths of two sides of each triangle are given. Name a possible length for the third side. The given lengths are in whole centimeters or inches.

15.

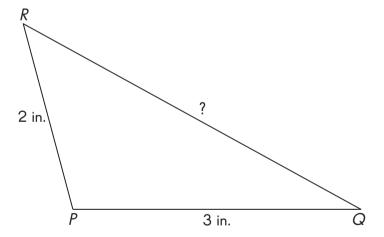
In triangle XYZ, the length of \overline{ZY} is greater than 2 inches. A possible length of \overline{ZY} , rounded to the nearest inch, is ______.

16.



In triangle *EFG*, the length of \overline{EG} is greater than 4 centimeters.

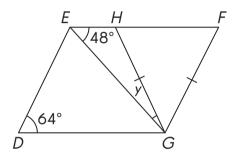
A possible length of $E\overline{G}$, rounded to the nearest centimeter, is


The lengths of two sides of each triangle are given. Name a possible length for the third side. The given lengths are in whole centimeters or whole inches.

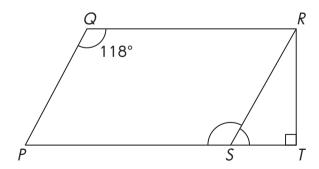
17.

In triangle STU, the length of \overline{UT} is less than 10 centimeters. A possible length of \overline{UT} , rounded to the nearest centimeter, is ______.

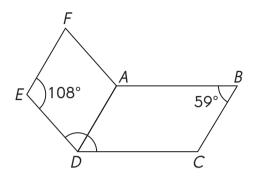
18.

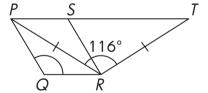


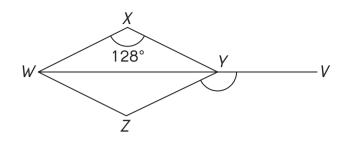
In triangle PQR, the length of \overline{RQ} is greater than 3 inches. The possible length of \overline{RQ} , rounded to the nearest inch, is ______.

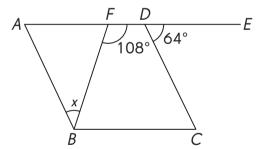

Lesson 13.5 Parallelogram, Rhombus, and Trapezoid

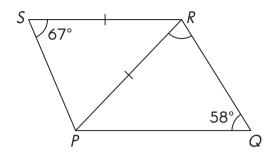
Find the unknown angle measures. The figures are not drawn to scale.

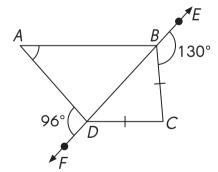

1. DEFG is a parallelogram and GF = GH. Find the measure of $\angle y$.


2. PQRS is a parallelogram and RST is a right triangle. Find the measures of $\angle PSR$ and $\angle RST$.


3. ABCD and ADEF are parallelograms. Find the measure of $\angle EDC$.

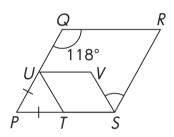

4. PQRS is a rhombus and PR = TR. Find the measure of $\angle PQR$.


5. WXYZ is a rhombus and \overline{WV} is a line segment. Find the measure of $\angle VYZ$.

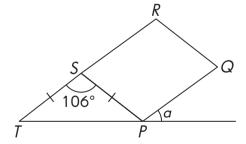

6. ABCD is a rhombus. \overline{AE} is a line segment. Find the measure of $\angle x$.

7. PQRS is trapezoid and $\overline{SR} \parallel \overline{PQ}$. SR = PR. Find the measure of $\angle PRQ$.

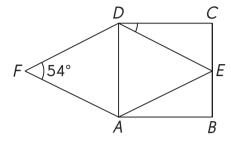
8. ABCD is a trapezoid. $\overline{AB} \parallel \overline{DC}$ and CB = CD. \overline{FE} is a line. Find the measure of $\angle BAD$.

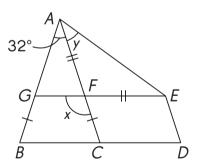


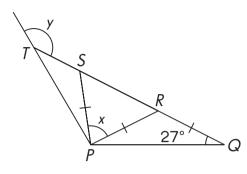
3

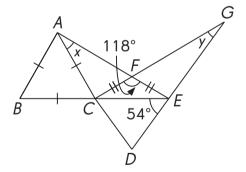

Put on Your Thinking Cap!

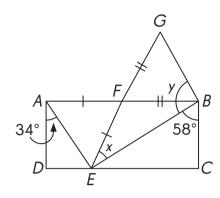
The figures are not drawn to scale. Find the unknown angle measures.

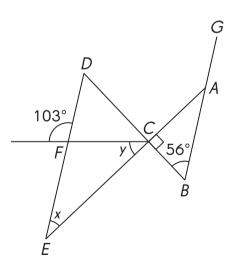

1. PQRS and STUV are parallelograms and PT = PU. Find the measure of $\angle RSV$.


2. PQRS is a parallelogram and ST = SP. Find the measure of $\angle a$.


3. ABCD is a square and AEDF is a rhombus. Find the measure of $\angle CDE$.


4. BDEG is a trapezoid and $\overline{GF} \parallel \overline{BC}$. ABC and AEF are isosceles triangles. Find the measures of $\angle x$ and $\angle y$.


In the figure, PS = PR = RQ and the measure of $\angle STP$ is twice the measure of $\angle TPS$. Find the measures of $\angle x$ and $\angle y$.


6. ABC is an equilateral triangle. CEF is an isosceles triangle, where FC = FE, $m \angle CED = 54^\circ$, and $m \angle CFE = 118^\circ$. Find the measures of $\angle x$ and $\angle y$.

7. ABCD is a rectangle. FA = FE and FB = FG. Find the measures of $\angle x$ and $\angle y$.

8. ABC is a right triangle, \overline{BG} is a line segment, and $m \angle ABC = m \angle CDE$. $m \angle ACB = 90^{\circ}$ and $\overline{AB} \parallel \overline{DE}$. Find the measures of $\angle x$ and $\angle y$.

